analysis of precipitation strengthening process in 2xxx

5
104 INŻYNIERIA MATERIAŁOWA MATERIALS ENGINEERING ROK XXXVII Analysis of precipitation strengthening process in 2xxx aluminium alloys Grażyna Mrówka-Nowotnik * , Jan Sieniawski, Andrzej Nowotnik, Andrzej Gradzik Department of Materials Science, Rzeszow University of Technology, Rzeszow, Poland, * [email protected] This paper is showing the results of study devoted to determination of the chemical composition and strengthening process parameters effect on the precipita- tion sequence of intermetallic phases in the supersaturated 2xxx aluminium alloys. This study was based on a calorimetric study where temperature’s effects were determined when precipitation process occurred during heating with different heating rate of the supersaturated alloys group of 2xxx. Based on the cal- orimetric curves and estimated values of ln(Q/T2) and 1000/RT an activation energy for precipitation and dissolution of phase components were evaluated. Key words: aluminium alloys, precipitation strengthening, calorimetry, activation energy. Inżynieria Materiałowa 3 (211) (2016) 104÷108 DOI 10.15199/28.2016.3.2 © Copyright SIGMA-NOT MATERIALS ENGINEERING 1. INTRODUCTION The 2xxx series of aluminium alloys generally contain 2 up to 10% copper, with smaller additions of other elements. The copper pro- vides substantial increases in strength and facilitates precipitation hardening. The introduction of copper to aluminum can also reduce ductility and corrosion resistance [1, 2]. Thus, the most common applications for these type of alloys are aerospace and automotive industries. Due to both the development of new alloys, as well as the constantly increasing demands on their performance, there was a still need to examine the effect of chemical composition, kinetic of precipitation processes from supersaturated solutions and the in- fluence of strengthening phases on the final mechanical properties of newly developed aluminium alloys. The mechanism of age hard- ening responsible for strengthening is based on the formation of in- termetallic products through the decomposition of a metastable su- persaturated solid solution SSS obtained by solution treatment and quenching. Since the interactions between the decomposition prod- ucts and the dislocations are mainly responsible for the strengthen- ing, knowledge of the decomposition process itself is particularly important for further technical developments and improvements. So far it has been generally accepted that two precipitation sequences are mainly responsible for precipitation hardening of AlCuMg al- loys, namely [3]: SSS → GPz → θ″ θʹ → θ-Al 2 Cu SSS → GPBz → S″ S ʹ S-Al 2 CuMg where: SSS – supersaturated solid solution, GPz – are the Cu Guini- er–Preston zones, θ″ and θʹ the metastable Al 2 Cu, θ equilibrium Al 2 Cu phases, GPBz are the Cu/Mg Guinier–Preston–Bagariastkij zones, S″ and S ʹ – metastable Al 2 CuMg phases and S equilibrium Al 2 CuMg phases. Depending on the alloy composition (Cu content and Cu/Mg ra- tio) and ageing parameters, different phase distributions, and con- sequently different material characteristics, can be obtained. When alloys having a Cu content between 2÷4 wt % and Cu/Mg ratio 2:4, undergo a two-stage artificial hardening where a first rapid hard- ness increase takes place in the early stages followed by a plateau. Some conclusive data recently appeared in literature [5] suggests that cluster hardening can be considered the main driving mecha- nism for the fast hardening increase in more dilute alloys contain- ing about 2 wt % Cu. If alloys with a Cu content of 2÷4 wt % and Cu/Mg ratio 2:4, should age by a mechanism involving the presence of the S″ intermediate phase, or an in situ modification of the GPB structure [3÷5]. In this paper the DSC and TEM study of 2017 and 2024 al- loys were performed, with the aim to characterize the precipitation sequence and activation energy of the precipitation of hardening phases process. 2. MATERIAL AND EXPERIMENTAL The investigation has been carried out on the commercial 2017 and 2024 aluminium alloys. The chemical composition of the alloys are indicated in Table 1. The specimens for DSC study were heat treat- ed in a resistance furnace for 12 hours at 505°C and then quenched into a water. DSC measurements were performed using a SETARAM Set- sys Evolution 1200 with a sample weight of approximately 140÷170 mg. Temperature scans were generated from the room temperature ~25°C up to 450°C with constants heating rates of 5, 10, 15 and 20 K/min. The heat effects associated with the transfor- mation (precipitation/dissolution) reactions were recorded. Calculation of activation energy values for the precipitation of S″, S ʹ/θʹ were obtained by the Kissinger method [3, 5÷8]. Start- ing from fundamental kinetic equation: /dt = k(T)f(α) (1) where t, α, k(T), f(α) are time, extent of conversion, rate constant, reaction model, respectively, k(T) is generally replaced by the Ar- rhenius equation: k(T) = A exp(–E/RT) (2) where A, E, R are the Arrhenius pre-exponential factor, the activa- tion energy and the gas constant, respectively. In the case of con- stant heating rate tests, the following relation can be derived: ln( ) q T E RT m m 2 =− + const. (3) where: q – heating rate expressed as K/min, T m – peak temperature, K, R – gas constant 8,3145 J/mol∙K, E activation energy, kJ/mol. The analysis was performed on exothermic peaks when avail- able. As a matter of fact, Kissinger’s analysis is applicable when it is possible to define a clear correspondence between transformed fraction and temperature. This correlation was satisfying the final requirements. The activation energy E for specimens of investigated alloys was determined from the slope of the straight line obtained by plotting ln(q/T 2 ) versus 1000/RT.

