and incidence geometry - brigham young universitymathed.byu.edu/~williams/classes/362su2009/chapter...

31
Theorems Proofs Logic Theorems, Proofs, Logic And Incidence Geometry Summer 2009 1 MthEd/Math 362 Chapter 3

Upload: others

Post on 19-Oct-2019

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: And Incidence Geometry - Brigham Young Universitymathed.byu.edu/~williams/Classes/362Su2009/Chapter 3/Chapter 3... · Theorems, Proofs, Logic And Incidence Geometry Summer 2009 MthEd/Math

Theorems Proofs LogicTheorems, Proofs, Logic

And Incidence Geometry

Summer 2009 1MthEd/Math 362 Chapter 3

Page 2: And Incidence Geometry - Brigham Young Universitymathed.byu.edu/~williams/Classes/362Su2009/Chapter 3/Chapter 3... · Theorems, Proofs, Logic And Incidence Geometry Summer 2009 MthEd/Math

Theorems, Proofs, and LogicTheorems, Proofs, and Logic

• You’ve all had 190 (mostly) If it worked forYou ve all had 190 (mostly).  If it worked for you, you should know all you need to about proof for this class If not talking about “howproof for this class.  If not, talking about  how to prove things” for a day or two probably won’t help Instead we’ll work on somewon t help.  Instead, we ll work on some simple theorems of Incidence Geometry togethertogether.  

• There. That takes care of Sections 3.1 – 3.5.

Summer 2009 MthEd/Math 362 Chapter 3 2

Page 3: And Incidence Geometry - Brigham Young Universitymathed.byu.edu/~williams/Classes/362Su2009/Chapter 3/Chapter 3... · Theorems, Proofs, Logic And Incidence Geometry Summer 2009 MthEd/Math

Incidence GeometryIncidence Geometry

• Undefined terms: point line lie onUndefined terms:  point, line, lie on.

• Axioms:1 F i f di ti t i t P d Q th1. For every pair of distinct points P and Q there 

exists exactly one line l such that both P and Q lie on llie on l.

2. For every line l there exist two distinct points P and Q such that both P and Q lie on l.and Q such that both P and Q lie on l.

3. There exist three points that do not all lie on any one line.  

Summer 2009 MthEd/Math 362 Chapter 3 3

Page 4: And Incidence Geometry - Brigham Young Universitymathed.byu.edu/~williams/Classes/362Su2009/Chapter 3/Chapter 3... · Theorems, Proofs, Logic And Incidence Geometry Summer 2009 MthEd/Math

Incidence GeometryIncidence Geometry

• Undefined terms: point line lie onUndefined terms:  point, line, lie on.

• Axioms:1 F i f di ti t i t P d Q th1. For every pair of distinct points P and Q there 

exists exactly one line l such that both P and Q lie on llie on l.

2. For every line l there exist (at least) two distinct points P and Q such that both P and Q lie on l.points P and Q such that both P and Q lie on l.

3. There exist (at least) three points that do not all lie on any one line.  y

Summer 2009 MthEd/Math 362 Chapter 3 4

Page 5: And Incidence Geometry - Brigham Young Universitymathed.byu.edu/~williams/Classes/362Su2009/Chapter 3/Chapter 3... · Theorems, Proofs, Logic And Incidence Geometry Summer 2009 MthEd/Math

Theorem 3.6.2Theorem 3.6.2

Theorem 3 6 2: If l is any line then there existsTheorem 3.6.2:  If l is any line, then there exists at least one point P such that P does not lie on ll.  

Proof:  

Summer 2009 MthEd/Math 362 Chapter 3 5

Page 6: And Incidence Geometry - Brigham Young Universitymathed.byu.edu/~williams/Classes/362Su2009/Chapter 3/Chapter 3... · Theorems, Proofs, Logic And Incidence Geometry Summer 2009 MthEd/Math

Theorem 3.6.2Theorem 3.6.2

Theorem 3 6 2: If l is any line then there existsTheorem 3.6.2:  If l is any line, then there exists at least one point P such that P does not lie on ll.  

Proof:  

Summer 2009 MthEd/Math 362 Chapter 3 6

Page 7: And Incidence Geometry - Brigham Young Universitymathed.byu.edu/~williams/Classes/362Su2009/Chapter 3/Chapter 3... · Theorems, Proofs, Logic And Incidence Geometry Summer 2009 MthEd/Math

Theorem 3.6.2Theorem 3.6.2

Theorem 3 6 2: If l is any line then there existsTheorem 3.6.2:  If l is any line, then there exists at least one point P such that P does not lie on ll.  

