analysis and quantification of medicinally important essential oil...

294
Analysis and quantification of medicinally important essential oil by mass spectrometry method and chemical studies on Opuntia dillenii A thesis submitted for the partial fulfilment of the degree of DOCTOR OF PHILOSOPHY by Lubna Department of Chemistry University of Karachi, Karachi -75270, Pakistan 2017

Upload: others

Post on 14-Apr-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

Analysis and quantification of medicinally important

essential oil by mass spectrometry method and

chemical studies on Opuntia dillenii

A thesis submitted for the partial fulfilment of the degree

of

DOCTOR OF PHILOSOPHY

by

Lubna

Department of Chemistry

University of Karachi,

Karachi -75270,

Pakistan

2017

Page 2: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

Dedicated

to,

my beloved parents

and

my siblings

Page 3: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

Author Introduction

The author was born in Karachi, Pakistan. She received her early education at Karachi and

passed her matriculation examination from Sir Syed Children’s Academy, Nazimabad, in

1996. She joined Women Degree College, Nazimabad and qualified Intermediate Certificate

in 1998 and got B.Sc. degree in 2000 from Federal Government Urdu Science College. She

got M.Sc. degree in Organic Chemistry from Karachi University in 2005 with 4th position.

Later, she joined International Center for Chemical and Biological Sciences, H.E.J.

Research Institute of Chemistry, University of Karachi, in July 2005, as a research associate

for a research project (H.E.C. project No. 20-161; entitled as “Pesticidal and Medicinal

agents based on Tagetes species”). She got M. Phil. degree (2006-2014) under the

supervision of Prof. Dr. Shaheen FaiziS.I. after that she submitted her Ph. D. studies from

Department of Chemistry, University of Karachi, under the supervision of Prof. Dr. Rahat

Sultana in 2017. During her research studies she earned more than twelve research

publications and submitted one US and one Pakistani patent.

Page 4: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

Acknowledgement

Page 5: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

To begin with the name of Al-Mighty Allah (SWT), the most gracious and the most merciful

Alhamdullilah. All praises to Allah for the blessing me to complete my Ph. D. research

work. All high opinions for our last Holy Prophet (Peace be upon him), whose teachings and

deeds provide us the clear approach to accomplish our destination successfully.

I wish to express my gratitude to a number of peoples who were involved in this thesis, in

different ways. In this regards, first of all I have great pleasure in expressing my deep sense

of gratitude and indeptedness to my dear supervisor, Prof. Dr. Rahat Sultana, for her

enthusiastic encouragement, active co-operation and expert guidance to elaborate things

clearly and simply. I also pay my sincere thanks to my research co supervisor Dr. Syed

Ghulam Musharraf for providing modern spectroscopic facilities. I am also grateful to Prof.

Dr. Shaheen faiziS.I. for giving me valuable suggestion. I am whole heartedly thankful to

Prof. Dr. Dilshad Waqar, Chairperson, Department of Chemistry, University of Karachi, for

providing excellent and modern research facilities for conducting my research work.

Any sense of gratitude will be incomplete without giving glory and words of thanks to

founding Director of this institute, (Late) Prof. Dr. Salimuzzaman SiddiquiF.R.S.,H.I.,S.I.,T.I.. My

sincere thanks are due to the Chief Parton of the Institute, Prof. Dr. Atta-ur-

RahmanF.R.S,N.I.,H.I.,S.I.,T.I. and the Director, Prof. Dr. M. Iqbal ChoudharyH.I,S.I.,T.I. for providing

opportunities and world-class facilities, equipped with most sophisticated instruments,

where I carried out all of my spectral studies. I have paid my sincere thanks to all my

research group fellows. In particular, Dr. Perveen for their valueable suggestions. I am

grateful to compound bank to cooperate for the evaluation of biological activities. I am also

thankful to Prof. Dr. Ahsana Dar and her student Dr. Faheema Siddiqui for the analysis of

anticancer activity.

Last but not least, my deepest gratitude goes to my parents, specially my beloved father Mr.

Zaheer Ahmed and Abida Begum and my sisters and brothers (Syeda Uzma, Syeda Huma,

Mohammad Humayun and Danish Khan) for their highly valuable contributions and prayers

in compilation of this thesis.

