analysis(of(swamp(samples(from(theheaps(of(germignies(and ... ·...

14
UMons Journal of Environmental Microbiology, May 2016, p. 10–23 Vol. 1 10 Analysis of swamp samples from the heaps of Germignies and Argales (Nord PasdeCalais, France). Are Thiothrix bacteria present? Senet C 1 , Konk A 1 , Billon G 3 , Gillan DC 2* (1) Master student (BBMC) at UMONS, Mons, Belgium (2) Proteomic and Microbiology Unit, UMONS, Mons, Belgium (3) Université de Lille 1, Sciences & Technologies, Géosystèmes, Villeneuve d'Ascq, France. Abstract Bacteria are good biomarkers to characterize the composition of an environment. In this study, whitish deposits forming on leaves found in a pond at the basis of two heaps of coal (heaps of Germignies and Argales, NordPasdeCalais, France) were analyzed. The water of the swamps was neutral and was very rich in sulfate. An observation of the whitish deposits under the differential interference contrast microscope revealed that filamentous bacteria were present. These bacteria are Thiothrixlike multicellular bacteria and featured many sulfur inclusions. These sulfur inclusions disappeared after an ethanol treatment. LTH medium was used to try to isolate these Thiothrixlike bacteria on pure culture, but no colonies developped. The bacterium Cupriavidus necator (Ralstonia eutropha) was also searched in the sediments using the PCR approach ans specific primers. However, it was not found. 1. Introduction Thiothrix spp are the most frequent sulfideoxidizing filamentous bacteria in sulfurrich environments. The cell, which is 1.2–2.5 µm long with a diameter of 0.7–1.5 µm, form multicellular filaments that move by gliding (Garrity et al. 2005). Thiothrix is aerobic or microaerobic, and is able to form a structure called rosettes. In the presence of sulfide the cell accumulates sulfur granules that can be observed under a microscope (Garrity et al. 2005). The presence of Thiothrix supposes the presence of H 2 S in the environment, a reduced form of sulfur that is generally produced by anaerobic sulfatereducing bacteria.

Upload: others

Post on 01-Apr-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Analysis(of(swamp(samples(from(theheaps(of(Germignies(and ... · UMons&Journal&of&Environmental&Microbiology,&May&2016,&p.&10–23!Vol.1!!! 10! Analysis(of(swamp(samples(from(theheaps(of(Germignies(and(Argales((Nord7

UMons  Journal  of  Environmental  Microbiology,  May  2016,  p.  10–23   Vol.  1    

  10  

Analysis  of  swamp  samples  from  the  heaps  of  Germignies  and  Argales  (Nord-­‐

Pas-­‐de-­‐Calais,  France).  Are  Thiothrix  bacteria  present?  

 

Senet  C1,  Konk  A1,  Billon  G3,  Gillan  DC2*  

 

(1)  Master  student  (BBMC)  at  UMONS,  Mons,  Belgium  -­‐  (2)  Proteomic  and  Microbiology  Unit,  

UMONS,  Mons,  Belgium   -­‐   (3)  Université  de   Lille  1,   Sciences  &  Technologies,  Géosystèmes,  

Villeneuve  d'Ascq,  France.  

 

Abstract  

 

  Bacteria  are  good  biomarkers  to  characterize  the  composition  of  an  environment.  In  

this  study,  whitish  deposits  forming  on  leaves  found  in  a  pond  at  the  basis  of  two  heaps  of  

coal  (heaps  of  Germignies  and  Argales,  Nord-­‐Pas-­‐de-­‐Calais,  France)  were  analyzed.  The  water  

of  the  swamps  was  neutral  and  was  very  rich  in  sulfate.  An  observation  of  the  whitish  deposits  

under   the  differential   interference  contrast  microscope   revealed   that   filamentous  bacteria  

were  present.  These  bacteria  are  Thiothrix-­‐like  multicellular  bacteria  and  featured  many  sulfur  

inclusions.  These  sulfur  inclusions  disappeared  after  an  ethanol  treatment.  LTH  medium  was  

used  to  try  to  isolate  these  Thiothrix-­‐like  bacteria  on  pure  culture,  but  no  colonies  developped.  

The  bacterium  Cupriavidus  necator  (Ralstonia  eutropha)  was  also  searched  in  the  sediments  

using  the  PCR  approach  ans  specific  primers.  However,  it  was  not  found.  