Proof:  Let l be any line.

L l b bi lior, Let l be an arbitrary line.

or, Choose any line l.

or, Suppose l is an arbitrary line.  

Summer 2009 MthEd/Math 362 Chapter 3 7

Page 8: And Incidence Geometry - Brigham Young Universitymathed.byu.edu/~williams/Classes/362Su2009/Chapter 3/Chapter 3... · Theorems, Proofs, Logic And Incidence Geometry Summer 2009 MthEd/Math

Theorem 3.6.2Theorem 3.6.2

Theorem 3 6 2: If l is any line then there existsTheorem 3.6.2:  If l is any line, then there exists at least one point P such that P does not lie on ll.  

Proof:  Let l be any line.

Summer 2009 MthEd/Math 362 Chapter 3 8

Page 9: And Incidence Geometry - Brigham Young Universitymathed.byu.edu/~williams/Classes/362Su2009/Chapter 3/Chapter 3... · Theorems, Proofs, Logic And Incidence Geometry Summer 2009 MthEd/Math

Theorem 3.6.2Theorem 3.6.2

Theorem 3.6.2: If l is any line, then there existsTheorem 3.6.2:  If l is any line, then there exists at least one point P such that P does not lie on l.  

Proof:  Let l be any line.(This means we need to stop and think about(This means we need to stop and think about how to find that point.  Which axiom guarantees the existence of a point?)

• That’s right, Axiom 2 or Axiom 3.  Why is 3 better?

Summer 2009 MthEd/Math 362 Chapter 3 9

Page 10: And Incidence Geometry - Brigham Young Universitymathed.byu.edu/~williams/Classes/362Su2009/Chapter 3/Chapter 3... · Theorems, Proofs, Logic And Incidence Geometry Summer 2009 MthEd/Math

Theorem 3.6.2Theorem 3.6.2

Theorem 3 6 2: If l is any line then there existsTheorem 3.6.2:  If l is any line, then there exists at least one point P such that P does not lie on ll.

Proof:  Let l be any line.

That’s right.  Because Axiom 3 gives us 3 points that DO NOT LIE ON the same LINE.  

Summer 2009 MthEd/Math 362 Chapter 3 10

Page 11: And Incidence Geometry - Brigham Young Universitymathed.byu.edu/~williams/Classes/362Su2009/Chapter 3/Chapter 3... · Theorems, Proofs, Logic And Incidence Geometry Summer 2009 MthEd/Math

Theorem 3.6.2Theorem 3.6.2

Theorem 3 6 2: If l is any line then there existsTheorem 3.6.2:  If l is any line, then there exists at least one point P such that P does not lie on ll.  

Proof:  Let l be any line. By Axiom 3, there are three points that do not lie on the same linethree points that do not lie on the same line. 

These three points cannot all lie on l, so one of h li lthem must not lie on l.  

Summer 2009 MthEd/Math 362 Chapter 3 11

Page 12: And Incidence Geometry - Brigham Young Universitymathed.byu.edu/~williams/Classes/362Su2009/Chapter 3/Chapter 3... · Theorems, Proofs, Logic And Incidence Geometry Summer 2009 MthEd/Math

Theorem 3.6.2Theorem 3.6.2

Theorem 3 6 2: If l is any line then there existsTheorem 3.6.2:  If l is any line, then there exists at least one point P such that P does not lie on ll.  

Proof:  Let l be any line. By Axiom 3, there are three points that do not lie on the same linethree points that do not lie on the same line. These three points cannot all lie on l, so one of them must not lie on lthem must not lie on l.  

Summer 2009 MthEd/Math 362 Chapter 3 12

Page 13: And Incidence Geometry - Brigham Young Universitymathed.byu.edu/~williams/Classes/362Su2009/Chapter 3/Chapter 3... · Theorems, Proofs, Logic And Incidence Geometry Summer 2009 MthEd/Math

Theorem 3.6.2Theorem 3.6.2

Theorem 3 6 2: If l is any line then there existsTheorem 3.6.2:  If l is any line, then there exists at least one point P such that P does not lie on ll.  

Proof:  Let l be any line. By Axiom 3, there are three points that do not lie on the same linethree points that do not lie on the same line. These three points cannot all lie on l, so one of them must not lie on l T I J (That’s It Jack!)them must not lie on l. T.I.J. (That s It, Jack!)

