analysis of the co2 emissions factor 18 - demand side management and... · task 18: demand...

33
Task 18: Demand Management and Climate Change SubTask 2: Emission Calculation Method Madrid, 8th of June 2008 Department of Demand Management Task 18: Demand Management and Climate Change Analysis of the CO2 Emissions Factor

Upload: others

Post on 23-Nov-2019

1 views

Category:

Documents


0 download

TRANSCRIPT

Task 18: Demand Management and Climate ChangeSubTask 2: Emission Calculation Method

Madrid, 8th of June 2008Department of Demand Management

Task 18: Demand Management and ClimateChange

Analysis of the CO2 Emissions Factor

Department of Demand Management

Madrid, 8th of June 2008

Task 18: Demand Management and Climate Change

Analysis of the CO2 Emissions Factor

RED ELÉCTRICA DE ESPAÑA

Task 18: Demand Management and Climate ChangeSubTask 2: Emission Calculation Method 3

Index1. Objectives2. Emissions Factor Estimation Method 3. Daily Emissions4. Sensitivity Analysis5. Conclusions6. Annexe

Task 18: Demand Management and Climate ChangeSubTask 2: Emission Calculation Method

1. Objectives

4

Estimation of the Daily Emissions FactorUp until now, in order to calculate greenhouse gas emissions of the electrical system an average has beentaken of factors with respect to the technology used. This method is valid when calculating emissionfactors in an overall manner, however it is imprecise when one seeks to study the behavior of theemissions during specific periods of the day.

Emission Calculation Methods

This document presents the estimation of the emissions factor throughout the day1. At the same time, it analyses how this factor varies with respect to a series of variables

1 The calculations are based on P48 production data from the Spanish electrical sector (Source REE) for the years 2006, 2007 and 2008

Constants

Variation with variables

Average emission factor byconstant MWh throughoutthe day

Average emission factor byvariable MWh throughoutthe day

Historical MethodObtaining the emissions factor from the past and projecting it

into the future

Modelling MethodModelling the behaviour of the

emissions: changing the conditions varies the emissions

factor

Task 18: Demand Management and Climate ChangeSubTask 2: Emission Calculation Method 5

Index1. Objectives2. Emissions Factor Estimation Method 3. Daily Emissions4. Sensitivity Analysis5. Conclusions6. Annexe

Task 18: Demand Management and Climate ChangeSubTask 2: Emission Calculation Method

2. Emissions Factor Estimation Method Map of VariablesThe average emission factor is intrinsicaly related to the percentage of each technological method usedwithin the mix generation such that the behaviour of the emissions will depend on the behaviour of thelatter.

Park installed

Contribution of renewables

Seasonal variations

Seasonal variationsMeteorology Hydrology

Fuel prices

MIX GENERATION EMISSIONS FACTOR

Availability of the park

Commercial strategy of generators

Restrictions of the operator

Limitations of system procedures

Rigidity of the generation technology

Others…

6

Demand

Work rate

Temperature

Economic activity:Current economic

situationTendency

Production

Task 18: Demand Management and Climate ChangeSubTask 2: Emission Calculation Method 7

Hourly production data by technology used

X

Emission factor data by technology used

Exporter Net Balance

Emission factor for national production

Export emission factor

Importer Net Balance

Emission factor for national production

Import emission factor

= +

The emission factor does not varyeven if the exported energy issubtracted

The emission factor of the importsmust be included – this isincorporated as if it were anothertype of technology1

1The data available does not distinguish between countries for imported energy. For this purpose a fixed emission factor is taken for imports, considering the annualpercentage of imports by countries. See annexe: Data considered.