 

1.  Introduction  

 

  Thiothrix  spp  are  the  most  frequent  sulfide-­‐oxidizing  filamentous  bacteria  in  sulfur-­‐rich  

environments.   The   cell,   which   is   1.2–2.5   µm   long   with   a   diameter   of   0.7–1.5   µm,   form  

multicellular   filaments   that   move   by   gliding   (Garrity   et   al.   2005).   Thiothrix   is   aerobic   or  

microaerobic,  and  is  able  to  form  a  structure  called  rosettes.  In  the  presence  of  sulfide  the  cell  

accumulates  sulfur  granules  that  can  be  observed  under  a  microscope  (Garrity  et  al.  2005).    

The  presence  of  Thiothrix  supposes  the  presence  of  H2S  in  the  environment,  a  reduced  form  

of  sulfur  that  is  generally  produced  by  anaerobic  sulfate-­‐reducing  bacteria.  

Page 2: Analysis(of(swamp(samples(from(theheaps(of(Germignies(and ... · UMons&Journal&of&Environmental&Microbiology,&May&2016,&p.&10–23!Vol.1!!! 10! Analysis(of(swamp(samples(from(theheaps(of(Germignies(and(Argales((Nord7

UMons  Journal  of  Environmental  Microbiology,  May  2016,  p.  10–23   Vol.  1    

  11  

  In  this  study,  we  analyzed  two  coal  mining  heaps  :  the  heap  of  “Germignies  Nord”  (Fig  

S2)  and  the  heap  of  “Argales”  (Fig  S1).  The  water  that  accumulates  at  the  basis  of  the  heaps  

contained  high  levels  of  sulfate  (G.  Billon,  pers.  com.)  as  well  as  white  deposits.  The  aim  of  this  

research  was  to  sample  these  white  deposits  and  look  for  Thiothrix  bacteria.  

  The  heap  of  Germignies  is  located  at  Flines-­‐lez-­‐Raches  and  Marchienne  in  the  Nord-­‐

Pas-­‐de-­‐Calais   region.   The   coal   mining   is   the   source   of   the   shale   heap   which   covers   135  

hectares.   The   heap   of   Argales   is   one   of   the   biggest   pile   of   the   Nord-­‐Pas-­‐de-­‐Calais   region  

located  in  the  township  of  Rieulay.  Mainly  composed  by  coal  and  others  industrial  wastes,  it  

extends  over  140  hectares  of  grassland  and  peat  bogs.      

  We  sampled  in  the  first  site  pieces  of  leaves,  water  and  sediments  in  the  stream  with  

a  whitish  deposit  at   the   foot  of  Germignies  heap  (Fig.  S3).   In   the  second  site   (Fig.  S4),   just  

pieces  of  leaves  were  sampled  in  a  watering  place.  Microscopica  observations  were  carried  

out  to  detect  filamentous  bacteria  as  well  as  cultivation  on  Petri  dishes  to  count  and  isolate  

Thiothrix   bacteria.   Then,   we   performed   a   DNA   extraction   followed   by   a   PCR  with   several  

primers.    

 

2.  Materials  and  Methods  

 

2.1.  Sampling  

 

  Samples  were  collected  in  2  different  places  :  12  samples  were  collected  in  the  swamp  

at   the  bottom  of   the  heap  of  Germignies   (Fig   S3)   and  6   others   samples  were   collected   in  

another  swamp  at  the  bottom  of  the  heap  of  Argales  (Fig  S4).  In  the  first  place,  3  spots  have  

been   analyzed.   In   the   first   one,   samples   T1,   T2   and   T3  were   collected   and   correspond   to  

whitish  leaves  collected  from  the  swamp.  Samples  T4,  T5,  T6  correspond  to  water  collected  

next  to  the  leaves.  In  the  second  spot,  samples  T7,  T8  and  T9  correspond  to  sediments  and  

samples   from   the   third   spot   T10,   T11   and   T12   correspond   to  water   of   the   swamp.   In   the  

swamp  of  Argales,  only  whitish   leaves  were  collected   in  2  different  spots  corresponding  to  

TA1,  TA2,  TA3  and  TA4,  TA5,  TA6.  A  pH  meter  was  used  to  measure  the  pH  of  water  samples  

T7,  T9,  TA2  and  TA6.  

