angular momentum space.pdf

52
Magnetic anisotropy in f-electron systems: A crystal-field perspective A crystal-field perspective Nicola Magnani (nicola magnani@kit edu) INSTITUTE OF NANOTECHNOLOGY, KARLSRUHE INSTITUTE OF TECHNOLOGY (nicola.magnani@kit.edu) KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association www.kit.edu

Upload: amid1982

Post on 22-Nov-2015

48 views

Category:

Documents


0 download

TRANSCRIPT

  • Magnetic anisotropy in f-electron systems:A crystal-field perspectiveA crystal-field perspectiveNicola Magnani

    (nicola magnani@kit edu)

    INSTITUTE OF NANOTECHNOLOGY, KARLSRUHE INSTITUTE OF TECHNOLOGY

    ([email protected])

    KIT University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association www.kit.edu

  • Outline

    Part 1: An introduction to crystal field in f-electron systemsPart 1: An introduction to crystal field in f-electron systems

    Part 2: Crystal-field anisotropy in lanthanide-based SMMs y py(selected examples)

    Part 3: Crystal-field anisotropy in actinide-based SMMs (selected examples)

    Institute of Nanotechnology (INT-KIT)2 Nicola Magnani Magnetic anisotropy in f-electron system: A crystal-field perspective12.10.2013

  • Part 1

    An introduction toAn introduction tocrystal field iny

    f-electron systems

    Institute of Nanotechnology (INT-KIT)3 Nicola Magnani Magnetic anisotropy in f-electron system: A crystal-field perspective12.10.2013

  • f-electron orbitals: the central field approximation2 2 2

    1 1

    2

    N Ni

    i i ji ij

    p Ze eHm r r

    22 N i rUZepHji ij

    2 N e body)-(one

    210

    i

    ii

    i rUrm

    H b d )(

    1

    1

    jij

    ij

    rUreH

    body)(o e

    1N r R r Y body)-(two

    1and both commute with i i H L l S s

    01

    ,i i i ii n l i l m i i

    ir R r Y

    Institute of Nanotechnology (INT-KIT)4 Nicola Magnani Magnetic anisotropy in f-electron system: A crystal-field perspective12.10.2013

    1i ii i

  • Spherical harmonics Ylm 1l = 0

    l = 1

    Y

    Y

    cos312

    1

    01

    00

    2

    220

    235

    41

    rrzY

    l = 1

    l = 2

    iY expsin23

    21

    2

    11

    1

    z

    r

    l = 3

    Y

    151

    1cos3541

    1

    202

    l = 4

    iY

    iY

    2expsin215

    41

    expcossin215

    21

    222

    12

    l = 5

    l = 6

    242

    Institute of Nanotechnology (INT-KIT)5 Nicola Magnani Magnetic anisotropy in f-electron system: A crystal-field perspective12.10.2013

    l 6

    m = 0 m = 1 m = 2 m = 3 m = 4 m = 5 m = 6

  • The spectra of rare-earth ionsl = 3 2 1 0 -1 -2 -3

    4f 3 L 6 S 3/210

    HH 2S+1L

    4f 3: L = 6, S = 3/2

    0H NH l4fn

    2S+1L

    HHH

    i

    iiiSO rH1

    sl

    2S 1

    Jmax=L+S

    SOHHH 10 Jmin=|L-S|

    2S+1L

    J i =|L-S|

    . . . N 7or

    Institute of Nanotechnology (INT-KIT)6 Nicola Magnani Magnetic anisotropy in f-electron system: A crystal-field perspective12.10.2013

    Jmin |L S| 1 JJgJeff Jmax L+S

  • The crystal field: a simple point-charge example

    A magnetic ion placed at the origin of the Cartesian coordinate system, with two equal li d ( f ff ti h Z ) l d t

    (0,0,R)

    r = (x,y,z)

    ligands (of effective charge Ze) placed at the same distance along the z axis.