Upload: others

Post on 08-Jan-2022

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Analysis of precipitation strengthening process in 2xxx

104 INŻYNIERIA MATERIAŁOWA MATERIALS ENGINEERING ROK XXXVII

Analysis of precipitation strengthening process in 2xxx aluminium alloys

Grażyna Mrówka-Nowotnik*, Jan Sieniawski, Andrzej Nowotnik, Andrzej GradzikDepartment of Materials Science, Rzeszow University of Technology, Rzeszow, Poland, *[email protected]

This paper is showing the results of study devoted to determination of the chemical composition and strengthening process parameters effect on the precipita-tion sequence of intermetallic phases in the supersaturated 2xxx aluminium alloys. This study was based on a calorimetric study where temperature’s effects were determined when precipitation process occurred during heating with different heating rate of the supersaturated alloys group of 2xxx. Based on the cal-orimetric curves and estimated values of ln(Q/T2) and 1000/RT an activation energy for precipitation and dissolution of phase components were evaluated.

Key words: aluminium alloys, precipitation strengthening, calorimetry, activation energy.

Inżynieria Materiałowa 3 (211) (2016) 104÷108DOI 10.15199/28.2016.3.2© Copyright SIGMA-NOT MATERIALS ENGINEERING

1. INTRODUCTION

The 2xxx series of aluminium alloys generally contain 2 up to 10% copper, with smaller additions of other elements. The copper pro-vides substantial increases in strength and facilitates precipitation hardening. The introduction of copper to aluminum can also reduce ductility and corrosion resistance [1, 2]. Thus, the most common applications for these type of alloys are aerospace and automotive industries. Due to both the development of new alloys, as well as the constantly increasing demands on their performance, there was a still need to examine the effect of chemical composition, kinetic of precipitation processes from supersaturated solutions and the in-fluence of strengthening phases on the final mechanical properties of newly developed aluminium alloys. The mechanism of age hard-ening responsible for strengthening is based on the formation of in-termetallic products through the decomposition of a metastable su-persaturated solid solution SSS obtained by solution treatment and quenching. Since the interactions between the decomposition prod-ucts and the dislocations are mainly responsible for the strengthen-ing, knowledge of the decomposition process itself is particularly important for further technical developments and improvements. So far it has been generally accepted that two precipitation sequences are mainly responsible for precipitation hardening of AlCuMg al-loys, namely [3]:

SSS → GPz → θ″ → θʹ → θ-Al2CuSSS → GPBz → S″ → Sʹ → S-Al2CuMg

where: SSS – supersaturated solid solution, GPz – are the Cu Guini-er–Preston zones, θ″ and θʹ the metastable Al2Cu, θ equilibrium Al2Cu phases, GPBz are the Cu/Mg Guinier–Preston–Bagariastkij zones, S″ and S ʹ – metastable Al2CuMg phases and S equilibrium Al2CuMg phases.