Lubna

Karachi, 2017

Page 6: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

CONTENTS

Page No.

Summary………………………………………………………………………….. 01-02

Urdu Summary…………………………………………………………................ 03

Chapter 1

1. General introduction……………………………………………………. 04-08

Chapter 2

2. Biosynthesis……………………………………………………………… 09-37

2.1.Biosynthesis of fatty acids…………………………………………...

2.2.Biosynthesis of terpenes………………………………………………

2.3.Biosynthesis of steroids……………………………………………….

2.4.Biosynthesis of flavonoids…………………………………………….

Part A

Analysis and quantification of medicinally important essential oil by mass

spectrometry method

Chapter 3

3. Introduction……………………………………………………………………

38-58

Chapter 4

4. Results and discussion.…………………………………………………………

59-160

GC and GC-MS studies of leaves, flowers and stalks on different medicinal

plants……………………………………………………………………………..

a. Antibacterial activity……………………………………………….

b. Antifungal activity………………………………………………….

c. Antioxidant activity……………………………………………......

d. Cytotoxic activity..…………………………………………………

e. Immunomodulating activity………………………………………...

Outlook………………………………………………..………………………….. 161-162

Chapter 5

5. Experimental….………………………………………………………………...

163-166

Chapter 6

6. References………………………………………………………………………

167-191

Page 7: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

Part B

Chemical studies on Opuntia dillenii

Chapter 7

7. Introduction……………………………………………………………………

192-207

Chapter 8

8. Results and discussion …………………………………………………………

208-252

Chemical investigation on Opuntia dillenii cladode butanol phase…………....….

Outlook………………………………………………..………………………….. 253-254

Chapter 9

9. Experimental…………………………………………………………………… 255-259

Chapter 10

10. References……………………………………………………………………..

260-280

List of publications……………………………………………………………….. 281-287

Page 8: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

1

Summary

Page 9: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

2

The thesis comprises two parts, A and B. Part A deals with the analysis and quantification of

medicinally important essential oil, by mass spectrometry method while, the part B describes

the chemical studies on cladode of Opuntia dillenii. A short summary on the biosynthesis of

steroids, flavonoids, fatty acids and terpenoids are also included in the thesis.

Part A

This part explains the chemical constituents and their quantification of medicinally important

components of extracts on Ixora fulgens, I. coccinea (yellow and orange color flowers), I.

polyantha, I. chinensis, Ipomoea batata (blackie), I. batata pink frost, and Cassia fistula, by

mass spectrometry method. GC and GC-MS studies were carried out on extracts of different

parts especially flowers, leaves and stalks of the plants which led to the identification of 230

chemical compounds from hexane extracts, 324 chemical compounds were identified from

chloroform extract of Ixora species. Moreover, 26 metabolites were characterized from

methanol extracts of Ixora chinensis flowers extract. From Ipomoea species, 106 chemical

compounds were identified from hexane extracts, while, 72 compounds were identified from

chloroform extract of the plant. Moreover, 57 phytochemicals were identified from hexane

extract, whereas, 51 metabolites were identified from chloroform extracts of C. fistula plant.

Different class of compounds were identified from this extracts including hydrocarbons, long

chain fatty acids and their esters, alcohols, aromatic acids and their esters, terpenes and

vitamins. Antibacterial, antifungal, antioxidant, anti-inflammatory, and anti-cancer activities

have also been carried out from all the above mentioned extracts.

Part B

Total thirteen different fractions of vaccum liquid chromatography (VLC) of antidepressant

butanol phase of Opuntia dillenii were selected for chemical analysis. For this purpose GC

and GC-MS studies were carried out, which led to the identification of 409 chemical

compounds.