    (0,0,-R)

    2222

    222

    22

    Rzyx

    Ze

    Rzyx

    ZeeZVk k

    k

    rR

    2222

    2

    //211

    //211

    RRRRRZe

    yy

    2222 //21//21 RrRzRrRzR)(23163355311)()!2(1 765432 xOaaaaaaan n

    Institute of Nanotechnology (INT-KIT)7 Nicola Magnani Magnetic anisotropy in f-electron system: A crystal-field perspective12.10.2013

    )(10242561281682

    1)()!2(1 0 2

    xOaaaaaaana n n

  • The crystal field: a simple point-charge example

    5

    4224

    4

    23

    3

    22

    222 835303

    235

    231

    //211

    Rzzrr

    Rzrz

    Rrz

    Rz

    RRrRz

    7

    624426

    6

    4325

    165105315231

    8157063

    822//21

    Rrzrzrz

    Rzrzrz

    RRRRRRrRz

    2r 4260235

    2 YRr

    045

    4

    32 Y

    Rr0

    67

    6

    132 Y

    Rr

    ...

    31

    131

    514 067

    60

    45

    40

    23

    22

    axial YRrY

    RrY

    RrZeV

    Institute of Nanotechnology (INT-KIT)8 Nicola Magnani Magnetic anisotropy in f-electron system: A crystal-field perspective12.10.2013

    3135 RRR

  • The crystal field: a simple point-charge example(0,0,R)

    (-R 0 0)

    (0 R 0)(0 R 0)

    (-R,0,0)

    (x,y,z)(0,R,0)(0,-R,0)

    (R,0,0)

    145

    37 4

    44

    40

    45

    42

    cubic YYYRrZeV

    (0,0,-R)

    ...27

    1323

    143

    46

    46

    067

    6

    5cub c

    YYYRr

    R

    Institute of Nanotechnology (INT-KIT)9 Nicola Magnani Magnetic anisotropy in f-electron system: A crystal-field perspective12.10.2013

    2132 6667R

  • Constraints on non-zero matrix elements

    formthehaveelementsmatrixitson tocontributieachharmonics, spherical offunction a asrewritten been has Once CFH

    ddsind2"""* ''' rrY mlnmlmlnformthehave elementsmatrix itson tocontributieach

    ddid "*'* mmm YYYRR ddsind "*'""* '' mlmlmllnln YYYrRR therequireson gintegratin,2d Since "'

    2"' e mmmmmmi

    nonzero. be result to for the fulfilled be to"'condition

    qgg0

    mmm

    mmm

    ."'"' andeven bemust "':sconstraintadditional in tworesultson gintegratin Similarly,

    llllllll

    Institute of Nanotechnology (INT-KIT)10 Nicola Magnani Magnetic anisotropy in f-electron system: A crystal-field perspective12.10.2013

    .6 andeven bemust that means this)3"'( electrons For lllf

  • Constraints on non-zero matrix elements

    ...066060440402202axial i

    ii

    ii

    i iYrAiYrAiYrAViii

    145 4

    44

    40

    44

    4cubic i iYiYiYrAV

    714

    4406

    4444cubic

    ii

    ...27 4

    64

    60

    66

    6

    i

    i iYiYiYrA

    ( l ib i f d l l 4)(even less contributions for d electrons: l 4)

    Now all thats left to do is to calculate these matrix elements!

    Institute of Nanotechnology (INT-KIT)11 Nicola Magnani Magnetic anisotropy in f-electron system: A crystal-field perspective12.10.2013

    Now all that s left to do is to calculate these matrix elements!

  • Angular momentum space: operator equivalents mlll

    i

    ml

    mml

    li OrYYr 1

    ml

    mll

    lmlCF OrAH

    ~ml ,

    Institute of Nanotechnology (INT-KIT)12 Nicola Magnani Magnetic anisotropy in f-electron system: A crystal-field perspective12.10.2013

  • Angular momentum space: operator equivalents

    Institute of Nanotechnology (INT-KIT)13 Nicola Magnani Magnetic anisotropy in f-electron system: A crystal-field perspective12.10.2013

  • Angular momentum space: operator equivalents

    SLMLSM :statesset Basis

    zyx LLLzyx ,,,, mlll

    i

    ml

    mml

    li OrYYr 1

    2S+1L

    y 133 e.g. 222022 LLLrzYr z 222222222 LLyxYYr

    2S+1L

    22 yx LLyxYYr JLSJM :statesset Basis

    4fn

    Jmax=L+S

    2S+1L

    . . . kk JL

    Institute of Nanotechnology (INT-KIT)14 Nicola Magnani Magnetic anisotropy in f-electron system: A crystal-field perspective12.10.2013