Depending on the alloy composition (Cu content and Cu/Mg ra-tio) and ageing parameters, different phase distributions, and con-sequently different material characteristics, can be obtained. When alloys having a Cu content between 2÷4 wt % and Cu/Mg ratio 2:4, undergo a two-stage artificial hardening where a first rapid hard-ness increase takes place in the early stages followed by a plateau. Some conclusive data recently appeared in literature [5] suggests that cluster hardening can be considered the main driving mecha-nism for the fast hardening increase in more dilute alloys contain-ing about 2 wt % Cu. If alloys with a Cu content of 2÷4 wt % and Cu/Mg ratio 2:4, should age by a mechanism involving the presence of the S″ intermediate phase, or an in situ modification of the GPB structure [3÷5].

In this paper the DSC and TEM study of 2017 and 2024 al-loys were performed, with the aim to characterize the precipitation sequence and activation energy of the precipitation of hardening phases process.

2. MATERIAL AND EXPERIMENTAL

The investigation has been carried out on the commercial 2017 and 2024 aluminium alloys. The chemical composition of the alloys are indicated in Table 1. The specimens for DSC study were heat treat-ed in a resistance furnace for 12 hours at 505°C and then quenched into a water.

DSC measurements were performed using a SETARAM Set-sys Evolution 1200 with a sample weight of approximately 140÷170 mg. Temperature scans were generated from the room temperature ~25°C up to 450°C with constants heating rates of 5, 10, 15 and 20 K/min. The heat effects associated with the transfor-mation (precipitation/dissolution) reactions were recorded.

Calculation of activation energy values for the precipitation of S″/θ″, Sʹ/θʹ were obtained by the Kissinger method [3, 5÷8]. Start-ing from fundamental kinetic equation:

dα/dt = k(T)f(α) (1)where t, α, k(T), f(α) are time, extent of conversion, rate constant, reaction model, respectively, k(T) is generally replaced by the Ar-rhenius equation:

k(T) = A exp(–E/RT) (2)where A, E, R are the Arrhenius pre-exponential factor, the activa-tion energy and the gas constant, respectively. In the case of con-stant heating rate tests, the following relation can be derived:

ln( )q

TE

RTm m2 = − + const.

(3)

where: q – heating rate expressed as K/min, Tm – peak temperature, K, R – gas constant 8,3145 J/mol∙K, E – activation energy, kJ/mol.

The analysis was performed on exothermic peaks when avail-able. As a matter of fact, Kissinger’s analysis is applicable when it is possible to define a clear correspondence between transformed fraction and temperature. This correlation was satisfying the final requirements. The activation energy E for specimens of investigated alloys was determined from the slope of the straight line obtained by plotting ln(q/T2) versus 1000/RT.

Page 2: Analysis of precipitation strengthening process in 2xxx

NR 3/2016 INŻYNIERIA MATERIAŁOWA MATERIALS ENGINEERING 105

Microstructure of characteristic states of the examined alloys were observed using the transmission electron microscopes (TEM) Tesla BS-540 and Jeol-2100 operated at 120, 180 and 200 kV. The thin foils were prepared by the electrochemical polishing in: 260 ml CH3OH + 35 ml glycerol + 5 ml HClO4 using Tenupol-3.

3. RESULTS AND DISSCUSION

The DSC curve of the supersaturated 2017 alloy is shown in Fig-ure 1. One can observe on the plot five exothermic peaks. The first peak is the result of the formation of aggregates (clusters) of Cu and Mg atoms which are coherent with the matrix. At temperature of 150÷200°C (depending on the heating rate) GP zones formed — this effect caused formation of the second peak. Then, on the curve at temperature of approx. 225°C endothermic effect was observed. This was due to the dissolution of GP zones. The highest fourth of exothermic peak (approx. 260°C), was the result of the evolution of the metastable intermediate phase and θ″, S″ and θʹ, Sʹ responsible for maximum strengthening of the alloy 2017. θ″ and θʹ phase were still coherent with the matrix and the process of isolation preceded by the formation of stable equilibrium phases S and θ (incoherent with the matrix ) – peak no. 5.