Page 10: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

3

Urdu summary

Page 11: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

4

Chapter 1

General Introduction

Page 12: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

5

All the time men have based on environment for their fundamental requirements for the

invention of goods, protections, clothes, medicines etc. Natural World has recommends us a

range of prescriptions to treat a lot of diseases. 2600 BC was the starting period for the

preparation of remedies for diseases. More than 1000 plants derivatives were utilized as oils

of Cedrus species, Commiphora species, Cupressus sempevirens, Glycyrrhiza glabra, and

Papaver somniferum, all of these are instant applied.1

Egyptian medicines (2900 BC), manuscript name is the “Ebers Papyrus” (1500 BC), more

than 700 treatments mostly based on plants and their formula like pills and ointment, with

milk, honey, beer, and wine being collectively used as means of transportations. The Chinese

Materia Medica (dated 1100 BC), and Indian Ayurvedic system (1000 BC), the following

system founded the origin for the initial documentation of Tibetan medicines.

In Western history, the Greeks added significantly to the progress of the application of herbal

medicines. The scientists and philosophers, in his plants records, showed the herbs medicinal

qualities, and modify their qualities through cultivation. Dioscorides, a Greek physician (100

AD), all through his activities among Romans soldiers all through later ‘known world’,

precisely documented the collected works, and application of herbal medicines, and is

believed by a lot of to be the good number of agent of the science of herbal medicines in

‘ancient times’. Galen (130-200 AD), applied, and educated about pharmacy and drugs in

Rome, and published approximately 30 books on the following topics, and famous for his

perceptions (containing dozen ingredients; galenicals) used in drugs.

Throughout the Dark and Middle time periods, from the fifth to the twelfth centuries, Ireland,

England, Germany and France saved the remnants of this Western understanding. On the other

hands, Arabs were accountable for the protection of Greeco-Romans knowledge, and for

expand it to comprise the application of their individual resources, along with Indians and

Chinese plants, which were unidentified to the Greeco-Romans World. In eighteen century,

initially, medicines stores were starts the Arabs, and the Persian pharmacist, philosopher, and

physician Avicenna works a lot in the field of science, pharmaceuticals and medicines, for

example Canon Medicinae, considered as ‘the concluding systematic form of the entire

Page 13: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

6

Greeco-Roman medication’. Afterward the complete collection of medicines, known as the

collection of simple text by Ibn al-Baitar, who practiced in Malaga for the time period of

Moorish profession of Spain.

In 1618 of the London Pharmacopoeia were arranged a lot of expertise, at any coast in the UK

by the publication and the idea of ‘pure’ compounds as medicines with the help of isolation

of the active chemical compounds and herbs namely atropine, morphine, strychnine, and

colchinine in the early 1800s. Ayurvedic system of medicines was made on the required rules

of nature and its elements after a vigilant and systematic study of human beings. The

advantage of herbal decoction is that it can maintain the body by maintaining many organ

system.2

Natural products are the active secondary metabolites with boundless varieties produced by

plants, bacteria, fungi and marine organisms. Plants products play a significant task in the

healthcare organizations of the remaining 20 % of the people, commonly live in developed

countries. Data study on dealing dispensed from pharmacies communities in the United State

showed that about 25 % plant extracts have active phytochemicals, which were obtained from

higher plants. Medicinal plants have long been an excellent source of pharmaceutical

representatives. Result oriented objectives of research plan are to discover and design new

chemotherapeutic representatives based on plant derived phytochemicals leads by using

medicinal chemistry approach, which is combination of chemistry and biology.3 Biologically

active natural products and their synthetic compounds, including quassinoids,

naphthoquinones, sesquiterpenes lactones, etc., will be presented with respect to their findings

and preclinical development as potential clinical trial candidates. Research approaches

containing bioactivity or mechanism of action-directed isolation and classification of active

chemical compounds, rational drug design based modification and compounds synthesis, and

structure activity relationship and mechanism of action studies.3-6 Isolation has been

performed as a result of several natural products has been obtained, from plants and other

organisms, and revealed to obtain strong physiological response in humans. Modern

pharmaceutical companies have been developed natural products as antifungal,

immunosuppressive, antibiotic and anticancer agents in addition to other medicines. Even

Page 14: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

7

though, several pharmaceuticals companies have ceased to follow up natural and synthetic

chemical constituents.

Pakistan is a developing country of South Asia, there is a need for represent concentration to

health as the perfect situation of psychological, physical, social, and spiritual workings of

human beings, additionally medicinal plants to relief human from diseases. Herbal decoctions

(various herbs) demonstrating positive results for healing are usually used in Ayurveda.