1.- The Calculation of the Hourly Emission Factor in Production

2.- Calculation of the Hourly Emission Factor in Demand

A B

The inclusion of exports/imports in the hourly emission factor. Only hourly net balance data is available for exports/importswhich means that for each hour only one of these two situations may ocurr:

Taking solely into account total electricalproduction in Spain

Only in the case of Importer Net Balance isnecessary to include the emissions ofimported energy

2. Emissions Factor Estimation Method Calculation of the Hourly Emission Factor

Task 18: Demand Management and Climate ChangeSubTask 2: Emission Calculation Method

Carbón13%

Ciclo Combinado

24%

Eólica17%

Hidráulica20%

Nuclear9%

Otras17%

Carbón13%

Ciclo Combinado

25%

Eólica16%

Hidráulica21%

Nuclear9%

Otras16%

Carbón15%

Ciclo Combinad

o20%

Eólica14%

Hidráulica23%

Nuclear10%

Otras18%

8

Carbón24%

Ciclo Combinado

24%Eólica7%

Hidráulica9%

Nuclear22%

Otras14%

Carbón24%

Ciclo Combinado

25%Eólica8%

Hidráulica10%

Nuclear19%

Otras14%

Carbón15%

Ciclo Combinado

32%Eólica11%

Hidráulica7%

Nuclear20%

Otras15%

2006

Growth of 3.1%.2007

2008

Demand1 Demand Coverage1Climatology2 Rainfall2

Dry year (however its contribution to the mix was similar to 2006).

Growth of 2.9%.

Average year (32.1% hydro-electric production increase).

Summer:

Average year although dryduring the first half of the year.

Moderate increase 1%.

High temp(increase of maximum power).

Winter: Cold

Summer:

Winter:

Moderate temp (maximum of power lower).

Warm

Summer:

Winter:

Normal and even occasionally cold.

Warm

Relevant Info

Source: Richards Bay andNewcastle from PlattsInternational Coal Report

The price of coal increased in 2008:

1 Source: REE. Annual Report on the Spanish Electrical System and Data from the P48 (for the calculation of demand coverage)2 Source: The Spanish State Meteorological Agency (AEMET).

Installed Power1

Coal Prices 2006-2008

Development of Hydroelectric Reserves 2006-2008

Descent of hydro-electric reserves at the end of 2007 and early 2008

Source: REE. Annual Report2008

2. Emissions Factor Estimation Method Characterisation of Investigation Years

Task 18: Demand Management and Climate ChangeSubTask 2: Emission Calculation Method 9

Index1. Objectives2. Emissions Factor Estimation Method 3. Daily Emissions4. Sensitivity Analysis5. Conclusions6. Annexe

Task 18: Demand Management and Climate ChangeSubTask 2: Emission Calculation Method

0

5000

10000

15000

20000

25000

30000

35000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Otras

Fuel-Gas

Hidráulica

Ciclo ComibiandoCarbón

Nuclear

Eólica

3. Daily EmissionsDaily Curves 2008

Curves in Demand Hours Curves in Total Emission Hours

MWh

The total daily emissions emitted by the Spanish electrical system follow a behaviour in line with demand,with two peaks at the final hours of the morning and the afternoon

0

2000

4000

6000

8000

10000

12000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Térmica (R.E)

Fuel-Gas

Ciclo Comibiando

Carbón

tn

Task 18: Demand Management and Climate ChangeSubTask 2: Emission Calculation Method

30

35

40

45

50

55

60

65

70

75

80

0.330

0.340

0.350

0.360

0.370

0.380

0.390

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Factor emisiones

€/MWh

Hourly Curves for the Final Market Price vs the Emissions Factor Curve Hourly Curves for the Emissions Factor

tn/MWh

0.000

0.050

0.100

0.150

0.200

0.250

0.300

0.350

0.400

1 2 3 4 5 6 7 8 9 101112131415161718192021222324

Otras

Fuel-Gas

Ciclo Comibiando

Carbón

However the variation of the compostion of the generation mix throughout the day due to the price ofelectricity means that the emissions factor curve (tn/MWh) does not have the same shape as theemissions curve

During peak hours of demand the emissions factor diminished due to the increase of the influence of hydro-electric power in the composition of the mix

Price (€/MWh)

Emission Factor Curves 20083. Daily Emissions

tn/MWh Average factor: 0.346 tn/MWh

Task 18: Demand Management and Climate ChangeSubTask 2: Emission Calculation Method