The DSC curve of the supersaturated 2024 alloy heated with the rate of 10°C/min is shown in Figure 2. The sample were heated (im-mediately after being supersaturated) in the calorimeter to a tem-perature of 450°C at a constant heating rate. On the recorder DSC curve four exothermic peaks were observed (Fig. 2).

The first two of thermal effects (~115°C and 180°C) are asso-ciated with the formation of GP zones coherent with the matrix formed at high speed below 200°C. The exothermic peak (No. 3 at Fig. 2) recorded at about of 248°C is due to precipitate of the dispersive, most strengthening metastable particles of Sʹ-AlCuMg phases. Last exothermic peak — no. 4 results in formation of stable equilibrium phases S and θ.

On the both curves, the most intensive, major peak (marked by no. 4 — Fig. 1, and no. 3 — Fig. 2) was due to the nucleation and growth of semicoherent θʹ and Sʹ phases. The temperature of the peak no. 3 and no. 4 increases with increasing the heating rates (Tab. 2, 3). In order to determine the activation energy of strengthening phases from the obtained DSC curves with using of different heat-ing rate for alloy 2017, Kissinger's method was applied. In order to provide required data, the values of temperatures corresponded to recorder thermal effects were estimated. Then, the values of ln(q/T2) and 1000/RT (Tab. 2, 3) were determined from the 3 equation. On the basis on calorimetric DSC curves (Fig. 2 and 3) and literature data [3÷5, 9÷15] the sequence of precipitation strengthening phas-es from supersaturated 2017 and 2024 alloys followed as: SSS → GP/GPB zones → metastable phases S″/θ″ → metastable phases Sʹ/θʹ → stable, equilibrium S (Al2CuMg) and θ (Al2Cu) phases (Cu content between 2÷4 wt % and Cu/Mg ratio 2÷4). When the value of activation energy by Kissinger’s method was estimated the rela-tionship between the temperature Tm corresponding to a maximum peak and the linear growth of heating rate q applied in the DSC measurements had to be taken into account. In any case, increasing of heating rates q leads to higher growth of the peak temperature Tm (Tab. 2 and 3).

Using Kissinger’s method and graphic representation of the rela-tionship of ln(q/T2) vs 1000/RT (Fig. 3 and 4) the values of activa-tion energy of precipitation processes of phase strengthening phases

Table 1. Chemical composition of the investigated alloys, wt %Tabela 1. Skład chemiczny badanych stopów, % mas.

Alloy Si Mg Mn Cu Fe Zn Cr Ti Al

2017 0.20 0.40 0.40 3.5 0.70 0.25 0.10 0.20 balance

2024 0.50 1.8 0.9 4.9 0.50 0.25 0.10 0.15 balance

Fig. 1. DSC thermogram of solutionized 2017 alloy, heated up to the temperature of 450°C with a rate of 10°C/minRys. 1. Termogram DSC przesyconego stopu 2017 nagrzewanego do tem-peratury 450°C z szybkością 10°C/min

Fig. 2. DSC thermogram of solutionized 2024 alloy, heated up to the temperature of 450°C with a rate of 10°C/minRys. 2. Termogram DSC przesyconego i starzonego stopu 2024 nagrze-wanego do temperatury 450°C z szybkością 10°C/min

in 2xxx aluminium alloys group were determined (Tab. 4). The ac-tivation energy for the process of precipitation of GPB zones was lower for the 2017 than to 2024. However for the precipitation of strengthening metastable transition phases of S″, θ″, Sʹ and θʹ were higher in the 2024 alloy (Tab. 4).

TEM observations of the microstructure of examined alloys after ageing at temperature 190°C for 5 h (Fig. 5) and 10 h (Fig. 6) shows precipitates of strengthening phases θʹ, Sʹ and θ, S.