The research work performed for the doctor of philosophy dissertation, comprised of two

parts. One deals with the analysis and quantification of medicinally important essential oils

by gas chromatography-mass spectrometry methods while other describes the chemical

studies on O. dillenii.

Page 15: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

8

1 a) Newman, D. J., Cragg, G. M., Snader, K. M. (2000). The influence of natural

products upon drug discovery. J. Nat. Prod., 17, 215-234. b) Cragg, G. M., Grothaus,

P. G., Newman, D. J. (2009). Impact of natural products on developing new anticancer

agents. Chem. Rev., 109(7), 3012-3043. c) Hostettmann, K., Marston, A., (2007).

Plants as a still unexploited source of new drugs. Nat. Prod. Comm., 3(8), 1307-1315.

2 a) Jain, S., Gill, V., Vasudeva, N., Singla, N. (2009). Ayurvedic medicine in treatment

of cancer. J. Chin. Integr. Med., 7(1), 1096-1099. b) http://www.rsc. org/publishing/

journals cb/volume/2008/1/natural_remedies.asp

3 a) Lee, K-H., (2010). Discovery and development of natural product derived

chemotherapeutic agents based on a medicinal chemistry approach. J. Nat. Prod.,

73(3), 500-516. b) Dwight, D., Baker, M. C., Uma, O., Vineet, R. (2007). The value

of natural products to future pharmaceutical discovery. Nat. Prod. Rep., 24, 1225-

1244.

4 Newman, D. J., Cragg, G. M. (2007). Natural products as sources of new drugs over

the last 25 years. J. Nat. Prod., 70(3), 461-477.

5 Ghavami, G., Kazemali, M. R., Sardari, S. (2011). Informatics of drug synergism in

naturally occurring anticancer agents. Rec. patent anti-cancer drug discov., 6, 26-44.

6 Setzer, W. N., Setzer, M. C. (2003). Plant derived triterpenoids as potential

antineoplastic agents. Mini Rev. Med. Chem., 3, 540-556.

Page 16: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

9

Chapter 2

Biosynthesis

Page 17: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

10

A process in which simple substrates by using chemical energy (adenosine triphosphate; ATP)

and enzymes (catalyst) synthesizes complex products are called biosynthesis. Glucose is the

starting material in this process, while the complex molecules are formed including proteins,

vitamins and antibiotics. In this process one step product is the starting product of another step

whereas, many enzymatic steps are involved in these process. Amino acids, carbohydrates,

fats, proteins and nucleic acids are primary metabolites; while natural products are secondary

metabolites.1

During photosynthesis, solar energy, carbon dioxide and water are consumes in plants and

some bacteria, and glucose is produce. Respiration is a process, where glucose gives ATP,

which works as a fuel and provides energy to all living organisms. Glycolysis is a process in

which glucose, is divided into two compounds of pyruvic acid with the help of enzyme

catalyst. In multistep glycolysis process, several intermediates and amino acids consisting

acetyl coenzyme A (acetyl-CoA), deoxyxylulose-5-phosphate and shikimic acid are formed.

Several secondary metabolites have been synthesized through these intermediates

(originators) (Figure 1).1

The acetate pathway

Different catabolic routes have been used for the formation of pyruvate via glycolysis. In

plants and animals (aerobic organisms), oxidation takes place through elimination of its

carboxyl group as CO2, to acetyl group of acetyl-CoA; the acetyl group then oxidized

completely to CO2 by the citric acid cycle. The acetyl-CoA produced a large number of natural

products with polyketides, including fatty acids, lipids, sterols, terpenes etc. biosynthesis of

these compounds is called “Acetate Pathway” (Figure 2). 1

The polyketides pathway

Natural compounds produce in plants, fungi, and soil bacteria called as polyketides.2 These

secondary compounds are produce completely or partially from poly-β-keto methylenes chain

(CH2CO)n which get through the decarboxylative condensation of 2-, 3- or 4- carbon building

units like acetyl-CoA, propinoyl-CoA or butyryl-CoA.1a,b,2b Many enzymes have been

catalyzed the process of biosynthesis, polyketide synthases (PKSs), are the large multi