 

 

Page 3: Analysis(of(swamp(samples(from(theheaps(of(Germignies(and ... · UMons&Journal&of&Environmental&Microbiology,&May&2016,&p.&10–23!Vol.1!!! 10! Analysis(of(swamp(samples(from(theheaps(of(Germignies(and(Argales((Nord7

UMons  Journal  of  Environmental  Microbiology,  May  2016,  p.  10–23   Vol.  1    

  12  

2.2.  Viable  counts  

 

  A  total  of  6  samples  were  used  to  make  viable  counts  on  medium  LB  (T1,  T2,  T3,  TA1,  

TA3,  TA4).  The  whitish  deposit  was  scraped  from  some  leaves  and  placed  into  500  �L  of  filtered  

NaCl  9  g/L.  The  tubes  were  briefly  vortexed  and  sonicated  for  15  seconds  (0.8  cycle,  80%).  

These  500  µL  were  used  to  make  dilutions  of  10X,  100X  and  1000X.  50  µL  of  these  different  

dilutions  were  spread  onto  Petri  dishes  and  incubated  at  37°C  for  4  days.    

 

2.3.  Differential  interference  contrast  microscopy  

 

  Bacteria  were  scraped  from  leaves  and  placed  into  500  µL  of  filtered  NaCl  9g/L.  The  

tubes  were  vortexed  and  analyzed  under  differential  interference  contrast  microscope  (10x,  

20x,  40x,  100x).  To  dissolve  some  of  the  sulfur  inclusions  the  same  procedure  was  used  but  

ethanol  70%  replaced  the  NaCl  solution.  

 

2.4.  DNA  extraction  

 

  DNA  was  extracted  from  6  samples  (T3,  T7,  T9,  TA2,  two  samples  of  water).  For  the  

sediments,  samples  were  centrifuged  for  3  minutes  at  3000  g.  For  each  sample,  250  mg  of  

sediments  were  used  to  extract  DNA  with  a  Power  Soil  Kit   (MoBio).  Whitish  deposits  were  

scraped  from  leaves  and  placed  into  250  µL  of  Tris-­‐EDTA.  DNA  was  then  extracted  using  a  QIA  

Amp  DNA  mini  kit.  Water  samples  were  filtered  using  a  vacuum  pump  and  a  filter  of  45  µm  to  

concentrate  bacteria.  The  filter  was  then  scraped  and  the  cells  were  placed  into    250  µL  of  

Tris-­‐EDTA.  DNA  was  extracted  using  the  QIA  Amp  DNA  mini  kit.  DNA  of  each  sample  was  then  

quantified  using  a  Nanodrop.    

Page 4: Analysis(of(swamp(samples(from(theheaps(of(Germignies(and ... · UMons&Journal&of&Environmental&Microbiology,&May&2016,&p.&10–23!Vol.1!!! 10! Analysis(of(swamp(samples(from(theheaps(of(Germignies(and(Argales((Nord7

UMons  Journal  of  Environmental  Microbiology,  May  2016,  p.  10–23   Vol.  1    

  13  

2.5.  Isolation  of  Thiohrix  on  medium  LTH    

  Samples  of  bacteria  were  spread  onto  lactate  thiosulfate  HEPES  (LTH)  with  or  without  

vitamins.   The   medium   usually   contains   lactate   but   in   this   study,   lactate   was   replaced   by  

acetate.  This  culture  medium  was  composed  by  250  mg  of  (NH4)2SO4,  55  mg  of  K2HPO4,  42  mg  

of  KH2PO4,  50  mg  of  MgSO4,  367  mg  of  CaCl2,  1  mg  of  FeCl3,  1,5  mg  of  EDTA,  60  mg  of  acetic  

acid  99%  and  500  µL  of  trace  elements  into  500  mL  of  MilliQ  water.  This  mixture  was  placed  

in  two  Duran  bottles  in  which  3,75  g  of  Difco  Bacto  Agar  were  previously  added.  Bottles  were  

sterilized  by  autoclaving  at  121°C  for  20  minutes.  Then,  1  mL  of  sodium  thiosulfate  0,3  %  was  

filtered  (0,45  µm)  and  added   in  the  two  bottles.  Vitamins  (mainly  vitamins  of  the  B  group)  

were  also  filtered  using  a  filter  of  0,45  µm  and  1,5  mL  were  injected  in  one  Duran  bottle.  The  

final  culture  medium  was  poured  in  Petri  dishes.  