4. SUMMARY

The content of Cu between 2÷4 wt % and Cu/Mg ratio 2÷4 in the investigated 2017 and 2024 aluminium alloys modifies the sequen-ce of precipitation strengthening phases from supersaturated solid solution. A following sequence has been confirmed: SSS → GP/GPB zones → metastable phases S″/θ″ → metastable phases Sʹ/θʹ → stable, equilibrium S (Al2CuMg) and θ (Al2Cu) phases. The ac-tivation energy for the process of precipitation of GP/GPB zones is higher in value for 2024 aluminium alloy than to 2017 alloy. How-

Page 3: Analysis of precipitation strengthening process in 2xxx

106 INŻYNIERIA MATERIAŁOWA MATERIALS ENGINEERING ROK XXXVII

Table 2. Values of the thermal effects temperatures and the values of ln(q/T2) and 1000/RT determined from equation 3 for 2017 alloyTabela 2. Wartości temperatury efektów cieplnych oraz wartości ln(q/T2) i 1000/RT wyznaczone z równania 3 dla stopu 2017

Peak/phase(Fig. 1)

Heating reate K/min

T °C

T K

Time min 1000/RT ln(q/T2)

2-GP1

5101520

145.1154.0166.0173.3

418.15427.15439.15445.45

28.316.412.210.2

0.287620.281550.273870.2700

–10.4622–9.81168–9.46163–9.20240

3-GP2/q”, S”

5101520

180.0185.0193.0201.5

453.15458.15466.15474.15

36.123.815.211.6

0.26540.26250.25800.2534

–10.6230–9.9518–9.5810–9.3294

4-q’, S’

5101520

253262

285.6296.9

526.15535.15558.75570.05

49.526.519.815.8

0.22850.22470.21520.2109

–10.9217–10.2625–9.9433–9.6957

5-q, S51015

289301308

562.15574.15581.15

59.930.419.7

0.21390.20940.2055

–11.0540–10.4031–10.0356

a)

b)

c)

Fig. 3. Kissinger’s graphs for the relationship of ln(q/T2) vs 1000/RT

related to the observed heat effects associated with the precipitation processes of: a) GPB zones, b) transition: S″, θ″, c) transition Sʹ/θʹ in the 2017 alloyRys. 3. Wykresy Kissingera zależności ln(q/T2)–1000/RT dla efektów cieplnych w procesie wydzielania faz: a) stref GPB, b) przejściowych S″, θ″, c) przejściowych Sʹ/θʹ w stopie 2017

Table 3. Values of the thermal effects temperatures and the values of ln(q/T2) and 1000/RT determined from equation 3 for 2024 alloy Tabela 2. Wartości temperatury efektów cieplnych oraz wartości ln(q/T2) i 1000/RT wyznaczone z równania 3 dla stopu 2024

Peak/phase(Fig. 2)

Heating reate K/min

T °C

T K

Time min 1000/RT ln(q/T2)

1-GP1

5101520

145.0154.0166.0170.0

418.15427.15439.15443.15

28.316.412.210.1

0.287620.281550.273870.2714

–10.4622–9.81168–9.46163–9.19210

2-GP2/q”, S”

5101520

183.0194.0198.1203.2

456.15467.15471.16476.17

35.819.8814.2311.38

0.263660.257450.255260.25258

–10.6362–9.99071–9.60234–9.33581

3-q’, S’

5101520

248.4266.2274.4288.5

521.56539.36547.56561.66

48.626.818.915.2

0.23060.222990.219650.214136

–10.9042–10.2782–9.90289–9.66606

4-q, S51015

285.0299.3310.4

558.16572.46583.56

55.430.321.4

0.2154790.2100960.2061

–11.0398–10.3973–10.0302

a)

b)

c)

Fig. 4. Kissinger’s graphs for the relationship of ln(q/T2) vs 1000/RT

related to the observed heat effects associated with the precipitation processes of: a) GPB zones, b) transition: S″, θ″, c) transition Sʹ/θʹ in the 2024 alloyRys. 4. Wykresy Kissingera zależności ln(q/T2) – 1000/RT dla efektów cieplnych w procesie wydzielania faz: a)stref GPB, b) przejściowych S″, θ″, c) przejściowych Sʹ/θʹ w stopie 2024

a)a)

b)b)

c)c)

Page 4: Analysis of precipitation strengthening process in 2xxx

NR 3/2016 INŻYNIERIA MATERIAŁOWA MATERIALS ENGINEERING 107

ever for the precipitation process of strengthening metastable tran-sition phases of S″, θ″, Sʹ and θʹ the E value was lower in the 2017 aluminium alloy.