    Jmin=|L-S|

  • Angular momentum space: operator equivalents

    ~~;,..., with states 12

    ml

    ml

    mll

    lmlCF

    J

    OBOrAH

    JJMJ mllli

    ml

    mml

    li OrYYr 1

    2S+1L cases some(in degeneracy their lifts,,

    mlll

    mllllCF

    2S+1Ld lilhb dd

    nHamiltonia above theof validity The.partially)only

    4fn model.ticelectrostathebeyondextends

    2S+1L

    Institute of Nanotechnology (INT-KIT)15 Nicola Magnani Magnetic anisotropy in f-electron system: A crystal-field perspective12.10.2013

    2S+1LJMJs

  • Angular momentum space: operator equivalents

    Simple example: 4f 1 (Ce3+), 2F5/2, in a cubic CF 4040 21~5~ OOBOOBH 4606644044 215 OOBOOBHCF

    1112/ 4444

    JJJ MMMJJMJ

    JJO

    2/389852/19852/185

    2/352/3)2/3)(2/5()2/7)(2/5(2/5111

    2

    334

    JJJJ

    JJ

    JJJ

    MMMJJMJ4~B

    51242/389852/19852/185

    44

    2

    JJ MOM

    JJ

    Institute of Nanotechnology (INT-KIT)16 Nicola Magnani Magnetic anisotropy in f-electron system: A crystal-field perspective12.10.2013

  • Angular momentum space: operator equivalents

    Simple example: 4f 1 (Ce3+), 2F5/2, in a cubic CF

    MJ 5/2 3/2 1/2 -1/2 -3/2 -5/2

    5/2 60 0 0 0 605 0

    MJ 5/2 -3/2 -5/2 3/2 1/2 -1/2

    5/2 60 605 0 0 0 0120

    -240

    3/2 0 -180 0 0 0 605-3/2 605 -180 0 0 0 0

    240

    1/2 0 0 120 0 0 0

    -1/2 0 0 0 120 0 0

    -5/2 0 0 60 605 0 0

    3/2 0 0 605 -180 0 04~B

    -3/2 605 0 0 0 -180 0

    5/2 0 605 0 0 0 60

    1/2 0 0 0 0 120 0

    1/2 0 0 0 0 0 120

    Institute of Nanotechnology (INT-KIT)17 Nicola Magnani Magnetic anisotropy in f-electron system: A crystal-field perspective12.10.2013

    -5/2 0 605 0 0 0 60-1/2 0 0 0 0 0 120

  • Angular momentum space: operator equivalents

    Simple example: 4f 1 (Ce3+), 2F5/2, in a cubic CF

    2/1

    2F5/2

    4~360B

    6/2/32/55 4360B

    6/2/52/35 Institute of Nanotechnology (INT-KIT)18 Nicola Magnani Magnetic anisotropy in f-electron system: A crystal-field perspective12.10.2013

  • Crystal-field splitting: cerium(III)

    Institute of Nanotechnology (INT-KIT)19 Nicola Magnani Magnetic anisotropy in f-electron system: A crystal-field perspective12.10.2013

  • Crystal-field splitting: praseodymium(III)

    Kramers theorem: all the crystal-field states of an ion with dd b f l t h d

    Institute of Nanotechnology (INT-KIT)20 Nicola Magnani Magnetic anisotropy in f-electron system: A crystal-field perspective12.10.2013

    an odd number of electrons have even degeneracy.

  • Zero-field splitting in S-state ions

    Ions with a L = 0 ground term should in principle have no spatial anisotropy. However, small mixing with higher-lying p py g g y gmultiplets can give rise to zero-field splitting.

    mlmlZFS OBH ~ S ml ,

    Assuming only rank-2 contributions: SS 2200 ~~ OBOBH

    SSSSS

    12

    12

    12

    12

    22

    22

    2222

    ~~~

    OBOBOB

    OBOBHZFS

    cost

    ~13~

    222

    2222

    202

    yxz

    SSEDS

    SSBSSSB

    Institute of Nanotechnology (INT-KIT)21 Nicola Magnani Magnetic anisotropy in f-electron system: A crystal-field perspective12.10.2013

    cost. yxz SSEDS

  • Full configuration diagonalization

    2S+1L

    2S+1L4fn

    2S+1L

    Institute of Nanotechnology (INT-KIT)22 Nicola Magnani Magnetic anisotropy in f-electron system: A crystal-field perspective12.10.2013

    2S+1LJ

  • LS versus jj coupling

    J mixing can be taken into account perturbatively:

    Institute of Nanotechnology (INT-KIT)23 Nicola Magnani Magnetic anisotropy in f-electron system: A crystal-field perspective12.10.2013

    J mixing can be taken into account perturbatively:N. M. et al., PRB 71, 054405 (2005)

  • End of part 1 - Bibliography

    D.J. Newman and B. Ng, Crystal Field Handbook (Cambridge University Press, 2000)

    C. Goerller-Walrand and K. Binnemans, in: Handbook on the Physics and Chemistry of Rare Earths Vol. 23 (Elsevier, 1996)

    SPECTRA h l l /d l d / t /i d ht l SPECTRA: chmwls.anl.gov/downloads/spectra/index.html

    SMMS: cluster.univpm.it/_build/html/productsdir/smms/magnetism.html

    Institute of Nanotechnology (INT-KIT)24 Nicola Magnani Magnetic anisotropy in f-electron system: A crystal-field perspective12.10.2013

  • Part 2

    Crystal-field anisotropyCrystal field anisotropyin rare-earth based SMMs:

    some examples

    Institute of Nanotechnology (INT-KIT)25 Nicola Magnani Magnetic anisotropy in f-electron system: A crystal-field perspective12.10.2013

  • Origin of magnetic relaxation in rare-earth-based single-ion complexes

    Direct process Orbach processAllowed if Jz is not a good quantum

    E

    n

    e

    r

    g

    y

    E

    n

    e

    r

    g

    y

    g qnumber (like QTM)

    Thermally activated

    e

    t

    i

    c

    f

    i

    e

    l

    d

    e

    t

    i

    c

    f

    i

    e

    l

    d

    (slow at low T)

    M

    a

    g

    n

    e

    M

    a

    g

    n

    e

    Institute of Nanotechnology (INT-KIT)26 Nicola Magnani Magnetic anisotropy in f-electron system: A crystal-field perspective12.10.2013

  • Origin of uniaxial anisotropy in SMMs

    sandwich structures naturally accommodatenaturally accommodate oblate 4f orbitals

    Institute of Nanotechnology (INT-KIT)27 Nicola Magnani Magnetic anisotropy in f-electron system: A crystal-field perspective12.10.2013

    J.D. Rinehart and J.R. Long, Chem. Sci. 2 (2011) 2078

  • Crystal-field splitting in [Pc2R] complexes

    1Ueff~260 cm-1~440 cm-1

    Tb might be the best SMM, but Tm is much

    Institute of Nanotechnology (INT-KIT)28

    Tb might be the best SMM, but Tm is much better for studying the crystal field of the series!

    Nicola Magnani Magnetic anisotropy in f-electron system: A crystal-field perspective12.10.2013

    N. Ishikawa et al., JACS 125 (2003) 8694

  • Pc2Tm: optical spectroscopy

    Institute of Nanotechnology (INT-KIT)29

    N.M. et al, PRB 79 (2009) 104407

    Nicola Magnani Magnetic anisotropy in f-electron system: A crystal-field perspective12.10.2013

  • Pc2Tm: neutron spectroscopy

    Institute of Nanotechnology (INT-KIT)30 Nicola Magnani Magnetic anisotropy in f-electron system: A crystal-field perspective12.10.2013

    N.M. et al, PRB 79 (2009) 104407

  • Specific heat can help fixing the degeneracy

    Doublet: GS 1ES 2ES 3ES

    2 22

    12expln

    n nn

    Bm

    EgTkC

    Institute of Nanotechnology (INT-KIT)31 Nicola Magnani Magnetic anisotropy in f-electron system: A crystal-field perspective12.10.2013

  • Pc2Tm: specific heat

    Institute of Nanotechnology (INT-KIT)32 Nicola Magnani Magnetic anisotropy in f-electron system: A crystal-field perspective12.10.2013

    N.M. et al, PRB 79 (2009) 104407

  • Crystal-field states assignment

    - States nearest to the GS t h ll J tmust have small Jz to

    reproduce low-temperature susceptibility

    - States with Jz = 6 are much lower in energy than expected

    - All excited levels detected below 2 meV must correspond to singly degenerate states;to singly-degenerate states; presence of a significant C4contribution is evident

    Institute of Nanotechnology (INT-KIT)33 Nicola Magnani Magnetic anisotropy in f-electron system: A crystal-field perspective12.10.2013