Page 18: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

11

CO2H2O

O

OH

OH

OH

OH

PO

O

OH

OH

OH

OH

HO

OH

OPO

OH

PO

OHC OH

NH2

CO2H

NH2

CO2H

HO

CO2H

OH

HO OH

PO

HO2C OH

SHIKIMIC ACID

NH

NH2

CO2H

HO2C OP

O OH

OP

OH

HO2C O

CoAS O

HO2C OH

HO

NH2

CO2HHO2C

HO2C

NH2

CO2H

HO2C

O

CO2H

O

CO2HHO2C

NH2

CO2HH2NNH2

CO2HH2N

Figure 1: The building blocks

GLYCOLYSIS

Polysaccharides

Glycosides

Nucleic acids

glucose 6-P

glyceraldehyde 3-P

3-phosphoglyceric acid

phosphoenolpyruvate

pyruvic acid

ACETYL-CoA

KREBS CYCLE

Oxaloacetic acid 2-Oxoglutaric acid

L-glutamic acid

L-ornithine

L-aspartic acid

L-lysine

DEOXYXYLULOSE 5-P

D-glucose

PENTOSE PHOSPHATE

CYCLE

erythose 4-P

PHOTOSYNTHESIS

h

L-phenylalanine

L-tyrosine

L-tryptophan

Phenols

Cinnamic acid derivatives

Lignans

Alkaloids

Phenylpropanoids

Aromatic compounds

MEVALONIC ACID

Isoprenoids

(Terpenes, Steroids,

Carotenoids)

Phenols

Prostaglandins

Macrolide antibiotics

Fatty acids

Polyketides

Isoprenoids

(Terpenes, Steroids,

Carotenoids)

Page 19: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

12

enzyme protein compounds, having the typical core of coordinated active sites. The PKSs

structures are similar to synthesis of fatty acid (FASs). These fatty acid synthase catalyzes the

pathways of fatty acids. Polyketides contain many structures, the common of these secondary

metabolites are formed by three large categories of polyketide synthases (PKSs) consisting

multienzyme type I, iterative type II and homodimeric type III PKSs, containing the same

mechanism having condensation reactions, which produces different kinds of aromatic

skeletons for example, chalcones and flavonoids etc. 2

From poly β-keto ester chain, polyketides are formed, it is composed of four acetates parts,

the reaction is start from one acetate unit, whereas remaining three acetates are used in their

activated malonoate structure as chain addition units, thus, the process is known as acetate

polymalonyl formation route (Figure 3). The poly-keto chain is stabilized on the surface of

enzyme, upto certain chain length limit, the cyclization or further reactions initiated,

commonly aldol or Claisen type reactions occour, these reactions depends on the enzyme

nature and the folding pattern of substrate. Several paths of cyclization proceed through β-

keto ester chain i.e. A-D (Figure 4) the aromatic polyketides are produced, orsellinic acid,

floroacetophenone and pyrones containing α- and β-pyrones.1a, b, 2, 3

Penicillium patulum, produces 6-methyl salicylic acid, when the loss of hydroxyl group at C-

4 position was performed, and produced, orsellinic acid. The enzyme 6-methyl salicylic acid

synthase with a cofactor NADPH, ketone moiety has been reduced to alcohol at triketide step,

and dehydration takes place for the loss of oxygen moiety. Later than aldol condensation,

enolization and ejection from enzyme, 6-methyl salicylic acid is produced. Through

enolization and ester formation triacetic acid lactone is formed (Figure 5), known as α-pyrone,

it may be the precursor of several other compounds. It is isolated from Gerbera hybrid.1a, b, 3

Different structure of the substrate moiety leads to the formation of a large number of natural

products e.g, when substrate is p-hydroxy cinnamoyl-CoA, condensation with three malonyl-