2007 Curves in Hourly Demand Hourly Curves for the CO2 Emissions Factor

Hours of the Day0.000

0.050

0.100

0.150

0.200

0.250

0.300

0.350

0.400

1 2 3 4 5 6 7 8 9 101112131415161718192021222324

Otras

Fuel-Gas

Ciclo Comibiando

Carbón

2006 Curves in Hourly Demand Hourly Curves for the CO2 Emissions Factor

Hours of the Day

0.000

0.050

0.100

0.150

0.200

0.250

0.300

0.350

0.400

1 2 3 4 5 6 7 8 9 101112131415161718192021222324

Otras

Fuel-Gas

Ciclo Comibiando

Carbón

3. Daily Emissions

0

2000

4000

6000

8000

10000

12000

14000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Otras

Fuel-Gas

Ciclo ComibiandoCarbón

tn tn/MWh

tn/MWh

0

2000

4000

6000

8000

10000

12000

14000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Otras

Fuel-Gas

Ciclo ComibiandoCarbón

tn Average factor: 0.364 tn/MWh

Average factor: 0.367 tn/MWh

Task 18: Demand Management and Climate ChangeSubTask 2: Emission Calculation Method

3035404550556065707580

0.330

0.340

0.350

0.360

0.370

0.380

0.390

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Factor emisiones

€/MWh

Characterisation of the Emissions Factor Curve

49.7 €/MWh

Eólica13%

Nuclear24%

Carbon15%

Ciclo combinado

28%

Hidráulica4%

Otras16%

Average Price:

% of times which thetechnology usedmarks the marginalprice:

Mix of generation:

4:00 – 5:00

58.1 €/MWh

7:00 – 8:00

Increase of hydro-electric power coinciding withthe increased price during peak demand

0%

10%

20%

30%

40%

50%

60%

70%

Ciclo combinado

Carbón Hidráulica0%

10%

20%

30%

40%

50%

60%

Ciclo combinado

Carbón Hidráulica

71.3 €/MWh

13:00 – 14:00

Eólica12%

Nuclear23%

Carbon16%

Ciclo combinado

29%

Hidráulica4%

Otras16%

Eólica9%

Nuclear18%

Carbon15%

Ciclo combinado

33%

Hidráulica10%

Otras15%

Initiation of the thermal stations inorder to cover increased demand

64.3 €/MWh

16:00 – 17:00

75.5 €/MWh

21:00 – 22:00

0%

10%

20%

30%

40%

50%

60%

Ciclo combinado

Carbón Hidráulica

Eólica11%

Nuclear19%

Carbon15%

Ciclo combinado

33%

Hidráulica7%

Otras15%

0%

10%

20%

30%

40%

50%

60%

Ciclo combinado

Carbón Hidráulica

Eólica10%

Nuclear18%

Carbon15%

Ciclo combinado

33%

Hidráulica10%

Otras14%

0%

10%

20%

30%

40%

50%

60%

Ciclo combinado

Carbón Hidráulica

2008

3. Daily Emissions

tn/MWh Price (€/MWh)

Task 18: Demand Management and Climate ChangeSubTask 2: Emission Calculation Method 14

Index1. Objectives2. Emissions Factor Estimation Method 3. Daily Emissions4. Sensitivity Analysis

a) Demandb) Importance of Renewablesc) Polluting Technologiesd) Seasonal Variatione) Days of the Week

5. Conclusions6. Annexe

Task 18: Demand Management and Climate ChangeSubTask 2: Emission Calculation Method 15

Demand (I)No clear correlation exists between production levels and emissions factors due to the variation amongnon-polluting technologies vs polluting technologies which are produced in the mix with the increaseddemand

Daily Production vs Emissions factor

20000

22000

24000

26000

28000

30000

32000

34000

36000

38000

40000

0,16 0,21 0,26 0,31 0,36 0,41

MWh

tn/MWh

20000

22000

24000

26000

28000

30000

32000

34000

36000

38000

40000

0,18 0,23 0,28 0,33 0,38 0,43 0,48

MWh

tn/MWh

20072008

2006

20000

22000

24000

26000

28000

30000

32000

34000

36000

38000

40000

0,18 0,23 0,28 0,33 0,38 0,43 0,48

MWh

tn/MWh

3. Daily Emissions

Task 18: Demand Management and Climate ChangeSubTask 2: Emission Calculation Method 16