 

2.6.  PCR-­‐DGGE  

 

  A   fragment  of   the  16S   rRNA  gene   (ca.  230  bp   long)  was  amplified  using  0.25  µL  of  

primer   GM5FCl2   and   0.25   µL   of   518R   primer   (Gillan   et   al.   2005).   The   Red’y’Star   mix   kit  

(Eurogentec)  was  then  used.  A  total  of  8  samples  were  used  :  T7,  T9,  TA2,  T3,  two  samples  of  

water,  a  positive  and  negative  control.  For  T7,  T9,  T3  and  TA2  samples,  2  µL  of  DNA  extracts  

were  used  and  only  1  µL  for  water  samples  and  positive  control.  PCR  water  were  added  to  

reach   a   final   volume   of   50   µL.   The   positive   control   contained   1   µL   of   pure   culture   of  

Cupriavidus  necator  DNA,  and  negative  control  was  prepared  without  DNA.  PCR  products  were  

checked  on  agarose  (1.5%)  gels  using  GelRed  as  a  stain.  DGGE  was  performed  by  the  protocol  

described  in  Gillan  et  al.  2005.  

  A   fragment   of   the   rpoD   gene   of   C.   necator   was   also   amplified   by   PCR   using   the  

environmental  DNA  extracted  in  the  sediments  of  the  pond.  

   

Page 5: Analysis(of(swamp(samples(from(theheaps(of(Germignies(and ... · UMons&Journal&of&Environmental&Microbiology,&May&2016,&p.&10–23!Vol.1!!! 10! Analysis(of(swamp(samples(from(theheaps(of(Germignies(and(Argales((Nord7

UMons  Journal  of  Environmental  Microbiology,  May  2016,  p.  10–23   Vol.  1    

  14  

3.  Results  

 

3.1.  Differential  interference  contrast  microscopy  

 

  In   the   first   site   (T1,   T2   and   T3)   filamentous   bacteria   were   observed   (Thiothrix-­‐like  

bacteria)  as  well  as  diatoms,  nanoflagellates  and  others  microeukarya.  For   the  second  site  

(TA1,  TA2  and  TA6),  the  same  kind  of  micro-­‐organisms  were  observed:  Thiothrix-­‐like  bacteria,  

a  lot  of  diatoms,  nanoflagellates  and  Beggiatoa-­‐like  bacteria  (TA6),  a  bacterium  genus  in  the  

order  of  Thiotrichales.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure   1.   Differential   interference   contrast   microscopy.   A–E,   Thiothrix  

filments.   On   A,D,F,   diatoms   can   also   be   observed.   F,   a   greenish  

Beggiatoa-­‐like  filament.  On  B  &  E,  sulfur  inclusions  can  be  observed  in  the  

filaments.  On  C  &  D,  rosettes  can  be  observed.  

Page 6: Analysis(of(swamp(samples(from(theheaps(of(Germignies(and ... · UMons&Journal&of&Environmental&Microbiology,&May&2016,&p.&10–23!Vol.1!!! 10! Analysis(of(swamp(samples(from(theheaps(of(Germignies(and(Argales((Nord7

UMons  Journal  of  Environmental  Microbiology,  May  2016,  p.  10–23   Vol.  1    

  15  

In  order  to  determine  if  inclusions  seen  in  bacteria  were  sulfur  inclusions,  ethanol  was  used  

on   samples   to  dissolve   these   inclusions.  Observations  on  differential   interference   contrast  

microscope  revealed  bleached  bacteria  (Fig.2).  

 

 

 

 

 

 

 

 

 

 

Figure   2.   Differential   interference   contrast  microscope.  

Bacteria   seem   to   have   lost   their   sulfur   inclusions   after  

ethanol  treatment.  

 

3.2.  Viable  counts  

 

  Dilutions   were   spread   on   agar   plate   with   LB   medium   (Fig.   3).   After   72   hours   of  

incubation,  colonies  were  already  present.  The  number  of  colonies  obtained  for  the  1000X  

dilution  are  shown  in  Table  1.  Viable  counts  were  higher  for  the  swamp  of  Argales  than  for  the  

swamp  of  Germignies  (Table  1).    