Summer 2009 MthEd/Math 362 Chapter 3 13

Page 14: And Incidence Geometry - Brigham Young Universitymathed.byu.edu/~williams/Classes/362Su2009/Chapter 3/Chapter 3... · Theorems, Proofs, Logic And Incidence Geometry Summer 2009 MthEd/Math

Theorem 3.6.2Theorem 3.6.2

Theorem 3 6 2: If l is any line then there existsTheorem 3.6.2:  If l is any line, then there exists at least one point P such that P does not lie on ll.  

Proof:  Let l be any line. By Axiom 3, there are three points that do not lie on the same linethree points that do not lie on the same line. These three points cannot all lie on l, so one of them must not lie on l Q E Dthem must not lie on l. Q.E.D.

Summer 2009 MthEd/Math 362 Chapter 3 14

Page 15: And Incidence Geometry - Brigham Young Universitymathed.byu.edu/~williams/Classes/362Su2009/Chapter 3/Chapter 3... · Theorems, Proofs, Logic And Incidence Geometry Summer 2009 MthEd/Math

Theorem 3.6.2 (Alternate Path)Theorem 3.6.2 (Alternate Path)

Theorem 3 6 2: If l is any line then there existsTheorem 3.6.2:  If l is any line, then there exists at least one point P such that P does not lie on ll.  

Proof:  Let l be any line. By Axiom 3, there are three points that do not lie on the same linethree points that do not lie on the same line.

Summer 2009 MthEd/Math 362 Chapter 3 15

Page 16: And Incidence Geometry - Brigham Young Universitymathed.byu.edu/~williams/Classes/362Su2009/Chapter 3/Chapter 3... · Theorems, Proofs, Logic And Incidence Geometry Summer 2009 MthEd/Math

Theorem 3.6.2 (Alternate Path)Theorem 3.6.2 (Alternate Path)

Theorem 3 6 2: If l is any line then there existsTheorem 3.6.2:  If l is any line, then there exists at least one point P such that P does not lie on ll.  

Proof:  Let l be any line.  Suppose for contradiction that there were no point P thatcontradiction that there were no point P that did not lie on l.  

Summer 2009 MthEd/Math 362 Chapter 3 16

Page 17: And Incidence Geometry - Brigham Young Universitymathed.byu.edu/~williams/Classes/362Su2009/Chapter 3/Chapter 3... · Theorems, Proofs, Logic And Incidence Geometry Summer 2009 MthEd/Math

Theorem 3.6.2 (Alternate Path)Theorem 3.6.2 (Alternate Path)

Theorem 3 6 2: If l is any line then there existsTheorem 3.6.2:  If l is any line, then there exists at least one point P such that P does not lie on ll.  

Proof:  Let l be any line.  Suppose for contradiction that there were no point P thatcontradiction that there were no point P that did not lie on l.  

N Wh ?Now What?

Summer 2009 MthEd/Math 362 Chapter 3 17

Page 18: And Incidence Geometry - Brigham Young Universitymathed.byu.edu/~williams/Classes/362Su2009/Chapter 3/Chapter 3... · Theorems, Proofs, Logic And Incidence Geometry Summer 2009 MthEd/Math

Theorem 3.6.2 (Alternate Path)Theorem 3.6.2 (Alternate Path)

Theorem 3 6 2: If l is any line then there existsTheorem 3.6.2:  If l is any line, then there exists at least one point P such that P does not lie on ll.  

Proof:  Let l be any line.  Suppose for contradiction that there were no point P thatcontradiction that there were no point P that did not lie on l.  Then every point would lie on the line l which contradicts Axiom 3the line l, which contradicts Axiom 3.  

Summer 2009 MthEd/Math 362 Chapter 3 18

Page 19: And Incidence Geometry - Brigham Young Universitymathed.byu.edu/~williams/Classes/362Su2009/Chapter 3/Chapter 3... · Theorems, Proofs, Logic And Incidence Geometry Summer 2009 MthEd/Math

Theorem 3.6.2 (Alternate Path)Theorem 3.6.2 (Alternate Path)

Theorem 3 6 2: If l is any line then there existsTheorem 3.6.2:  If l is any line, then there exists at least one point P such that P does not lie on ll.  

Proof:  Let l be any line.  Suppose for contradiction that there were no point P thatcontradiction that there were no point P that did not lie on l.  Then every point would lie on the line l which contradicts Axiom 3 Thusthe line l, which contradicts Axiom 3. Thus some such P not on lmust exist.  