4. Sensitivity AnalysisDemand (II)

On those days with less demand more than 50% may be produced, minus the total emissions with respect to those of maximum demand

Total Daily Emissions

Days of Greater DemandAverage Generation

MixTotal Daily Emissions

Days of Less Demand

Daily Curve for Emissionstn/MWh

tn Average Generation Mix

tn/MWh Daily Curve for Emissions factors

2008

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Térmica (R.E)

Fuel-Gas

Ciclo Comibiando

Carbón

0,000

0,050

0,100

0,150

0,200

0,250

0,300

0,350

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Otras

Fuel-Gas

Ciclo Comibiando

Carbón

Eólica8%

Nuclear26%

Carbón19%

Ciclo Comibiando

22%

Hidráulica12%

Otras13%

0,000

0,050

0,100

0,150

0,200

0,250

0,300

0,350

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Otras

Fuel-Gas

Ciclo Comibiando

Carbón

0

20000

40000

60000

80000

100000

120000

140000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Térmica (R.E)

Fuel-Gas

Ciclo Comibiando

Carbón

tn

Eólica17%

Nuclear17%

Carbón17%

Ciclo Comibiando

29%

Hidráulica8%

Otras12%

Task 18: Demand Management and Climate ChangeSubTask 2: Emission Calculation Method

Eólica9%

Nuclear18%

Carbón22%

Ciclo Comibiando

32%

Hidráulica6%

Otras12%

Eólica4%

Nuclear22%

Carbón34%

Ciclo Comibiando

13%

Hidráulica15%

Otras12%Eólica

17%

Nuclear17%

Carbón17%

Ciclo Comibiando

29%

Hidráulica8%

Otras12%

Eólica8%

Nuclear26%

Carbón19%

Ciclo Comibiando

22%

Hidráulica12%

Otras13%

17

4. Sensitivity AnalysisDemand (II)

Days of Greater Demand Days of Lesser DemandFactor Curve for Emissions from Each Year Factor Curve for Emissions from Each Year

tn/MWh tn/MWh

0.280

0.300

0.320

0.340

0.360

0.380

0.400

0.420

0.440

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 240.280

0.300

0.320

0.340

0.360

0.380

0.400

0.420

0.440

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

2006

2007

2008

Task 18: Demand Management and Climate ChangeSubTask 2: Emission Calculation Method

Eólica20%

Nuclear21%

Carbón19%

Ciclo Comibiando

13%

Hidráulica15%

Otras13%

0

2000

4000

6000

8000

10000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Térmica (R.E)

Fuel-Gas

Ciclo Comibiando

Carbón

0,000

0,050

0,100

0,150

0,200

0,250

0,300

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Otras

Fuel-Gas

Ciclo Comibiando

Carbón

Eólica24%

Nuclear18%

Carbón15%

Ciclo Comibiando

23%

Hidráulica8%

Otras12%

18

4. Sensitivity AnalysisWind/Hydro-electric Production (I)

0

2000

4000

6000

8000

10000

12000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Térmica (R.E)

Fuel-Gas

Ciclo Comibiando

Carbón

0,000

0,050

0,100

0,150

0,200

0,250

0,300

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Otras

Fuel-Gas

Ciclo Comibiando

Carbón

Total Daily Emissions

Days of Greater Wind ProductionAverage Generation

Mix

tn/MWh Daily Curve for Emission factors

Tºn

2008

Total Daily Emissions

Days of Greater Hydro-electric ProductionAverage Generation

Mix

tn/MWh Daily Curve for Emission factors

tn

On those days with greater production using clean technology the emissions factor is considerably reduced: by 19% and 21%respectively1

1 Average increase over the last three years

Task 18: Demand Management and Climate ChangeSubTask 2: Emission Calculation Method

0.230

0.250

0.270

0.290

0.310

0.330

0.350

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

2006

2007

2008

19

4. Sensitivity AnalysisWind/hydro-electric Production (II)

Curve Factors for Emissions from Each Year Curve factors for Emissions from Each Year