   

Page 7: Analysis(of(swamp(samples(from(theheaps(of(Germignies(and ... · UMons&Journal&of&Environmental&Microbiology,&May&2016,&p.&10–23!Vol.1!!! 10! Analysis(of(swamp(samples(from(theheaps(of(Germignies(and(Argales((Nord7

UMons  Journal  of  Environmental  Microbiology,  May  2016,  p.  10–23   Vol.  1    

  16  

 

 

 

 

 

 

 

 

 

 

Figure  3.  Culture  of  bacteria  on  Petri  dishes.  Colonies  after  72h  of  incubation.  

Dilution  x10.  

 

Table  1:  Number  of  colonies  per  square  centimeter  of  leaves.  The  third  column  is  

calculated  according  to  the  following  steps:  2cm²  of  leaves  were  added  to  500µL  

of  NaCl.  These  500  µL  were  used  to  make  dilutions:  10X:  10  µL  in  90  µL  of  NaCl,  

100X:  1µL  in  99  µL  of  NaCl  and  1000x:  1  µL  in  999  µL  of  NaCl.  From  each  dilution,  

50  µL  were  spread  in  Petri  plates.  The  formula  used  is:  12  x  20  (50µL  from  1000  

µL)  x  500  (1  µL  from  500  µL)  =  120  000  bacteria/2cm²  of  leaves.  Thus,  there  are  

60  000  bacteria/cm²  of  leaves.  

Cultures  (dil.  

1000X)  

Number  of  

colonies  

Colonies/cm2  of  

leaves  

T1   12   60  000  

T2   72   360  000  

T3   9   45  000  

TA1   157   785  000  

TA3   149   745  000  

TA4   180   900  000  

 

   

Page 8: Analysis(of(swamp(samples(from(theheaps(of(Germignies(and ... · UMons&Journal&of&Environmental&Microbiology,&May&2016,&p.&10–23!Vol.1!!! 10! Analysis(of(swamp(samples(from(theheaps(of(Germignies(and(Argales((Nord7

UMons  Journal  of  Environmental  Microbiology,  May  2016,  p.  10–23   Vol.  1    

  17  

3.3.  DNA  extraction  and  PCR  

 

  An  extraction  of  DNA  was  performed  on  samples  T7,  T9,  T3,  TA2  and  two  samples  of  

filtered   water.   Two   extraction   kits   were   employed   for   this   analysis   (see   Materials   and  

methods).  The  concentration  of  DNA  was  then  quantified  by  a  Nanodrop  Biospec.  The  results  

are  shown  in  Table  2.  The  concentrations  range  from  15  to  48  ng/µL.  The  ratio  260/280  was  

around  1,8  which  means  that  DNA  is  not  too  much  contaminated.  For  PCR  of  the  16S  rRNA  

gene,  two  controls  were  performed,  a  positive  control  (with  DNA  of  Cupriavidus  necator)  and  

a  negative  control  (without  DNA)  to  ensure  that  the  PCR  mix  is  functional  and  no  inhibitor  was  

present.  After  PCR,  samples  were  placed  in  wells  of  an  agarose  gel  (1.5%)  to  separate  DNA  

amplicons.  Unfortunately,  no  result  was  obtained,  even  for  positive  controls.  

 

               Table  2:  Results  of  DNA  concentration  in  ng/µL  and  measures  of  OD  in  each  sample.  

  [Nucleic  acid]  ng/µl   OD  260/280   OD  260/230   OD  260   OD  280   OD  230   OD  320  

T7   15,62   1,86   1,72   0,318   0,173   0,187   0,005  

16,1   1,91   1,76   0,331   0,178   0,192   0,009  

T9   18,66   1,89   1,89   0,37   0,194   0,194   -­‐0,003  

17,94   1,94   1,72   0,352   0,177   0,202   -­‐0,007  

T3   24,17   1,7   0,83   0,729   0,53   0,826   0,246  

24,75   1,74   0,83   0,746   0,536   0,848   0,251  

TA2   21,7   1,7   0,27   4,132   3,953   5,296   3,698  

21,4   1,1   0,57   2,272   2,232   2,594   1,844  

water  48.69   1.75   0.38   2.773   2.356   4.345   1.799  

46.51   2.10   1.28   -­‐0.037   -­‐0.524   -­‐0.239   0.967  

 

3.4.  Detection  of  Cupriavidus  necator  by  PCR  

 

  A   second   PCR   was   conducted   to   detect   the   presence   of   the   species   Cupriavidus  

necator.  This  bacterium  can  be  found  in  both  soil  and  water  and  thrives  most  successfully  in  

the  presence  of  millimolar  concentrations  of  several  heavy  metals.  Only  sediments  were  used  

for  DNA  extraction.  A  PCR  was  then  performed  with  a  specific  primer  targetting  the  rpoD  gene.  