REFERENCES

[1] Aluminium Handbook. Vol. 1. Fundamentals and Materials. Aluminium-Verlag Marketing & Kommunikation GmbH, Düsseldorf (1999).

[2] Mondolfo L. F.: Aluminium alloys: structure and properties. Butterworths, London-Boston (1976).

[3] Smith G. W.: Precipitation kinetics in solutionized aluminum alloy 2124: Determination by scanning and isothermal calorimetry. Thermochim. Act. 317 (1) (1998) 7÷23.

Table 4. The activation energy of precipitation of phase strengthening in 2xxx group of aluminum alloys determined by Kissinger's methodTabela 4. Energia aktywacji wydzielania umacniających faz w stopach grupy 2xxx określona metodą Kissingera

AlloyActivation energy, kJ/mol

GPB zones S″/θ″ Sʹ/θʹ

2017 68.1 100.8 61.24

2024 73.0 119.05 77.5

a)

b)

Fig. 5. Microstructure of 2017 alloy after ageing at temperature

190°C/5 h shows precipitates of strengthening phases θʹ, Sʹ and θ, SRys.5. Mikrostruktura stopu 2017 po starzeniu w temperaturze 190°C/5 h z widocznymi wydzieleniami umacniajacych faz θʹ, Sʹ oraz θ, S

a)

b)

Fig. 6. Microstructure of 2024 alloy after ageing at temperature of 190°C/10h shows precipitates of strengthening phases θʹ, Sʹ and θ, SRys.6. Mikrostruktura stopu 2024 po starzeniu w temperaturze 190°C/5h z widocznymi wydzieleniami umacniajacych faz θʹ, Sʹ oraz θ, S

[4] Abis S., Massazza M., Mengucci P., Riontino G.: Early ageing mecha-nisms in a high-copper AlCuMg alloy. Scrip. Matter. 45 (2001) 685÷691.

[5] Wu Y., Ye L., Jia Y., Liu L., Zhang X.: Precipitation kinetics of 2519A alu-minum alloy based on aging curves and DSC analysis. Trans. Nonferrous Met. Soc. China 24 (2014) 3076÷3083.

[6] Bassani P., Gariboldi E., Ripamonti D.: Thermal analysis of Al–Cu–Mg–Si alloy with Ag/Zr additions. J. Therm. Anal. Calorim. 91 (1) (2008) 29÷35.

[7] Boswell P. G.: On the calculation of activation energies using modified Kissinger method. J. Therm. Anal. 18 (1980) 353÷358.

[8] Heireche L., Belhadji M.: The methods Matusita, Kissinger and Ozawa in the study of the crystallization of glasses. The case of Ge–Sb–Te alloys. Chalcogenide Lett. 4 (2) (2007) 23÷33.

[9] Smith G. W.: Precipitation kinetics in air-cooled aluminium alloy: A com-parison of scanning and isothermal calorimetry measurement methods. Therm. Act. 313 (1998) 27÷36.

[10] Kozieł J., Błaż L., Włoch G., Sobota J., Lobry P.: Precipitation processes during non-isothermal ageing of fine-grained 2024 alloy. Arch. Metall. and Mat. 61 (2016) 169÷176.

[11] Lin Y. C., Xia Y. C., Jiang Y. Q., Zhou H. M., Li L. T.: Precipitation hard-ening of 2024-T3 aluminum alloy during creep aging. Mater. Sci. Eng. A565 (2013) 420÷429.

[12] Lin Y. C., Xia Y. C., Jiang Y. Q., Li L. T.: Precipitation in Al–Cu–Mg alloy during creep exposure. Mater. Sci. Eng. A556 (2012) 796÷800.

[13] Bai S., Liu Z., Gu Y., Zhou X., Zeng S.: Microstructures and fatigue frac-ture behavior of an Al–Cu–Mg–Ag alloy with a low Cu/Mg ratio. Mater. Sci. Eng. A530 (2011) 473÷480.

[14] Wang S. C., Starink M. J.: Review of precipitation in Al–Cu–Mg(–Li) al-loys. Int Mater Rev. 50 (2005) 193÷215.