0.230

0.250

0.270

0.290

0.310

0.330

0.350

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Days of greater Wind Production Days of Greater Hydro-electric Production

In both cases there are hardly any fluctuations in the factor during the central hours of the day as the percentage of clean technology is maintained at a high level

tn/MWh tn/MWh

Task 18: Demand Management and Climate ChangeSubTask 2: Emission Calculation Method

0.300

0.320

0.340

0.360

0.380

0.400

0.420

0.440

0.460

1 2 3 4 5 6 7 8 9 101112131415161718192021222324

2006

2007

2008

0

2000

4000

6000

8000

10000

12000

14000

16000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Térmica (R.E)

Fuel-Gas

Ciclo Comibiando

Carbón

Eólica5%

Nuclear20%

Carbón21%

Ciclo Comibiando

35%

Hidráulica6%

Otras12%

0,000

0,050

0,100

0,150

0,200

0,250

0,300

0,350

0,400

0,450

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Otras

Fuel-Gas

Ciclo Comibiando

Carbón

20

4. Sensitivity AnalysisCoal Production

On those days with greater percentages of coal the total emissions increased by 28% with respect to the average and the emissions factor increased by more than 10%1

Total Daily Emissions

Days of Greater Coal ProductionAverage Generation

Mix

tn/MWh Daily Curve for Emission factors

Tºn

Curve Factors for Emissions from Each Year

tn/MWh

1 Average increase over three years

2008

Task 18: Demand Management and Climate ChangeSubTask 2: Emission Calculation Method

4. Sensitivity Analysis

In the months when hydro-electric production decreases, the emissions factor increases due to theincreased influence of coal-powered thermal stations in the mix and viceversa

Eólica9%

Nuclear21%

Carbón10%

Ciclo Comibiando

33%

Hidráulica15%

Otras12%

Eólica8%

Nuclear21%

Carbón19%

Ciclo Comibiando

33%

Hidráulica5%

Otras13%

21

Seasonal Variation: Most and Least Polluting Months (I)

0,000

0,050

0,100

0,150

0,200

0,250

0,300

0,350

0,400

1 2 3 4 5 6 7 8 9 10 11 12

Monthly Emissions factor

Monthly Emissions Factor Monthly Emissions Factor

Month of GreatestEmissions Factor

Month of LowestEmissions Factor

tn/MWh tn/MWh

tn/MWh 2008

0,000

0,050

0,100

0,150

0,200

0,250

0,300

0,350

0,400

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Otras

Fuel-Gas

Ciclo Comibiando

Carbón

0,000

0,050

0,100

0,150

0,200

0,250

0,300

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Otras

Fuel-Gas

Ciclo Comibiando

Carbón

Task 18: Demand Management and Climate ChangeSubTask 2: Emission Calculation Method

4. Sensitivity Analysis

0,000

0,050

0,100

0,150

0,200

0,250

0,300

0,350

0,400

0,450

1 2 3 4 5 6 7 8 9 10 11 12

22

2006

0,000

0,050

0,100

0,150

0,200

0,250

0,300

0,350

0,400

0,450

1 2 3 4 5 6 7 8 9 10 11 12

tn/MWh

tn/MWhMonth of Lowest Emissions Factor

2007tn/MWh

tn/MWh

tn/MWh

Seasonal Variation: Most and Least Polluting Months (II)

0,000

0,050

0,100

0,150

0,200

0,250

0,300

0,350

0,400

0,450

0,500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Otras

Fuel-Gas

Ciclo Comibiando

Carbón

Eólica7%

Nuclear23%

Carbón18%Ciclo

Comibiando18%

Hidráulica21%

Otras12%

Eólica4%

Nuclear20%

Carbón27%

Ciclo Comibiando

29%

Hidráulica7%

Otras13%

0,000

0,050

0,100

0,150

0,200

0,250

0,300

0,350

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Otras

Fuel-Gas

Ciclo Comibiando

Carbón

0,000

0,050

0,100

0,150

0,200

0,250

0,300

0,350

0,400

0,450

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Otras

Fuel-Gas

Ciclo Comibiando

Carbón

0,000

0,050

0,100

0,150

0,200

0,250

0,300

0,350

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Otras

Fuel-Gas

Ciclo Comibiando

Carbón

Eólica9%

Nuclear14%

Carbón26%Ciclo

Comibiando28%

Hidráulica11%

Otras12%

Month of Greatest Emissions Factor

Eólica13%

Nuclear21%

Carbón20%

Ciclo Comibiando

17%

Hidráulica17%

Otras12%

Month of Lowest Emissions Factor

Month of Greatest Emissions Factor

tn/MWh

Task 18: Demand Management and Climate ChangeSubTask 2: Emission Calculation Method 23

