anisotropy of shale properties - ntnu

33
10 6 10 0 10 4 10 8 10 12 10 16 10 18 10 20 Frequency (Hz) Wavelength Observation Scale Anisotropy of Shale Properties: A Multi-Scale and Multi-Physics Characterization Elastic, Mechanical, Petrophysical and Micro-Structural Properties at in situ conditions Joel Sarout Lionel Esteban, Claudio Delle Piane, Bruce Maney, Dave Dewhurst and Ben Clennell CSIRO Earth Science and Resource Engineering Shale Research Consortium

Upload: others

Post on 17-May-2022

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Anisotropy of Shale Properties - NTNU

106100 104 108 1012 1016 1018 1020

Frequency ( Hz)

Wavelength

Observation Scale

Anisotropy of Shale Properties:A Multi-Scale and Multi-Physics Characterization

Elastic, Mechanical, Petrophysical and Micro-Structural Properties at in situ conditions

Joel Sarout

Lionel Esteban, Claudio Delle Piane, Bruce Maney, D ave Dewhurst and Ben Clennell

CSIRO Earth Science and Resource EngineeringShale Research Consortium

Page 2: Anisotropy of Shale Properties - NTNU

Motivation:Anisotropy of Fluid Transport

A

B

• A. Side-Burden: Permeability k along shale bedding• B. Over-Burden: Permeability k perpendicular to shale bedding

⇒ Calculate k for any angle (k second-rank tensor + shale T.I.)

Faulted reservoir Anticline reservoir

Need to assess:• Permeability anisotropy

Page 3: Anisotropy of Shale Properties - NTNU

Affects seismic data processing, inversion and interpretation (cross-well, VSP, AVO, time-lapse, ray tracing, tomography…)

Source: NORSAR

Vertical Transverse Isotropy

Isotropy Tilted Transverse Isotropy

Motivation:Seismic/Ultrasonic Anisotropy

Source: Moore et al. (2007)

Nankai accretionary wedge offshore Japan’s southeas t margin

Need to assess:• Elastic anisotropy• Stress-dependence• Emphasis on Thomsen’s δ

Page 4: Anisotropy of Shale Properties - NTNU

Need for Laboratory Characterizationof Rock Anisotropy for Field Applications

PhysicalProperties

CharacterizationScales

LaboratoryProbing Techniques

▪ Micro-Structure- 2-D (SEM)- 3-D (X-Ray CT)

▪ Water Content / Distribution▪ Fluid Transport

- Permeability- Diffusivity

▪ Mechanical Strength- Cohesion- Internal Friction Angle

▪ Elasticity-Static-Dynamic

▪ SEM 2-D Imaging

▪ X-Ray 3-D Tomography

▪ Water Circulation

▪ Nuclear Magnetic Resonance

▪ Triaxial Deformation

▪ Stress Anisotropy

▪ Scratching

▪ Wave Propagation

nm – 10-9m

����m – 10-

6m

mm – 10-

3m

cm – 10-2m↓ ↓ ↓ ↓ ↓ ↓ ↓km - 103m

Page 5: Anisotropy of Shale Properties - NTNU

Anisotropy & Heterogeneity:

Scale-Dependent Concepts…?

Page 6: Anisotropy of Shale Properties - NTNU

Evidence of Structural Anisotropy:High-Resolution Characterization (µm scale)

Page 7: Anisotropy of Shale Properties - NTNU

Evidence of Structural Anisotropy:High-Resolution Characterization (µm scale)

Page 8: Anisotropy of Shale Properties - NTNU

Low-Resolution Structural Characterization(mm to cm scale)

A-A B-B

80 m

m

Medical CT Scanner: Sample heterogeneity at mm scale

3D - High CT Contrast

3D - Low CT Contrast

80 m

m

Page 9: Anisotropy of Shale Properties - NTNU

Anisotropyof

Fluid Transport

Page 10: Anisotropy of Shale Properties - NTNU

Anisotropy of Water Permeability (cm)

Pressure Cell

Page 11: Anisotropy of Shale Properties - NTNU

Testing Protocol:Constant Pressure Drop Method

PROTOCOL:1. Saturate: Pc = 20MPa – Pp = 10MPa2. Impose: PpU = 15MPa – PpD = 10MPa3. Monitor Injection Rate: Q

Permeability in flow direction (cm scale)

Q

Page 12: Anisotropy of Shale Properties - NTNU

NMR Method: Field Gradient Method

Magnetic field gradient along Y-axis

Page 13: Anisotropy of Shale Properties - NTNU

Perpendicular to BeddingS

cale

d A

mpl

itude

of N

MR

Sig

nal

T2 Relaxation Time [ µµµµs]

102103 104 105 106

Scaled Gradient Intensity

0

500

1000

1500

2000

3000

4000

Page 14: Anisotropy of Shale Properties - NTNU

Parallel to Bedding 1S

cale

d A

mpl

itude

of N

MR

Sig

nal

T2 Relaxation Time [ µµµµs]