[15] Mrówka-Nowotnik G., Sieniawski J., Raga K., Wierzbińska M.: Wpływ warunków umacniania wydzieleniowego na mikrostrukturę i właściwości mechaniczne stopu aluminium 2024. Inż. Mater. 33 (6) (2012) 601÷604.

a)

a)

b)

b)

Page 5: Analysis of precipitation strengthening process in 2xxx

108 INŻYNIERIA MATERIAŁOWA MATERIALS ENGINEERING ROK XXXVII

Analiza procesów wydzielania faz umacniających w stopach aluminium grupy 2xxx

Grażyna Mrówka-Nowotnik*, Jan Sieniawski, Andrzej Nowotnik, Andrzej GradzikKatedra Materiałoznawstwa, Politechnika Rzeszowska, Rzeszów, *[email protected]

Inżynieria Materiałowa 3 (211) (2016) 104÷108DOI 10.15199/28.2016.3.2© Copyright SIGMA-NOT MATERIALS ENGINEERING

Słowa kluczowe: stopy aluminium, umacnianie wydzieleniowe, kalorymetria, energia aktywacji.

1. CEL PRACYNajwiększe właściwości wytrzymałościowe stopy aluminium gru-py 2xxx uzyskują na drodze odpowiedniego doboru składu che-micznego oraz parametrów obróbki cieplnej. Procesem zapewniają-cym uzyskanie najlepszych właściwości wytrzymałościowych przy zachowaniu dobrej plastyczności jest umacnianie wydzieleniowe. Pomimo przeprowadzenia bardzo wielu badań zagadnienia wy-dzielania faz umacniających z przesyconych stopów grupy 2xxx są nadal aktualne. Dlatego celem pracy była analiza wpływu składu chemicznego oraz szybkości nagrzewania na procesy wydzielania umacniających cząstek z przesyconych stopów aluminium 2017 i 2024. W celu określenia energii aktywacji, sekwencji i kinetyki wydzielania faz umacniających wykonano badania kalorymetrycz-ne (DSC) oraz przeprowadzono obserwacje mikrostruktury (TEM).

2. MATERIAŁ I METODYKA BADAŃ

Materiał badań stanowiły dwa techniczne stopy aluminium 2017 i 2024 różniące się zawartością Cu, Mg, Mn i Si (tab. 1). Wyzna-czenie kolejności przemian fazowych w badanych stopach przepro-wadzono metodą DSC — różnicowej kalorymetrii skaningowej, za pomocą kalorymetru SETARAM SETSYS Evolution-1200. Stoso-wano próbki o masie około 140÷170 mg. Próbki nagrzewano od temperatury pokojowej ~25°C do 450°C, stosując stałą szybkość nagrzewania 5, 10, 15 i 20 K/min. Na krzywych DSC rejestrowano efekty cieplne związane z przemianami fazowymi zachodzącymi w badanych stopach w stanie stałym. Badania kalorymetryczne prowadzono dla stopów aluminium: 2017 i 2024 bezpośrednio po procesie przesycania (próbki wygrzewano w temperaturze 505°C przez 12 h, a następnie chłodzono w zimnej wodzie). W celu za-rejestrowania przemian zachodzących w mikrostrukturze stopów podczas umacniania wydzieleniowego rejestrowano efekty cieplne związane z procesami wydzielania faz umacniających z przesyco-nego roztworu stałego α-Al. Wyniki badań przedstawiono w posta-ci krzywych określających zależności szybkości zmian przepływu ciepła od temperatury. Na podstawie krzywych DSC oszacowano wstępnie liczbę faz w stopach oraz wyznaczono kolejność i tempe-raturę przemian fazowych. Energię aktywacji procesu wydzielania stref GP oraz umacniających faz przejściowych S″, θ″, Sʹ, θʹ i rów-nowagowych faz S-Al2CuMg i θ-Al2Cu wyznaczono metodą Kis-singera, korzystając z równania 3. Mikrostrukturę stopów w cha-rakterystycznych stadiach wydzielania obserwowano za pomocą elektronowego mikroskopu transmisyjnego Jeol-2100 i mikroskopu Tesla BS 540. Cienkie folie wykonano metodą dwustronnego ście-niania elektrochemicznego w odczynniku o składzie chemicznym: 260 ml CH3OH + 35 ml gliceryny + 5 ml HClO4.