No   PCR   amplicons   were   detected   for   the   three   environmental   samples.   However,   in   the  

samples  containing   the   internal   control  a  band  corresponding   to  C.  necator  was  observed.  

Page 9: Analysis(of(swamp(samples(from(theheaps(of(Germignies(and ... · UMons&Journal&of&Environmental&Microbiology,&May&2016,&p.&10–23!Vol.1!!! 10! Analysis(of(swamp(samples(from(theheaps(of(Germignies(and(Argales((Nord7

UMons  Journal  of  Environmental  Microbiology,  May  2016,  p.  10–23   Vol.  1    

  18  

Another  band  was  detected  in  the  positive  control,  and  nothing  was  detected  in  the  negative  

control.  These  two  controls  ensure  that  the  PCR  was  not   impaired  and  the  positive  control  

also   indicate   that  no   inhibitors  were  present.  Following   these  results,  we  can  confirm  that  

Cupriavidus  necator  is  not  present  in  the  studied  sediments  or  that  the  concentration  of  his  

DNA  was  too  low  to  be  detected  by  PCR.  

 

 Figure  4.  PCR  performed  on  sediments  to  detect  the  presence  of  Cupriavidus  

necator.   The   two   first   lanes   are   the   reference   scale.   Wells   1,2   and   3  

correspond  to  DNA  extracts  of  sediments  without  internal  control.  Wells  4,  

5   and   6   correspond   to   DNA   extracts   of   sediments   with   internal   control  

(Cupriavidus  necator).  Well  7  contains  the  positive  control  with  only  DNA  of  

Cupriavidus  necator.  And  well  8   is   the  negative  control   in  which  DNA  was  

replaced  by  water.  

 

   

Page 10: Analysis(of(swamp(samples(from(theheaps(of(Germignies(and ... · UMons&Journal&of&Environmental&Microbiology,&May&2016,&p.&10–23!Vol.1!!! 10! Analysis(of(swamp(samples(from(theheaps(of(Germignies(and(Argales((Nord7

UMons  Journal  of  Environmental  Microbiology,  May  2016,  p.  10–23   Vol.  1    

  19  

3.5.  Analysis  of  the  pH  of  the  water  

 

The  analysis  of  the  pH  revealed  that  the  water  of  the  swamp  at  the  bottom  of  the  two  heaps  

was  close  to  neutrality  (Table  3).  

 

Sample   pH  value  

T7   7.10  

T9   7.05  

TA2   6.78  

TA6   6.84  

 

Table   3.   pH   analysis   of   water   of   the   swamps   of  

Germignies  and  the  Argales.  Analyses  reveal  a  pH  close  to  

neutrality.  

 

Discussion  and  Conclusion  

 

  In  this  study,  leaves,  sediments  and  water  of  two  swamps  at  the  bottom  the  heaps  of  

Germignies  and  Argales  were  collected  to  determine  the  presence  of  bacteria  of  the  Thiothrix  

genus.  Analyses  under  the  microscope  revealed  that  Thiothrix-­‐like  bacteria  were  present  in  

the  two  swamps  (Fig.  1).  The  use  of  ethanol  to  dissolve  sulfur  inclusions  confirm  their  nature  

(Fig.  2)  and  thus,  we  may  affirm  the  presence  of  sulfide-­‐oxidizing  filamentous  bacteria  of  the  

genus  Thiothrix.  This  is  also  confirmed  by  the  presence  of  rosettes,  a  key  feature  of  the  genus.  

The  DNA  extraction  worked  successfully  but,  the  first  PCR  analysis  (16S  rRNA  gene)  failed  for  

all  the  samples  including  the  positive  control  and  the  samples  with  an  internal  control.  We  

think  that  this  might  be  due  to  a  pipetting  error  which  prevented  the  PCR.  The  second  PCR  

worked  successfully  (positive  controls  and  internal  controls  worked)  and  we  may  affirm  that  

C.  necator  is  not  present  in  the  swamps  or  it  is  present  but  not  in  a  quantity  that  can  allow  a  

detection  using  PCR.  Culture  on  LTH  medium  with  and  without  vitamins  did  not  allow  us  to  

isolate   the  genus  Thiothrix.   This  might  be  due   to  an   incubation   time   too   short  or   that   the  

medium  was  not  adapted.  