Seasonal Variation: Influence in the MixSeasonal variation can determine a sudden increase of the variable clean technologies, mainly hydro-electric and wind power, which drastically reduce the emissions factor

CO2 Emissions Factor (12/2006)

Technological Mix of Energy Production (12/2006)

2006

4. Sensitivity Analysis

Task 18: Demand Management and Climate ChangeSubTask 2: Emission Calculation Method

4. Sensitivity Analysis

24

Seasonal Variation: Curve of the Emissions factor

Curve Factors for Emissions from Each Year

0.340

0.360

0.380

0.400

0.420

0.440

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

0.250

0.260

0.270

0.280

0.290

0.300

0.310

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

2006

2007

2008

Curve Factors for Emissions from Each Year

tn/MWh tn/MWh

Average increase of the factor by 8%with respect to the average curve foreach year

Average reduction of the factor by 22%with respect to the average curve ofeach year

Modification of the emissions factor curveshape due to the increase during peak hoursin thermal stations

Months of Greatest Factor Months of Least Factor

During the months when hydro-electric power increases considerably and coal generated power decreases, the emissions factor decreases by 22% with respect to the average

Task 18: Demand Management and Climate ChangeSubTask 2: Emission Calculation Method 25

Days of the Week 2008

The total emissions are reduced by close to 20% on the weekends with respect to week days, due to the reduction of the influence of the cycle combined in the mix

Total Daily Emissions

Week Daystn Average Generation

MixTotal Daily Emissions

Weekends

0,000

0,050

0,100

0,150

0,200

0,250

0,300

0,350

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Otras

Fuel-Gas

Ciclo Comibiando

Carbón

Daily Curve for Emission factors

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Térmica (R.E)

Fuel-Gas

Ciclo Comibiando

Carbón

tn/MWh

tnAverage Generation

Mix

Eólica12%

Nuclear23%

Carbón16%

Ciclo Comibiando

27%

Hidráulica9%

Otras14%

Eólica11%

Nuclear19%

Carbón15%Ciclo

Comibiando33%

Hidráulica9%

Otras13%

0

2000

4000

6000

8000

10000

12000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Térmica (R.E)

Fuel-Gas

Ciclo Comibiando

Carbón

0,000

0,050

0,100

0,150

0,200

0,250

0,300

0,350

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Otras

Fuel-Gas

Ciclo Comibiando

Carbón

tn/MWh Daily Curve for Emission factors

4. Sensitivity Analysis

Task 18: Demand Management and Climate ChangeSubTask 2: Emission Calculation Method 26

Days of the Week

The emissions factor decreases slightly on the weekends, during which the variability of the factor is reduced throughout the day

Week Days Weekend

0.280

0.300

0.320

0.340

0.360

0.380

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Curve Factors for Emissions from Each Year Curve Factors for Emissions from Each Year

0.280

0.300

0.320

0.340

0.360

0.380

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

2008

2007

2006

tn/MWh tn/MWhDuring the demand peaks the typical dips in the emissins factorcurve are not observed as the peak entry of hydro-electricpower is compensated by a proportional recovery in thecombined cycles

4. Sensitivity Analysis

Task 18: Demand Management and Climate ChangeSubTask 2: Emission Calculation Method 27

Index1. Objectives2. Emissions Factor Estimation Method 3. Daily Emissions4. Sensitivity Analysis5. Conclusions6. Annexe

Task 18: Demand Management and Climate ChangeSubTask 2: Emission Calculation Method

5. ConclusionsConsiderations on the Daily Curves of Emissions Factors

28

The low variability of the emissions factor,remaining relatively constant throughout the day(with a maximum variability of +/- 3.4%)

