analytical modeling framework for short- channel dg … · analytical modeling framework for...

18
UniK/NTNU Analytical Modeling Framework for Short- Channel DG and GAA MOSFETs H. Børli, S. Kolberg, T. A. Fjeldly University Graduate Center (UNIK) Norwegian University of Science and Technology, Kjeller, Norway

Upload: doandieu

Post on 20-Apr-2018

230 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Analytical Modeling Framework for Short- Channel DG … · Analytical Modeling Framework for Short-Channel DG and GAA MOSFETs ... (as for n+ Si) DG GAA. UniK/NTNU ... (ATLAS/Silvaco)

UniK/NTNU

Analytical Modeling Framework for Short-Channel DG and GAA MOSFETs

H. Børli, S. Kolberg, T. A. FjeldlyUniversity Graduate Center (UNIK)

Norwegian University of Science and Technology, Kjeller, Norway

Page 2: Analytical Modeling Framework for Short- Channel DG … · Analytical Modeling Framework for Short-Channel DG and GAA MOSFETs ... (as for n+ Si) DG GAA. UniK/NTNU ... (ATLAS/Silvaco)

UniK/NTNU

OverviewObjectives:• Establish framework for precise modeling of short-channel nanoscale

MOSFETs

• Establish compact model expressions with a minimal parameter setdetermined from the framework

Procedure:• Capacitive inter-electrode effects

- In subthreshold, find analytical 2D solution for DG potential distributionand drain current

- Use DG solution to obtain GAA solution with high precision

• Near threshold- Apply Poisson’s equations, boundary conditions, and modeling

expressions for calculating the potential distribution- Determine self-consistently the total potential distribution and the drain

current by including electrostatic effects from electrons

• Strong inversion- Use long-channel approximation

Page 3: Analytical Modeling Framework for Short- Channel DG … · Analytical Modeling Framework for Short-Channel DG and GAA MOSFETs ... (as for n+ Si) DG GAA. UniK/NTNU ... (ATLAS/Silvaco)

UniK/NTNU

DG modeling details –subthreshold

• Include gate oxide in extended device body: t’ox = toxϵox/ϵSi

• Map DG MOSFET body into upper half planeof transformed (u,iv)-plane using conformal mapping (Schwartz-Christoffel transform).

• Subthreshold: Solve Laplace’s equation in(u,iv)-plane (low-doped body)

2D potential distribution for capacitivecoupling. Map back to (x,y)-plane

Schwartz-Christoffel transformation( )

)(,

2 kKivukFLiyxz +

=+=

( )( ) )1,()(,'1'1

'),(0 222

kFkKwkw

dwwkFw

=−−

= ∫

( ) ( )( )

( )

( )

( ) ⎪⎪⎪⎪⎪

⎪⎪⎪⎪⎪

⎪⎪⎪⎪⎪

⎪⎪⎪⎪⎪

⎥⎦

⎤⎢⎣

⎡⎟⎠⎞

⎜⎝⎛ +

−⎟⎠⎞

⎜⎝⎛ +

++

⎥⎦

⎤⎢⎣

⎡⎟⎠⎞

⎜⎝⎛ −

−⎟⎠⎞

⎜⎝⎛ −

+

⎥⎦

⎤⎢⎣

⎡⎟⎠⎞

⎜⎝⎛ +

+⎟⎠⎞

⎜⎝⎛ −

−+

⎥⎦

⎤⎢⎣

⎡⎟⎠⎞

⎜⎝⎛ +

−⎟⎠⎞

⎜⎝⎛ −

−−

=+−

=

−−

−−

−−

−−

∞−∫

vu

kvkuVV

vu

kvkuV

vu

vuVV

kvku

kvkuVV

duvuu

uvvu

DSbi

bi

FBGS

FBGS

1tan1tan

1tan1tan

1tan1tan

1tan1tan

1''

',

11

11

111

112

22

π

πϕ

πϕ

Page 4: Analytical Modeling Framework for Short- Channel DG … · Analytical Modeling Framework for Short-Channel DG and GAA MOSFETs ... (as for n+ Si) DG GAA. UniK/NTNU ... (ATLAS/Silvaco)

UniK/NTNU

GAA modeling details –subthreshold

• Observe structural similarities with 2D DG MOSFET potential

• Major difference: Field penetration into bodyfrom S and D electrodes, determined by characteristic lengths:

• Map φDG from device with length

into GAA MOSFET body cross-section withlength LGAA

,4

12 oxsi

oxsi

siox

ox

siDG tt

tt

⎟⎟⎠

⎞⎜⎜⎝

⎛+=

εε

εελ ⎟⎟

⎞⎜⎜⎝

⎛++=

si

ox

ox

sisiGAA r

tr 1ln

241

εε

λ

GAAGAA

DGDG LL

λλ

=

LDG

φDG

LGAA

φGAA

DG

GAA

Page 5: Analytical Modeling Framework for Short- Channel DG … · Analytical Modeling Framework for Short-Channel DG and GAA MOSFETs ... (as for n+ Si) DG GAA. UniK/NTNU ... (ATLAS/Silvaco)

UniK/NTNU

Subthreshold potential distributions

VGS = VDS = 0 V VGS = VDS = 0 V

Devices considered: n-channel DG and GAA MOSFETs

Specifics: L = 25 nm, tsi = 12 nm, tox = 1.6 nm, εox = 7, body doping Nd =1015 cm-3, midgap gate metal φmsg = 4.53 eV, ’metallic’ source/drain contacts φmsc = 4.17 eV (as for n+ Si)

DG GAA

Page 6: Analytical Modeling Framework for Short- Channel DG … · Analytical Modeling Framework for Short-Channel DG and GAA MOSFETs ... (as for n+ Si) DG GAA. UniK/NTNU ... (ATLAS/Silvaco)

UniK/NTNU

Subthreshold – verification

O : simulations: model

Subthreshold source-to-drain

pot. ProfilesVGS = 0 V

O : simulations: model

Subthreshold gate-to-gate pot. Profiles

VGS=VDS=0 V

DG GAA

Source SourceDrain Drain

Page 7: Analytical Modeling Framework for Short- Channel DG … · Analytical Modeling Framework for Short-Channel DG and GAA MOSFETs ... (as for n+ Si) DG GAA. UniK/NTNU ... (ATLAS/Silvaco)

UniK/NTNU

Scaling – center potential of GAA

Scaling of center potential with gate length in subthreshold

VGS = VDS = 0 V

O : simulations: model

Page 8: Analytical Modeling Framework for Short- Channel DG … · Analytical Modeling Framework for Short-Channel DG and GAA MOSFETs ... (as for n+ Si) DG GAA. UniK/NTNU ... (ATLAS/Silvaco)

UniK/NTNU

Near threshold – self-consistencyProcedure

Initiation- Estimate center potential φc from long-channel limit. - Approximate φGG (y) along G-G symmetry axis using long-

channel limit. - Establish modeling expression φSD (x) along S-D symmetryaxis using boundary conditions near S and D drain and from center point

- From φGG (y) and φSD (x), establish approximate G-G distributions at different cut-lines.

- For finite VDS, estimate a quasi-Fermi potential at the devicecenter (for example, VFc = VDS/2)

Processing- Calculate current and update VFc

- Estimate φ’’SD (0) from φSD (x) and apply to Poisson’s equationto update φc.

- Update φGG (y) and φDS (x)- Repeat until satisfactory accuracy is obtained (typically 3 iterations)

φGG (y)

φSD (x) φc

Threshold voltage:Defined as VGS for which

φGG (y) = const = VFB

when VDS = 0 V. Find for our devices:

VT (DG) = 0.25 VVT (GAA) = 0.24 V

Page 9: Analytical Modeling Framework for Short- Channel DG … · Analytical Modeling Framework for Short-Channel DG and GAA MOSFETs ... (as for n+ Si) DG GAA. UniK/NTNU ... (ATLAS/Silvaco)

UniK/NTNU

Strong inversion

Gate-to-gate symmetry line

For DG MOSFET, use long-channel potential φGG(y) from 1D Poisson’s equation (Taur 2001), adjusted to include effects of body doping:

Correspondingly for GAA MOSFET (Iniguez 2005).

Note: Inter-electrode capacive effects screened by adaption of the electron distribution.