102103 104 105 106

Scaled Gradient Intensity

0

500

1000

1500

2000

3000

4000

Page 15: Anisotropy of Shale Properties - NTNU

Parallel to Bedding 2S

cale

d A

mpl

itude

of N

MR

Sig

nal

T2 Relaxation Time [ µµµµs]

102103 104 105 106

Scaled Gradient Intensity

0

500

1000

1500

2000

3000

4000

Page 16: Anisotropy of Shale Properties - NTNU

Peak NMR AmplitudesS

cale

d A

mpl

itude

of N

MR

Sig

nal

T2 Relaxation Time [ µµµµs]

102103 104 105 106

Scaled Gradient Intensity

0

500

1000

1500

2000

3000

4000

Page 17: Anisotropy of Shale Properties - NTNU

Anisotropy of Water Diffusivity (nm to µm)

16

Squared Gradient Intensity (x10 6)

12840

Dh // / Dh ⊥⊥⊥⊥

Fast Diffusivity(Free water ) 1.5

Slow Diffusivity(Clay-Bound Water ) ~ 1

Pea

k A

mpl

itude

of N

MR

Sig

nal

160

115

Slow Diffusion

Fast Diffusion

Fit Double Exponential Function to NMR Signal Peaks

Water diffusivity proportional to slope of the tangent

Page 18: Anisotropy of Shale Properties - NTNU

Permeability and Diffusivity Anisotropies over Different Scales

Parameter // / ���� Scale Effective Pressure

Permeability k 9.1 cm 7.5

Diffusivity Dh 1.5 nm-µm 0 S

kDh =

Pressure vessel withinmagnetic field currently tested

Page 19: Anisotropy of Shale Properties - NTNU

Anisotropyof

Seismic Properties

Page 20: Anisotropy of Shale Properties - NTNU

Specimen Instrumentation:Strain and P-wave (Group/Ray) Velocities

Viton Sleeve

∅∅∅∅transducers = 5 mm

fcentral ~ 0.5 MHz

80 m

m

Page 21: Anisotropy of Shale Properties - NTNU

Over-Consolidated Triaxial Loading

Page 22: Anisotropy of Shale Properties - NTNU

Seismic Data Processing

25 different Azimuth angles

17 different Dip angles

� ~ 90 different ray paths

Assumption:

Bedding/T.I. symmetry plane is horizontal

( ) ( ) ( ) ( )( )

( )°==

++≅

90

Angle Dip

coscossin1 422

P

P

V

V

αθ

θεθθδαθFit Thomsen’s weak anisotropy model to VP(dip)

Page 23: Anisotropy of Shale Properties - NTNU

Group Velocities Function of Dip Angle:A Snapshot…

Average of n experimental points with identical dip angle

Fitted Thomsen’s model

95% Confidence interval

Page 24: Anisotropy of Shale Properties - NTNU

Effect of Water Saturation

Page 25: Anisotropy of Shale Properties - NTNU

Effect of Isotropic Stress

Page 26: Anisotropy of Shale Properties - NTNU

Anisotropyof

Mechanical Properties

Page 27: Anisotropy of Shale Properties - NTNU

Mechanical Anisotropy

No apparent difference between axial and radial strains

Differentiation between axial and radial strains

M// / M�= 0.54

Page 28: Anisotropy of Shale Properties - NTNU

Effect ofStress Anisotropy

Page 29: Anisotropy of Shale Properties - NTNU

Effect of Stress Anisotropy

Page 30: Anisotropy of Shale Properties - NTNU

Effect of Stress Anisotropy (Triaxial):Low-Resolution Characterization (mm to cm scale)

A-A B-B

Axial Loading

A-A B-B

Page 31: Anisotropy of Shale Properties - NTNU

(Preliminary) Conclusion

• Fluid transport anisotropy → strongly scale-dependent• Seismic anisotropy → strongly stress-sensitive• Mechanical anisotropy → poorly related to seismic anisotropy• Stress anisotropy → crucial factor controlling rock anisotropy…

• Anisotropy is a scale-dependent (theoretical) concept……not to be confused with the heterogeneity (practical) concept

• Anisotropy is also a property-dependent concept

⇒ Need to state scale and property when reporting anisotropy⇒ Given rock (nano-/micro-/meso-/macro-) structure gives rise to

different anisotropy magnitudes for various physical properties

Page 32: Anisotropy of Shale Properties - NTNU

Questions…?

Acknowledgement of support from:

• BG Group• Chevron• ConocoPhillips• ExxonMobil

• Sinopec• Statoil• Total

Page 33: Anisotropy of Shale Properties - NTNU

Effect of Stress Anisotropy (Triaxial):Low-Resolution Characterization (mm to cm scale)

A-A B-B

Shear Failure

Tensile Failure

Stress Unloading

Axial Loading