    N.M. et al, PRB 79 (2009) 104407

  • Crystal-field states assignment

    Institute of Nanotechnology (INT-KIT)34 Nicola Magnani Magnetic anisotropy in f-electron system: A crystal-field perspective12.10.2013

  • Pc2Tm: field-dependent specific heat

    Model AModel C

    Institute of Nanotechnology (INT-KIT)35 Nicola Magnani Magnetic anisotropy in f-electron system: A crystal-field perspective12.10.2013

    N.M. et al, PRB 79 (2009) 104407

  • Pc2Tm: magnetic susceptibility

    Model B

    Model A

    Institute of Nanotechnology (INT-KIT)36 Nicola Magnani Magnetic anisotropy in f-electron system: A crystal-field perspective12.10.2013

    N.M. et al, PRB 79 (2009) 104407

  • Pc2R: Revised crystal-field parameters

    2,0

    Ueff

    6,0

    4,4

    4,0

    The revised crystal-field model is perfectlycompatible with the relaxation properties.

    Institute of Nanotechnology (INT-KIT)37 Nicola Magnani Magnetic anisotropy in f-electron system: A crystal-field perspective12.10.2013

    N.M. et al, PRB 79 (2009) 104407

  • End of part 2 (almost) Conclusions

    The CF parameters for Tm-DD complex were unambiguously determined by a variety of experimental techniques.y y p q

    D4d terms are qualitatively in line with those previously determined (signs and orders of magnitude)

    NOT quantitatively: A20 smaller by a factor 3!

    C symmetry terms small (with respect to the axial potential) but not C4-symmetry terms small (with respect to the axial potential) but not negligible (clear effect on the energy spectra)

    Lower-symmetry terms have a much smaller influence on the low- Lower-symmetry terms have a much smaller influence on the low-energy wavefunction, even if present (|A22r2| < 0.5 cm-1)

    Institute of Nanotechnology (INT-KIT)38 Nicola Magnani Magnetic anisotropy in f-electron system: A crystal-field perspective12.10.2013

  • Addendum: Exploiting magnetically active radicals

    (Rinehart et al., Nat. Chem. 2011, 3, 538; J. Am. Chem. Soc. 2011, 133, 14236)

    Institute of Nanotechnology (INT-KIT)39

    (Lukens, N.M., and Booth, Inorg. Chem. 2012, 51, 10105)

    Nicola Magnani Magnetic anisotropy in f-electron system: A crystal-field perspective12.10.2013

  • How can the coupling be strengthened further?

    I t f di t

    *

    Increase t: for direct spin exchange, this means increasing the overlapf the overlap.

    Actinides 5f shell has a larger

    t i th

    f*

    extension than rare earths 4fDecrease U,matching thematching the reduction potential of the ligand and metal.

    A ti id h h

    U2t

    E2

    TS Actinides have much richer chemistry than lanthanides (exp. more oxidation

    Institute of Nanotechnology (INT-KIT)40

    more oxidation states)

    (Lukens, N.M., and Booth, Inorg. Chem. 2012, 51, 10105)

    Nicola Magnani Magnetic anisotropy in f-electron system: A crystal-field perspective12.10.2013

  • How can the coupling be strengthened further?

    58 59 60 61 62 63 64 65 66 67 68 69 70

    Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm YbCe Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb[Xe]4f15d16s2 [Xe]4f25d16s2 [Xe]4f35d16s2 [Xe]4f45d16s2 [Xe]4f55d16s2 [Xe]4f65d16s2 [Xe]4f75d16s2 [Xe]4f85d16s2 [Xe]4f95d16s2 [Xe]4f105d16s2 [Xe]4f115d16s2 [Xe]4f125d16s2 [Xe]4f135d16s2

    Lanthanides with accessible tetravalent states should be coupled with oxidizing radicals

    Lanthanides with accessible divalent states should be coupled with

    reducing radicalsg g

    Actinides have a much richer chemistry!

    Institute of Nanotechnology (INT-KIT)41 Nicola Magnani Magnetic anisotropy in f-electron system: A crystal-field perspective12.10.2013

  • Part 3

    Anisotropy in actinide-basedAnisotropy in actinide based SMMs: some examplesp

    Institute of Nanotechnology (INT-KIT)42 Nicola Magnani Magnetic anisotropy in f-electron system: A crystal-field perspective12.10.2013

  • Why actinides?