Summer 2009 MthEd/Math 362 Chapter 3 19

Page 20: And Incidence Geometry - Brigham Young Universitymathed.byu.edu/~williams/Classes/362Su2009/Chapter 3/Chapter 3... · Theorems, Proofs, Logic And Incidence Geometry Summer 2009 MthEd/Math

Theorem 3.6.2 (Alternate Path)Theorem 3.6.2 (Alternate Path)

Theorem 3 6 2: If l is any line then there existsTheorem 3.6.2:  If l is any line, then there exists at least one point P such that P does not lie on ll.  

Proof:  Let l be any line.  Suppose for contradiction that there were no point P thatcontradiction that there were no point P that did not lie on l.  Then every point would lie on the line l which contradicts Axiom 3 Thusthe line l, which contradicts Axiom 3. Thus some such P not on lmust exist. Q.E.D

Summer 2009 MthEd/Math 362 Chapter 3 20

Page 21: And Incidence Geometry - Brigham Young Universitymathed.byu.edu/~williams/Classes/362Su2009/Chapter 3/Chapter 3... · Theorems, Proofs, Logic And Incidence Geometry Summer 2009 MthEd/Math

Theorem 3.6.3Theorem 3.6.3

Theorem: If P is any point then there are atTheorem:  If P is any point, then there are at least two distinct lines l and m such that P lies on both l andmon both l and m.

Proof:  Let P be any point.  By Axiom 3, there exist three points not all on the same lineexist three points not all on the same line.  Call them A, B, and C.  

W d b f l b f hWe need to be careful because one of these three points could be the point P we already h Schose.  So. . . 

Summer 2009 MthEd/Math 362 Chapter 3 21

Page 22: And Incidence Geometry - Brigham Young Universitymathed.byu.edu/~williams/Classes/362Su2009/Chapter 3/Chapter 3... · Theorems, Proofs, Logic And Incidence Geometry Summer 2009 MthEd/Math

Theorem 3.6.3Theorem 3.6.3

Theorem: If P is any point then there are atTheorem:  If P is any point, then there are at least two distinct lines l and m such that P lies on both l andmon both l and m.

Proof:  Let P be any point.  By Axiom 3, there exist three points not all on the same lineexist three points not all on the same line.  

Call them A, B, and C.  

Summer 2009 MthEd/Math 362 Chapter 3 22

Page 23: And Incidence Geometry - Brigham Young Universitymathed.byu.edu/~williams/Classes/362Su2009/Chapter 3/Chapter 3... · Theorems, Proofs, Logic And Incidence Geometry Summer 2009 MthEd/Math

Theorem 3.6.3Theorem 3.6.3

Theorem: If P is any point then there are atTheorem:  If P is any point, then there are at least two distinct lines l and m such that P lies on both l andmon both l and m.

Proof:  Let P be any point.  By Axiom 3, there exist three points not all on the same lineexist three points not all on the same line.  

Summer 2009 MthEd/Math 362 Chapter 3 23

Page 24: And Incidence Geometry - Brigham Young Universitymathed.byu.edu/~williams/Classes/362Su2009/Chapter 3/Chapter 3... · Theorems, Proofs, Logic And Incidence Geometry Summer 2009 MthEd/Math

Theorem 3.6.3Theorem 3.6.3

Theorem: If P is any point then there are atTheorem:  If P is any point, then there are at least two distinct lines l and m such that P lies on both l andmon both l and m.

Proof:  Let P be any point.  By Axiom 3, there exist three points not all on the same line Weexist three points not all on the same line.  We consider two cases.  Case 1:  P is one of these three points; call the other two A and B Bythree points; call the other two A and B.  By Axiom 1, there is exactly one line l such that P and A lie on land A lie on l.

Summer 2009 MthEd/Math 362 Chapter 3 24

Page 25: And Incidence Geometry - Brigham Young Universitymathed.byu.edu/~williams/Classes/362Su2009/Chapter 3/Chapter 3... · Theorems, Proofs, Logic And Incidence Geometry Summer 2009 MthEd/Math

Theorem 3.6.3Theorem 3.6.3

Proof (continued) By Axiom 1 there is exactlyProof (continued) By Axiom 1, there is exactly one line m such that P and B lie on m.

OK we seem to have two lines But we betterOK, we seem to have two lines.  But we better make sure they are distinct.  Is they any way they could really be the same line?they could really be the same line?

Of course you are right:  if so, A, B, and P would b h h li di ibe together on the same line, contradicting Axiom 3.  