The factor is highly sensitive to variations in thecomposition of the mix, a small percentage ofvariation in some of the technologies used maynotably affect the factor

0,330

0,340

0,350

0,360

0,370

0,380

0,390

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Curva Media

2006

2007

2008

Curva media Tn/MWh

2 periods during the day:

24:00 – 8:00 The emissions factor follows the tendency of the demand and electricity price

8:00 – 24:00 The emissions factor behaves in an inverse manner with respect to demand andprice. A recovery of hydroelectric power ocurrs at the peaks which reduces the factor. Duringthe demand dip the factor recovers due to the influence of the combined cycle in the mix.

Descent of total emissions and the emissions factor in 2008, due to the descent of productionusing coal and the increase in wind power.

Average emissions factor for the three years: 0.36 tn/MWh

Task 18: Demand Management and Climate ChangeSubTask 2: Emission Calculation Method 29

Index1. Objectives2. Emissions Factor Estimation Method 3. Daily Emissions4. Sensitivity Analysis5. Conclusions6. Annexe

Task 18: Demand Management and Climate ChangeSubTask 2: Emission Calculation Method

1998 1999 2000 2001 2002 2005 2006 2007 20082003 2004

Prec

io (€

/MW

)

6. AnnexeConsideration on Prices

The Annual Variation of the Price of Electricity The Daily Variation of the Price of Electricity

Prec

io (€

/MW

)

An increase of the absolute factor is seen in the demand peaks with a range ofvariation in prices

The price of electricity undergoes significant variability – not only interannually, but throughout the day,coinciding with variations in the demand curve

Task 18: Demand Management and Climate ChangeSubTask 2: Emission Calculation Method

6. AnnexeCutting Technology

Classification of technologies in accordance with their costs: economic theory on the technologies

used in the cut of the mix Basic technology:

Nuclear and some coal/combined cycle stations

High-end technology:Fuel-gas turbines and fuel-oil turbines

Intermediate technologies:hydro-electric, regulated stations and other stations with coal/combined cycles

Cassated energy in the daily market offered at a price above that of the 95% of the marginal price (Period

01-04-2009 to 03-05-2009)1

Although according to economic theory, the technology which marks the cut varies according to theconditions of the market, in the Spanish market it is currently the combined cycle which marks the cut1

1 Javier González. Director of Offers and Cassation of OMEL during the presentation “Formation of Prices in the Spot Market of Electricity and Markets of Adjustments”. 2009.

For any hour of the day the combined cycle is that which offers the most volumeoffers with respect to the cut price:

Task 18: Demand Management and Climate ChangeSubTask 2: Emission Calculation Method

6. AnnexeData used for the AnalysisCalculations based on production data of the P48 programme of the Spanish electrical sector (source:REE) for 2006, 2007and 2008.

The emission factors for each technology is as follows:

Coal: 0.95 tn/MWh Combined cycles: 0.37 tn/MWh Fuel+Gas: 0.70 tn/MWh Special Thermal System: 0.31 tn/MWh Interconnections: 0.49 tn/MWh

In the case of interconnections the specific factor for each country has been considered with respect to its contribution to theinterconnections in the three years. In this manner, for 2008, the influence of each country was: France 77.5%, Portugal22.2%, Morocco 0.3% (Source: El Sistema Eléctrico Español 2008. Avance. REE).The emission factor for the electrical system of each country was obtained in different manners. In the case of Portugal, bymultiplying the emission factor by the technology which appears in its National Assignment Plan by the average energy mixof the country (source:REN). In the case of France, the National Assignment Plan does not provide a factor for technologyused, however it does give a global value for pollutant generating equipment (0.904 tn/MWh). In its place the value of 0.4tn/Mwh of exported electrical production is considered (source: ADEME). In the case of Morocco a factor of 0.83 tn/MWh hasbeen considered, which has been calculated as a ration between electrical production and the total of emissions fromproduction according to the United Nations Framework Convention on Climate Change.

Task 18: Demand Management and Climate ChangeSubTask 2: Emission Calculation Method 33