andrew scholbrock - wake steering for improved wind plant performance

18
Wake Steering for Improved Wind Plant Performance Andrew Scholbrock, NREL 2016 Wind Turbine Blade Workshop Albuquerque, NM, USA August 31, 2016

Upload: sandia-national-laboratories-energy-climate-renewables

Post on 16-Apr-2017

140 views

Category:

Technology


2 download

TRANSCRIPT

Page 1: Andrew Scholbrock - Wake Steering for Improved Wind Plant Performance

WakeSteeringforImprovedWindPlantPerformanceAndrewScholbrock,NREL

2016WindTurbineBladeWorkshopAlbuquerque, NM,USAAugust31,2016

Page 2: Andrew Scholbrock - Wake Steering for Improved Wind Plant Performance

2

Problem

Photoby:ChristianSteiness

Page 3: Andrew Scholbrock - Wake Steering for Improved Wind Plant Performance

3

ResearchMethodology

CFDModeling ofAtmosphere/WindPlant

SimplifiedEngineering

ModelsofWakes

WindPlantOptimizationSimulations

FieldTestingValidationofWakeModels

FieldTestingTurbine

InteractionsCoordinatedWind

PlantControl

Page 4: Andrew Scholbrock - Wake Steering for Improved Wind Plant Performance

4

• SOWFA:SimulatorfOrWindFarmApplicationso Usedtoinvestigatewindturbineandwindplantperformanceundervariousatmosphericconditions

o LESmodelofatmosphericboundarylayer(ABL)basedonOpenFOAMCFDtoolbox

o FASTturbinemodelusingrotatingactuatorlinestomodelrotor

CFDModeling

AdaptedFrom:J.Annoni et.al.“Analysisofaxial-induction-basedwindplantcontrolusinganengineeringandahigh-orderwindplantmodel”WindEnergy.Vol.19.pp.1135-1150.DOI:10.1002/we.1891.2016.More information: nwtc.nrel.gov/SOWFA

Page 5: Andrew Scholbrock - Wake Steering for Improved Wind Plant Performance

5

WakeEngineeringModel

• FLORIS(FLOw RedirectionandInductioninSteady-state):o Steady-stateengineeringmodelbasedonJensenandJimenezmodelswithextensions

Page 6: Andrew Scholbrock - Wake Steering for Improved Wind Plant Performance

6

Methodsforwakemanipulation

o Axial-basedcontrolo WakeSteering:

– Repositioning(layoutoptimization)– Tilt-basedwake-steering– Yaw-based

AdaptedFrom:J.Annoni et.al.“Analysisofaxial-induction-basedwindplantcontrolusinganengineeringandahigh-orderwindplantmodel”WindEnergy.Vol.19.pp.1135-1150.DOI:10.1002/we.1891.2016.

Page 7: Andrew Scholbrock - Wake Steering for Improved Wind Plant Performance

7

AxialBasedMethod– SimulationResults

AdaptedFrom:J.Annoni et.al.“Analysisofaxial-induction-basedwindplantcontrolusinganengineeringandahigh-orderwindplantmodel”WindEnergy.Vol.19.pp.1135-1150.DOI:10.1002/we.1891.2016.

Page 8: Andrew Scholbrock - Wake Steering for Improved Wind Plant Performance

8

WakeSteering– InitialCFDInvestigations

AdaptedFrom:P.Fleming,et.al.“Simulationcomparisonofwakemitigationcontrolstrategiesforatwo-turbinecase”WindEnergy.Vol.18.pp.2135-2143DOI:10.1002/we.1810.2014.

Page 9: Andrew Scholbrock - Wake Steering for Improved Wind Plant Performance

9

WindPlantOptimizationSimulationResults

AdaptedFrom:Gebraad,P.M.O.;Teeuwisse, F.W.;vanWingerden,J.W.;Fleming,P.A.;Ruben,S.D.;Marden,J.R.;Pao,L. Y. (2014).“Data-DrivenModelforWindPlantPowerOptimizationbyYawControl.”Proceedingsofthe2014AmericanControlConference(ACC);June4-6,2014,Portland,Oregon.NREL/CP-5000-61405.Piscataway,NJ:InstituteofElectricalandElectronicsEngineers;pp.3128-3134.

Page 10: Andrew Scholbrock - Wake Steering for Improved Wind Plant Performance

10

FieldTesting

MoreinformationonSWiFT:energy.sandia.gov/energy/renewable-energy/wind-power/wind_plant_opt/More informationonNWTC:nwtc.nrel.govMoreinformationonDTULidar:www.windscanner.dk/MoreinformationonSWELidar:www.ifb.uni-stuttgart.de/windenergie/index.en.html

ScaledWindFarmTechnology Facility(SWiFT),Lubbock,Texas

PhotobyThomasHerges,SandiaNationalLaboratory PhotobyDennisSchroeder,NREL

NationalWindTechnologyCenter(NWTC),Boulder,Colorado

• WindTurbine:Vestas V27• Lidar:DanishTechnicalUniversity(DTU)modified

ZephIR

• WindTurbine:GE1.5 MW• Lidar:UniversityofStuttgart (SWE)modified

Leosphere

Page 11: Andrew Scholbrock - Wake Steering for Improved Wind Plant Performance

11

LidarpatternsampledCFDdata

SimulatedLidarSamplingofYawedWakeforSWiFT(CourtesyMattChurchfield–NREL)

q =30°

winddirection

g =-20°b =-10°

PureCFDdata

Datareconstructed fromlidarsampling

Page 12: Andrew Scholbrock - Wake Steering for Improved Wind Plant Performance

12

Lidarsamplingatdifferentranges

ImagecourtesyofTommyHerges,SandiaNationalLaboratory

Page 13: Andrew Scholbrock - Wake Steering for Improved Wind Plant Performance

13

SimulatedLidarSamplingofWakeforGE1.5(CourtesyMattChurchfield–NREL)

Page 14: Andrew Scholbrock - Wake Steering for Improved Wind Plant Performance

14

GE1.5FieldTestWakeSteering

WakebehindGE1.5AlignedwithWindDirection

WakebehindGE1.5+25ᵒYawMisalignment

ImagescourtesyofJenniferAnnoni, NREL

Page 15: Andrew Scholbrock - Wake Steering for Improved Wind Plant Performance

15

SWiFT Fieldtestresults– StableABLWakebehindSWiFTwindturbineStableAtmosphericBoundaryLayer

VideocourtesyofTommyHerges,SandiaNationalLaboratory

Page 16: Andrew Scholbrock - Wake Steering for Improved Wind Plant Performance

16

SWiFT Fieldtestresults– UnstableABL

WakebehindSWiFTwindturbineUnstableAtmosphericBoundaryLayer

VideocourtesyofTommyHerges,SandiaNationalLaboratory

Page 17: Andrew Scholbrock - Wake Steering for Improved Wind Plant Performance

17

• CFDsimulationshelpedimmenselyinguidingthedesignoffieldexperiments

• Intentionalwakesteeringisfeasiblefromfieldexperiments

• Atmosphericstabilityplaysalargeroleinwakemeanderingandneedstobetakenintoaccountforcoordinatedwindfarmcontrol

• Needtoquantify“steered”wakefromfieldtestsandcomparetosimulationmodelsforvalidation

• Needtoquantifyturbinetoturbineinteractions

Conclusions

Page 18: Andrew Scholbrock - Wake Steering for Improved Wind Plant Performance

Thankyouforyourtime!

Photoby:DennisSchroeder,NREL