    Institute of Nanotechnology (INT-KIT)43 Nicola Magnani Magnetic anisotropy in f-electron system: A crystal-field perspective12.10.2013

  • Why actinides?

    Switching to actinide-based SMMs could combine the best of both worlds (3d and 4f) since 5f electrons can lead to theof both worlds (3d and 4f), since 5f electrons can lead to the simultaneous presence of strong ligand-field potential and magnetic superexchange coupling.

    5New actinide-containing SMMs reported per year

    2

    3

    4

    0

    1

    2

    Institute of Nanotechnology (INT-KIT)44

    2009 2010 2011 2012 2013

    Nicola Magnani Magnetic anisotropy in f-electron system: A crystal-field perspective12.10.2013

  • A paradigmatic case: UTp3

    Ueff /100 !!!

    = 267 cm-1

    More complex relaxation processes than expected from the energy spectrum

    Institute of Nanotechnology (INT-KIT)45 Nicola Magnani Magnetic anisotropy in f-electron system: A crystal-field perspective12.10.2013

    J.D. Rinehart and J.R. Long, Dalton Trans. 41 (2012) 13572

  • Direct processes are enhanced by the non-axial part of the p y pligand-field potential.

    Possible solution: ACTINOCENES (D8h)( 8h)

    2

    (Karraker et al., JACS 1970, 92, 4841)

    PROBLEM: tetravalent U 5f 2

    Institute of Nanotechnology (INT-KIT)46 Nicola Magnani Magnetic anisotropy in f-electron system: A crystal-field perspective12.10.2013

  • Butterfly magnetic hysteresis in neptunocene (5f3)

    Jz = 5/2z

    237NpI = 5/2

    Institute of Nanotechnology (INT-KIT)47

    (N.M. et al., Angew. Chem. Int. Ed. 2011, 50, 1696)

    Nicola Magnani Magnetic anisotropy in f-electron system: A crystal-field perspective12.10.2013

  • Exchange coupling and slow relaxation in the heterovalent Np trimetallic [NpVIO2Cl2][NpVO2Cl(thf)3]2

    140 K

    Institute of Nanotechnology (INT-KIT)48

    (N.M. et al., Phys. Rev. Lett. 2010, 104, 197202)

    Nicola Magnani Magnetic anisotropy in f-electron system: A crystal-field perspective12.10.2013

  • Exchange coupling in U(V) complexes

    3.36

    (Arnold et al., Nat. Chem. 2012, 4, 221)

    Institute of Nanotechnology (INT-KIT)49 Nicola Magnani Magnetic anisotropy in f-electron system: A crystal-field perspective12.10.2013

  • 5f1 4fn complexes

    Ln = Dy

    Institute of Nanotechnology (INT-KIT)50

    (Arnold et al., JACS 2013, 135, 3841)

    Nicola Magnani Magnetic anisotropy in f-electron system: A crystal-field perspective12.10.2013

  • End of part 3 Conclusions and perspectives

    Both the ligand-field anisotropy and the superexchange interaction in actinide-based magnetic molecules are generally stronger than in their lanthanide counterparts. This could make light actinides a better choice to design SMMs, despite their lower magnetic moments

    b t f t t l f d t l i t ti hi h i i t but unfortunately, some fundamental interactions which give rise to fast relaxation processes (non-axial ligand field, hyperfine coupling, orbital moment reduction) seem to be enhanced too.

    Challenge: exploit the richer actinide chemistry (more oxidation states, larger coordination sphere) to obtain a favorable balance.

    Pu(V): strong exchange and large moment?

    Institute of Nanotechnology (INT-KIT)51 Nicola Magnani Magnetic anisotropy in f-electron system: A crystal-field perspective12.10.2013

  • Acknowledgments

    Annie Powell and her group (KIT)

    Christos Apostolidis, Roberto Caciuffo and his group (JRC-ITU)

    Wayne Lukens, Norman Edelstein, Corwin Booth, Richard Andersen (LBNL)

    Clint Sharrad Richard Winpenny and his group (Uni Manchester)Clint Sharrad, Richard Winpenny and his group (Uni-Manchester)

    Polly Arnold and her group (Uni-Edinburgh)

    Marinella Mazzanti and her group (CEA-Grenoble)

    Institute of Nanotechnology (INT-KIT)52 Nicola Magnani Magnetic anisotropy in f-electron system: A crystal-field perspective12.10.2013