( ) ( )⎥⎥⎦

⎢⎢⎣

⎡⎟⎟⎠

⎞⎜⎜⎝

⎛−−⎟⎟

⎞⎜⎜⎝

⎛ −−= 2'

2exp

2cosln2 Siox

th

bc

ths

ithcGG tty

VVqnVy ϕϕε

ϕϕ

Page 10: Analytical Modeling Framework for Short- Channel DG … · Analytical Modeling Framework for Short-Channel DG and GAA MOSFETs ... (as for n+ Si) DG GAA. UniK/NTNU ... (ATLAS/Silvaco)

UniK/NTNU

φGG (y) along G-G symmetry axis

O : simulations: model

Central gate-to-gate pot. profiles vs. VGS for VDS = 0 V

DG

O : simulations: model

GAA

Page 11: Analytical Modeling Framework for Short- Channel DG … · Analytical Modeling Framework for Short-Channel DG and GAA MOSFETs ... (as for n+ Si) DG GAA. UniK/NTNU ... (ATLAS/Silvaco)

UniK/NTNU

φDS (x),VF (x) along D-S symmetry axis

DG

SourceDrain SourceDrain

GAA

Page 12: Analytical Modeling Framework for Short- Channel DG … · Analytical Modeling Framework for Short-Channel DG and GAA MOSFETs ... (as for n+ Si) DG GAA. UniK/NTNU ... (ATLAS/Silvaco)

UniK/NTNU

Interface potential in strong inversion

DG GAA

x [nm]

SourceSource DrainDrain

Page 13: Analytical Modeling Framework for Short- Channel DG … · Analytical Modeling Framework for Short-Channel DG and GAA MOSFETs ... (as for n+ Si) DG GAA. UniK/NTNU ... (ATLAS/Silvaco)

UniK/NTNU

Drain current modelingDrift-diffusion transport:

Use electron density derived self-consistently in:

nso(x): surface concentration of electrons in all cross-sections from source to drain using VF(x) = const. = VFS .

Ballistic transport (not considered here):• Current consists of free-flight electrons with sufficient energy to fly over barrier • Electrons ’filtered’ through available quantum states at barrier position• Current limited by ability of source and drain to supply high-energy carriers fast enough

Natori formalism (1994, 2002):

IBT = q(F+-F–) where

( ) ( ) ( )( )∫

−−=−=

L

so

VVthnF

snDD

xndx

eVqWdx

xdVxnqWIthDS

0

1μμ

( )∑ ∑ ⎟

⎜⎜

⎛ −−=

±±

valleys j B

ijFsi

B

TkqVEE

FmTk

F 2122

232hπ

Page 14: Analytical Modeling Framework for Short- Channel DG … · Analytical Modeling Framework for Short-Channel DG and GAA MOSFETs ... (as for n+ Si) DG GAA. UniK/NTNU ... (ATLAS/Silvaco)

UniK/NTNU

Drain current modeling – DG MOSFET

x : simulations: model

Page 15: Analytical Modeling Framework for Short- Channel DG … · Analytical Modeling Framework for Short-Channel DG and GAA MOSFETs ... (as for n+ Si) DG GAA. UniK/NTNU ... (ATLAS/Silvaco)

UniK/NTNU

Drain current modeling – GAA MOSFET

o Modeled DD current

– Numerical simulations

VDS = 0.1 V

VDS = 0.5 V

Page 16: Analytical Modeling Framework for Short- Channel DG … · Analytical Modeling Framework for Short-Channel DG and GAA MOSFETs ... (as for n+ Si) DG GAA. UniK/NTNU ... (ATLAS/Silvaco)

UniK/NTNU

Compact modeling of drain current – example

Procedure:

• Use limiting forms of IDD in subthreshold (Isub) and strong invertion (Iinv)

• Calculate IDD near threshold (Int) from modeling framework

• Use Int versus VGS to determine the shape parameter m(VGS)

’Generic’ modeling expression

Int

Page 17: Analytical Modeling Framework for Short- Channel DG … · Analytical Modeling Framework for Short-Channel DG and GAA MOSFETs ... (as for n+ Si) DG GAA. UniK/NTNU ... (ATLAS/Silvaco)

UniK/NTNU

Compact modeling of drain current– DG MOSFET

Use least-squares fit of a second degree polynomial (3 parameters)

Extraction of parameter m

Note: A better precision in m (more parameters) would give a better fit to the numerical modeling

Resulting IDD – VDS characteristics

x : Simulations: Model

: Extrated from famework: Parabolic fit

Page 18: Analytical Modeling Framework for Short- Channel DG … · Analytical Modeling Framework for Short-Channel DG and GAA MOSFETs ... (as for n+ Si) DG GAA. UniK/NTNU ... (ATLAS/Silvaco)

UniK/NTNU

Summary

Precise modeling framework established for short-channel, nanoscale DG and GAA MOSFETs featuring:

• Full range of applied bias voltages• Self-consistency • Full potential and QFP distributions• Drift-diffusion drain current• No adjustable parameters

Compact model expressions established with a minimalparameter set extractable from the framework

Models verified by numerical simulations (ATLAS/Silvaco)