3. WYNIKI I ICH DYSKUSJA

Termogramy DSC przesyconych i następnie nagrzewanych (na-tychmiast po przesyceniu) w kalorymetrze do temperatury 450°C

ze stałą szybkością 10 K/min stopów 2017 i 2024 przedstawiono na rysunkach 1 i 2. Na krzywej DSC przesyconego stopu 2017 zarejestrowano pięć pików egzotermicznych (1÷5). Pik 1. jest wy-nikiem tworzenia się skupisk (klasterów) atomów Cu i Mg, które stają się koherentne z osnową. W temperaturze 150÷200°C tworzą się tzw. strefy GP i GPB pik – 2. i 3. Następnie na krzywej DSC w temperaturze ok. 225°C obserwowano efekt endotermiczny wy-nikający z rozpuszczania się stref GP. Egzotermiczny pik 4. (ok. 260°C) o największej intensywności jest efektem wydzielania się metastabilnych faz pośrednich S″, Sʹ oraz θ″ i θʹ odpowiedzial-nych za maksymalne umocnienie stopu 2017. Cząsteczki fazy S″, θ″ i Sʹ, θʹ są wciąż koherentne z osnową i proces ich wydzielania poprzedza tworzenie się stabilnych, równowagowych faz S i θ (niekoherentnych z osnową) – pik 5. Proces wydzielania z prze-syconego stopu 2024 jest zbliżony (rys. 2). Pierwsze dwa efek-ty cieplne związane są z tworzeniem się koherentnych z osnową stref GP i GPB (Cu, Mg) tworzących się z dużą prędkością poniżej temperatury 200°C. Najsilniejszy efekt egzotermiczny na krzywej DSC występuje w temperaturze 248°C i jest efektem wydziela-nia się dyspersyjnych, przejściowych cząstek faz S″ i Sʹ-AlCuMg powodujących największe umocnienie podczas starzenia stopu 2024. Na podstawie otrzymanych krzywych kalorymetrycznych DSC ustalono sekwencję wydzielania faz umacniających z prze-syconych stopów 2017 i 2024: SSS → GPB → S″/θ″ → Sʹ/θʹ → S/θ. Gdzie: SSS – przesycony roztwór stały, GP – strefy Guinie-ra–Prestona, GPB – strefy Guiniera–Prestona–Bagariastkij, S″, Sʹ, θ″ i θʹ – metastabilne fazy przejściowe, S (Al2CuMg) i θ (Al2Cu) – fazy stabilne, równowagowe. Na podstawie otrzymanych wy-ników DSC wyznaczono wartość energii aktywacji wydzielania faz umacniających metodą Kissingera. Z otrzymanych krzywych DSC (rys. 1 i 2) odczytano wartości temperatury zarejestrowanych efektów cieplnych oraz wyznaczone z równania 3 wartości ln(q/T2) i 1000/RT (tab. 2 i 3). Z zależność ln(q/T2) od 1000/RT (rys. 3, 4) metodą Kissingera wyznaczono wartości energii aktywacji wydzielania faz umacniających w badanych stopach grupy 2xxx (tab. 4).

4. PODSUMOWANIE

Zawartość miedzi w stopach aluminium grupy 2xxx w zakresie od 2 do 4% mas. oraz proporcja Cu/Mg wynosząca 2:4 wpływa na zmianę sekwencji wydzielania faz umacniających z przesyconych stopów grupy 2xxx. Na podstawie badań kalorymetrycznych oraz obserwacji mikrostruktury ustalono sekwencję wydzielania z prze-syconych stopów 2017 i 2024: SSS → strefy GP/GPB → metasta-bilne fazy przejściowe S″/θ″ → metastabilne fazy przejściowe Sʹ/θʹ → stabilne, równowagowe fazy S (Al2CuMg) i θ (Al2Cu). Wartość energii aktywacji wydzielania stref GP/GPB oraz metastabilnych faz przejściowych S″, θ″, Sʹ i θʹ zwiększa się ze wzrostem zawar-tości głównych pierwiastków stopowych i jest większa dla stopu aluminium 2024.