anne richards, cara broshkevitch, ong kim yao, and poh yong rui

14
Biodegradation activities of Phanerochaete chrysosporium fungus and the bacteria Pseudomonas putida and Sphingomonas macrogoltabidus on pretreated HDPE plastic Anne Richards, Cara Broshkevitch, Ong Kim Yao, and Poh Yong Rui

Upload: antoine-applegarth

Post on 14-Dec-2015

229 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: Anne Richards, Cara Broshkevitch, Ong Kim Yao, and Poh Yong Rui

Biodegradation activities of Phanerochaete

chrysosporium fungus and the bacteria Pseudomonas putida and Sphingomonas

macrogoltabidus on pretreated HDPE plastic

Anne Richards, Cara Broshkevitch, Ong Kim Yao, and Poh Yong Rui

Page 2: Anne Richards, Cara Broshkevitch, Ong Kim Yao, and Poh Yong Rui

HDPE plastic: used in food packaging, plastic bags, plastic bottles, recycled plastic lumber, toiletry and liquid containers, outdoor furniture, and piping

Takes over 100 years to degrade in a landfill-discarded plastics filling up landfills (Sivan, 2011)

Detrimental environmental effects: Water and air cannot enter soil – deplete

underground water resource Disrupts degradation of other substances In the ocean, plastic chokes and entangles marine life

Background

Page 3: Anne Richards, Cara Broshkevitch, Ong Kim Yao, and Poh Yong Rui

Other ways of disposal can not be used: Burning plastics at high temperatures

produces toxic irritants that are human carcinogens

Past research: biodegradation with bacteria or fungi, UV radiation, and thermal radiation have been separately investigated All three organisms have been shown to

degrade polyethylene plastic separately

Background continued

Page 4: Anne Richards, Cara Broshkevitch, Ong Kim Yao, and Poh Yong Rui

Academy of ScienceHypothesis:The following factors affect the rate of biodegradation of HDPE plastic mass:

Ratios of different microorganisms

P. Chrysosporium fungus

P. Putida bacteria S. Macrogoltabidus

bacteria

Hwa Chong Institution

Hypothesis: The following factors affect the rate of biodegradation of HDPE plastic mass:

Environmental conditions for biodegradation

Exposure time to UV radiation

PurposeTo determine the optimum treatment of HDPE plastic for maximum biodegradation.

Page 5: Anne Richards, Cara Broshkevitch, Ong Kim Yao, and Poh Yong Rui

Academy of Science

Independent variables Ratios of P.

chrysosporium fungus, P. putida bacteria, and S. macrogoltabidus bacteria

Dependent variable Percent change in

dry mass of the HDPE plastic samples

Amount of CO2 gas present

Hwa Chong Institution

Independent variables Environmental conditions

for biodegradation Exposure time to UV

radiation

Dependent variables Percentage change in dry

mass of HDPE samples Amount of CO2 gas

present Temperature of contents

of flask Cell density of bacterial

cultures

Variables:

Page 6: Anne Richards, Cara Broshkevitch, Ong Kim Yao, and Poh Yong Rui

Academy of ScienceCulture Bacteria and

Fungi

Pre-treat Plastic

Expose Plastic to Individual

Microorganisms

Expose Plastic to different Ratios of 3

Microorganisms

Measure Dependent Variables

Hwa Chong Institution

Culture Bacteria

Prepare Soil Conditions

Pre-treat Plastic

Expose Plastic to Microorganisms

Measure Dependent Variables

Procedure

Page 7: Anne Richards, Cara Broshkevitch, Ong Kim Yao, and Poh Yong Rui

Bacteria will be cultured in culture test tubes with nutrient broth

Fungi will be cultured in Petri dishes in potato dextrose agar

Microorganism Culture (AOS & HCI)

Page 8: Anne Richards, Cara Broshkevitch, Ong Kim Yao, and Poh Yong Rui

Erlenmeyer flask with minimal media

Erlenmeyer flask with loamy soil and distilled water

Prepare Soil Conditions (HCI)

Page 9: Anne Richards, Cara Broshkevitch, Ong Kim Yao, and Poh Yong Rui

Pre-treat HDPE Plastic (AOS & HCI)

HDPE Plastic

Grocery Bags

Exposed to 365nm UV

radiation for 96 hours

Cut into one gram pieces

Exposed to thermal

radiation in the oven at

115°C for 48 hours

Exposed to

365nm UV

radiation for 72, 96, 120 hours

A

OSHCI

Cut into one gram pieces

HDPE Plastic

Grocery Bags

Exposed to thermal

radiation in the oven at

115°C for 48 hours

Page 10: Anne Richards, Cara Broshkevitch, Ong Kim Yao, and Poh Yong Rui

Academy of Science

Expose plastic to: Individual

microorganisms

P. putida S.

macrogoltabidus

P. chrysosporium

Different ratios of the three microorganisms

Hwa Chong Institution

Expose plastic to:

P. putida in: Minimal

Media Loamy soil

+ Distilled water

Expose Plastic to Microorganisms (AOS & HCI)

Page 11: Anne Richards, Cara Broshkevitch, Ong Kim Yao, and Poh Yong Rui

Will be used to measure: Percentage change in dry mass of HDPE samples Amount of CO2 gas present Temperature of contents of flask Cell density of bacterial cultures

Measure Dependent Variables (AOS & HCI)

Thermometer

CO2 Probe

Analytical Balance Spectrophotom

eter

AOS

HCI

Page 12: Anne Richards, Cara Broshkevitch, Ong Kim Yao, and Poh Yong Rui

Aamer Ali Shah (2007). Role of Microorganism in Biodegradation of Plastics. Retrieved October 30, 2011 from http://eprints.hec.gov.pk/2361/1/2216.htm

Abraham, J., Nanda, S., & Sahu, S. (2010). Studies on the biodegradation of natural and synthetic polyethylene by Pseudomonas spp. Journal of Applied Sciences and Environmental Management, 14.

Albano, C., Karam, A., Gonzalez, G., Dominguez, N., Sanchez, Y., Manzo, F. & Guzman-Garcia, C. (2005). Effect of gamma irradiation on HDPE/HA (80:20) composites.  Polymers for Advanced Technologies, 16, 283–285. Retrieved October 25, 2011 from http://onlinelibrary.wiley.com/doi/10.1002/pat.580/pdf

Ammala, A., Bateman, S., Dean, K., Petinakis, E., Sangwan, P., Wong, S., Yuan, Q., Yu, L., Patrick, C., & Leong, K.H. (2011). An overview of degradable and biodegradable polyolefins. Progress in Polymer Science, 36, 1015-1049. doi:10.1016/j.progpolymsci.2010.12.002

Anthony L. Andrady (1999). Environmental Degradation of Plastics under Land and Marine Exposure Conditions. Retrived October 30, 2011 from http://www.5gyres.org/media/Environmental_Degradation%20of%20Plastics_by_Andrady.pdf

Arkatkar, A., Arutchelvi, J., Sudhakar, M., Bhaduri, S., Uppara, P.V., & Doble, M. (2009). Approaches to enhance the biodegradation of polyolefins. The Open Environmental Engineering Journal, 2, 68-80.

Artham, T., & Doble, M. (2009). Biodegradation of physicochemically treated polycarbonate by fungi. Biomacromolecules, 11, 20-28. doi: 10.1021/bm 9008099

Arutchelvi, J., Sudhakar, M., Arkatkar, Ambika, Doble, Mukesh, Bhaduri, Sumit & Uppara, Parasu Veera (2008). Biodegradation of polyethylene and polypropylene.  Indian Journal of Biotechnology, 7, 9–22. Retrieved October 25, 2011 from http://nopr.niscair.res.in/bitstream/123456789/7326/4/IJBT%207%281%29%209-22.pdf

CDC/Office of safety, health, and environment. (2010, November 10). Biosafety in microbiological and biomedical laboratories (BMBL) 5th edition. Retrieved from http://www.cdc.gov/biosafety/publications/bmbl5/index.htm

Bibliography

Page 13: Anne Richards, Cara Broshkevitch, Ong Kim Yao, and Poh Yong Rui

Chowdhury, T., Ghosh, A., & Gupta, S. B. (2010). Isolation and selection of stress tolerant plastic loving bacteria isolates from old plastic wastes. World Journal of Agricultural Sciences, 2, 138-140.

Chung, I.Y., Kim, E., Park, J.M., & Seo, S.W. (2008). A case of postoperative Sphingomonas paucimobilis endophthalmitis after cataract extraction. Korean Journal of Ophthalmology, 22, 63-65. doi: 10.3341/kjo.2008.22.1.63

Gijsman, Pieter, Meijers, Guido & Vitarelli, Giacomo (1999). Cornparison of the UV-degradation chemistry of polypropylene, polyethylene, polyamide 6 and polybutylene terephthalate.  Polymer Degradation and Stability, 65, 433–441. Retrieved October 25, 2011 from http://cid.ispa.asso.fr/GEIDEFile/Degrad_0001.PDF?Archive=191929191910&File=Degrad+0001_PDF

He, Q., Liang, S., Wang, Y., Wei, C., & Wu, H. (2009). Degradation of o-chloronitrobenzene as the sole carbon and nitrogen sources by Pseudomonas putida OCNB-1. Science Direct, 21, 89-95. doi: 10.1016/S1001-0742(09)60016-4