Summer 2009 MthEd/Math 362 Chapter 3 25

Page 26: And Incidence Geometry - Brigham Young Universitymathed.byu.edu/~williams/Classes/362Su2009/Chapter 3/Chapter 3... · Theorems, Proofs, Logic And Incidence Geometry Summer 2009 MthEd/Math

Theorem 3.6.3Theorem 3.6.3

Proof (continued) By Axiom 1 there is exactlyProof (continued) By Axiom 1, there is exactly one line m such that P and B lie on m. Lines landm cannot be the same line since if theyand m cannot be the same line, since if they were, A, B, and P would be on the same line together which is a contradiction Thus l andtogether, which is a contradiction.  Thus l and m are distinct.  

Case 2: P is not one of the three point A B or CCase 2:  P is not one of the three point A, B, or C. 

Oh boy.  Now what?  Can I just grab 2 of the 3 i d d i C 1?points and proceed as in Case 1?

Summer 2009 MthEd/Math 362 Chapter 3 26

Page 27: And Incidence Geometry - Brigham Young Universitymathed.byu.edu/~williams/Classes/362Su2009/Chapter 3/Chapter 3... · Theorems, Proofs, Logic And Incidence Geometry Summer 2009 MthEd/Math

Theorem 3.6.3Theorem 3.6.3

Let’s say I pick A and BLet s say I pick A and B again, and go to work making lines using P

P BA

making lines using P and A, and P and B.  What could happen?

CDag, yo!

What could happen?

Yup, those two lines might not be distinctmight not be distinct.  But, there is point C out thereout there. . . 

Summer 2009 MthEd/Math 362 Chapter 3 27

Page 28: And Incidence Geometry - Brigham Young Universitymathed.byu.edu/~williams/Classes/362Su2009/Chapter 3/Chapter 3... · Theorems, Proofs, Logic And Incidence Geometry Summer 2009 MthEd/Math

Theorem 3.6.3Theorem 3.6.3

Proof (continued) By Axiom 1 there is exactlyProof (continued) By Axiom 1, there is exactly one line m such that P and B lie on m. Lines landm cannot be the same line since if theyand m cannot be the same line, since if they were, A, B, and P would be on the same line together which is a contradiction Thus l andtogether, which is a contradiction.  Thus l and m are distinct.  

Case 2: P is not one of the three point A B or CCase 2:  P is not one of the three point A, B, or C. We know there is one line containing P and  A, and one line containing P and Band one line containing P and B.   

Summer 2009 MthEd/Math 362 Chapter 3 28

Page 29: And Incidence Geometry - Brigham Young Universitymathed.byu.edu/~williams/Classes/362Su2009/Chapter 3/Chapter 3... · Theorems, Proofs, Logic And Incidence Geometry Summer 2009 MthEd/Math

Theorem 3.6.3Theorem 3.6.3

Proof (continued) If these two lines areProof (continued).   If these two lines are distinct, the theorem is proved.  If not, then points P A and B are all together on the samepoints P, A, and B are all together on the same line; call it l.  By Axiom 1, there is exactly one line containing points P and C This lineline containing points P and C.  This line cannot be the same as line l since if so, A, B, and C would all be together on the same lineand C would all be together on the same line, contradicting Axiom 3.  Thus we have two distinct lines containing Point P T I Jdistinct lines containing Point P.    T.I.J.  

Summer 2009 MthEd/Math 362 Chapter 3 29

Page 30: And Incidence Geometry - Brigham Young Universitymathed.byu.edu/~williams/Classes/362Su2009/Chapter 3/Chapter 3... · Theorems, Proofs, Logic And Incidence Geometry Summer 2009 MthEd/Math

Theorem 3.6.3Theorem 3.6.3

• Alternatives:Alternatives:

• Could have formed three lines, each with point P and one of A B or C and then arguedpoint P and one of A, B, or C, and then argued that they couldn’t all have been the same line, so there must be two distinct linesso there must be two distinct lines.

• Perhaps others.

Summer 2009 MthEd/Math 362 Chapter 3 30

Page 31: And Incidence Geometry - Brigham Young Universitymathed.byu.edu/~williams/Classes/362Su2009/Chapter 3/Chapter 3... · Theorems, Proofs, Logic And Incidence Geometry Summer 2009 MthEd/Math

Your TurnYour Turn

• For the rest of the time today let’s finishFor the rest of the time today, let s finish problems 3.6.4 – 3.6.8 on the board.  Then for homework write your own complete proofs ofhomework, write your own complete proofs of 3.6.2 – 3.6.8.  (This is the same as doing exercises 3 8 – 3 14 on page 42 )exercises 3.8  3.14 on page 42.)

Summer 2009 MthEd/Math 362 Chapter 3 31