 

Page 11: Analysis(of(swamp(samples(from(theheaps(of(Germignies(and ... · UMons&Journal&of&Environmental&Microbiology,&May&2016,&p.&10–23!Vol.1!!! 10! Analysis(of(swamp(samples(from(theheaps(of(Germignies(and(Argales((Nord7

UMons  Journal  of  Environmental  Microbiology,  May  2016,  p.  10–23   Vol.  1    

  20  

References  

 

Garrity  GM,  Bell  JA,  Lilburn  T  (2005)  Order  V.  Thiotrichales  ord.  nov.  In  Brenner,  Krieg,  Staley  

and  Garrity  (Editors),  Bergey's  Manual  of  Systematic  Bacteriology,  2nd  Edition,  Volume  2  (The  

Proteobacteria),  Part  B  (The  Gammaproteobacteria),  Springer,  New  York,  p.131.  

 

Gillan  DC,  Danis  B,  Pernet  P,   Joly  G,  Dubois  P   (2005)   Structure  of   the   sediment-­‐associated  

microbial   communities   along   a   heavy-­‐metal   contamination   gradient   in   the   marine  

environment.  Appl.  Environ.  Microbiol.  71:679-­‐690.  

 

Other  informations  

 

Anon   (2016).   [online]   Available   at:   http://lafraternellelallinoise.olympe.in/TERRIL.pdf  

[Accessed  5  May  2016].  

 

PNRSE.   (2016).   Espace   Naturel   Sensible   -­‐   Terril   de   Germignies   à   Flines   lez   Râches-­‐

Marchiennes.   [online]   Available   at:   http://www.pnr-­‐scarpe-­‐escaut.fr/contenu-­‐

standard/espace-­‐naturel-­‐sensible-­‐terril-­‐de-­‐germignies-­‐flines-­‐lez-­‐raches-­‐marchiennes  

[Accessed  5  May  2016].  

 

https://lenord.fr/jcms/preprd1_145455/le-­‐terril-­‐des-­‐argales  

   Supplementary  Figures      

Fig  S1.  Geographical  map  of  spoil  tip  of  Argales  

   

Fig    S2.  Geographical  map  of  soil  tip  of  Germignies    

   

Fig  S3.  The  swamp  at  the  bottom  of  the  spoil  tip  of  Germignies.  

 

Fig  S4.  The  swamp  at  the  bottom  of  the  spoil  tip  of  Argales.  

   

Page 12: Analysis(of(swamp(samples(from(theheaps(of(Germignies(and ... · UMons&Journal&of&Environmental&Microbiology,&May&2016,&p.&10–23!Vol.1!!! 10! Analysis(of(swamp(samples(from(theheaps(of(Germignies(and(Argales((Nord7

UMons  Journal  of  Environmental  Microbiology,  May  2016,  p.  10–23   Vol.  1    

  21  

 

 

 Fig  S1.  Geographical  map  of  the  heap  of  Argales  

Page 13: Analysis(of(swamp(samples(from(theheaps(of(Germignies(and ... · UMons&Journal&of&Environmental&Microbiology,&May&2016,&p.&10–23!Vol.1!!! 10! Analysis(of(swamp(samples(from(theheaps(of(Germignies(and(Argales((Nord7

UMons  Journal  of  Environmental  Microbiology,  May  2016,  p.  10–23   Vol.  1    

  22  

 Fig    S2.  Geographical  map  of  the  heap  of  Germignies    

Page 14: Analysis(of(swamp(samples(from(theheaps(of(Germignies(and ... · UMons&Journal&of&Environmental&Microbiology,&May&2016,&p.&10–23!Vol.1!!! 10! Analysis(of(swamp(samples(from(theheaps(of(Germignies(and(Argales((Nord7

UMons  Journal  of  Environmental  Microbiology,  May  2016,  p.  10–23   Vol.  1    

  23  

 Fig  S3.  The  swamp  at  the  bottom  of  the  heap  of  Germignies.  

 

 Fig  S4.  The  swamp  at  the  bottom  of  the  heap  of  Argales.