Huang, Yi-Li, Li, Qing-Biao, Deng, Xu, Lu, Ying-Hua, Liao, Xin-Kai, Hong, Ming-Yuan & Wang, Yan (2004). Aerobic and anaerobic biodegradation of polyethylene glycols using sludge microbes.  Process Biochemistry, 40, 207–211. Retrieved October 25, 2011 from http://envismadrasuniv.org/Biodegradation/pdf/Glycols%20using%20sludge%20microbes.pdf

Johnson, Kenneth E., Pometto, Anthony L. III & Nikolov, Zivko L. (1993). Degradation of Degradable Starch-Polyethylene Plastics in a Compost Environment.  American Society for Microbiology, 59, 1155–1161. Retrieved November 8, 2011 from http://aem.asm.org/content/59/4/1155.full.pdf

Lanini, S., Houi, D., Aguilar, O. & Lefebvre, X. (2001). The role of aerobic activity on refuse temperature rise: II. Experimental and numerical modelling.  Waste Management & Research, 19, 58–69. Retrieved October 25, 2011 from http://wmr.sagepub.com/content/19/1/58.full.pdf

Lucas, N., Bienaime, C., Belloy, C., Queneudec, M., Silvestre, F., & Nava-Saucedo, J. (2008). Polymer biodegradation: Mechanisms and estimation techniques. Chemosphere, 73, 429-442. doi:10.1016/j.chemosphere.2008.06.064

Bibliography Continued…

Page 14: Anne Richards, Cara Broshkevitch, Ong Kim Yao, and Poh Yong Rui

Morancho, J.M., Ramis, X., Fernández, X., Cadenato, A., Salla, J.M., Vallés, A., Contat, L. & Ribes, A. (2006). Calorimetric and thermogravimetric studies of UV-irradiated polypropylene/starch-based materials aged in soil.  Polymer Degradation and Stability, 91, 44–51. Retrieved November 8, 2011 from http://anvalllu.webs.upv.es/papers/2006_DSCTGAUVPPstarchsoil.pdf

Moriyoshi, K., Ohe, T., Ohmoto, T., Sakai, K., & Yamanaka, H. (2006). Biodegradation of Bisphenol A and related compounds by Sphingomonas sp. Strain BP-7 isolated from seawater. Bioscience, Biotechnology, and Biochemistry, 71, 51-57.

Mostafa, H. M., Sourell, H. & Bockisch, F. J. (2010). The Mechanical Properties of Some Bioplastics Under Different Soil Types for Use as a Biodegradable Drip Tubes.  Agricultural Engineering International: the CIGR Ejournal, 12, 1–16. Retrieved November 7, 2011 from http://www.cigrjournal.org/index.php/Ejounral/article/viewFile/1497/1270

Nanda, Sonil, Sahu, Smiti Snigdha & Abraham, Jayanthi (2010). Studies on the biodegradation of natural and synthetic polyethylene by Pseudomonas spp.  Journal of Applied Sciences & Environmental Management, 14, 57–60. Retrieved October 29, 2011 from http://www.bioline.org.br/pdf?ja10027

Orhan, Yüksel, Hrenovićb, Jasna & Büyükgüngöra, Hanife (2004). Biodegradation of plastic compost bags under controlled soil conditions. Acta Chimica Slovenica, 51, 579–588. Retrieved November 7, 2011 from http://acta.chem-soc.si/51/51-3-579.pdf

Shah, A., Hasan, F., Hameed, A., & Ahmed, S. (2008). Biological degradation of plastics: A comprehensive review. Biotechnology Advances, 26, 246-265. doi:10.1016/j.biotechadv.2007.12.005

Sharma, N., & Singh, B. (2008). Mechanistic implications of plastic degradation. Polymer Degradation and Stability, 93, 561-584. doi:10.1016/j.polymolegradstab.2007.11.008

Sierra, Isabel, Valera, José Luis, Marina, M. Luisa & Laborda, Fernando (2003). Study of the biodegradation process of polychlorinated biphenyls in liquid medium and soil by a new isolated aerobic bacterium (Janibacter sp.).  Chemosphere, 53, 609–618. Retrieved November 7, 2011 from http://infolib.hua.edu.vn/Fulltext/ChuyenDe2009/CD240/60.pdf

Sivan, A. (2011). New perspectives in plastic biodegradation. Science Direct. doi: 10.1016/j.copbio.2011.01.013Thraves, P., & Packer, R. (April 2009). Material safety data sheet. Retrieved from

http://www.hpacultures.org.uk/media/DF9/A0/Growing_Cultures_MSDS.pdfVerma, Shefali (2002). Anaerobic Digestion of Biodegradable Organics in Municipal Solid Wastes.  Retrieved

October 25, 2011 from http://www.seas.columbia.edu/earth/wtert/sofos/Verma_thesis.pdf

Bibliography Continued…