CoA units followed by aldol or Claisen type cyclization, flavonoid naringenin and a stilbene,

resveratrol have been produced (Figure 6).1a,b

Page 20: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

13

Biosynthesis of fatty acids

Fatty acids biosynthesis are same to polyketides, chain lengthening step in fatty acids pursued

by a fixed sequence of reduction of ketone group, then loss of water and enol reduction, while

in polyketide biosynthesis carbonyl group is not reduced and able to a definite chain length

limit cyclization performs, it provides a large number of secondary metabolites.1a,b,2b Enzyme-

bound thioesters of acetyl-CoA and malonyl-CoA have been used in the fatty acid

biosynthesis, this reaction performed with Claisen condensation i.e. the malonyl ester,

transfered the acyl carrier protein (ACP), giving acetoacetyl-ACP (β-ketoacyl-ACP), which

through NADPH, is stereospecifically reduced to the β-hydroxy ester. Later than dehydration

α,β-unsaturated ester is formed, a saturated fatty acyl-ACP has been produced by the help of

NADPH, in this reaction double bond has been reduction, with the addition of two carbon

atoms in the substrate. This is the lengthening in the fatty acids carbon skeleton are collected

in a reproducing series, till the required carbon skeleton is achieved. Fatty acid synthase

enzyme, is used in fatty acid biosynthesis1a-c,4(Figures 3-9).

Biosynthesis of terpenes

Terpenes are the main biosynthetic building blocks contained by nearly all living organisms.

They are wide class of natural compounds produced by plants and insects. The oxidized or

rearranged forms of terpenes are called as terpenoids (isoprenoids). Essential oils are formed

by terpenes and terpenoids.1a,d Isoprene units are the basic unit of terpenes, dimethylallyl

pyrophosphate (DMAPP), and isopentenyl pyrophosphate (IPP) are joined collectively into

head and tail approach producing simple chains or rings (after rearangement). The active

elements DMAPP and IPP are obtained through two routes the mevalonate independent

pathway and the mevalonate pathway via deoxyxylulose phosphate following the

intermediates mevalonic acid and deoxyxylulose 5-phosphate correspondingly produced

throughout glycolysis (Figures 1, 2). Formation of mevalonic acid (MVA) is the starting point

of mevalonic pathway by using the three units of acetyl-CoA. Through Claisen condensation

of two acetyl-CoA elements followed through stereospecific aldol addition of third acetyl-

CoA entity, a branched chain ester β-hydroxy-α-methylglutaryl-CoA (HMG-CoA) is

produced. The MVA (3R) is formed through the two-step reduction of thioester group of

HMG-CoA to primary alcohol, irreversible transformation and a rate determining

Page 21: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

14

2CO2

2 Acetyl-CoA

aerobic condition

4 CO2 + 4 H2O

Mevalonic acid Polyketides

Fatty acids

Lipids

Prostaglandins

Thromboxanes

Leukotrienes

Glucose 2 Pyruvate

Figure 2: Products of acetyl-CoA

Terpenes, sterols

-H2O

R

CO2H

CH2CO SCoA

RCH2 CH2CO

OHH

S ACP

RCH2

CO S ACP

NADPH

NADPH

CO2H

CH2CO S ACP

RCH2COCH2CO-S-ACP

RCH2CH2CH2CO

HSCoA

SCoA

RCH2CO

RCH2CH2CH2CO

CH3CO SCoA

S Enz

H2O

S ACP

RCH2CH2CH2CO2H

malonyl-CoA

acyl carrier protein (ACP)

malonyl-ACP

Claisen

reaction

acetyl-CoA

acyl-enzyme thioester

each turn of the cycle

extends the chain length of

the acyl group by two

carbons -keto acyl-ACPstereospecific

reduction of carbonyl -hydroxy acyl-ACP

E2 elimination of H2O

E

-unsaturated acyl-ACP

reduction of double bond fatty acyl-ACP

fatty acyl-CoA fatty acid

Figure 3: Biosynthesis of saturated fatty acids

Page 22: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

15

H3C C

O

SCoA

H3C C

O

CH2 C

O

SCoAH3C C

O

SCoA

CH2 C

O

SCoA

H2C

CO O

C

O

SCoA

H

CO2

CH3CO [CH2-C]n CH2COSCoA

O

Acetyl-CoA

Malonyl-CoA

Claisen

reaction

Acetoacetyl-CoA

Malonyl-CoA

CO2

repeat o f Claisen

reaction

Poly- -keto ester

Figure 3: Biosynthesis of poly-keto chain

Page 23: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

16

O

CoAS

CO2H

O

SCoA

O

CH3

OO

SEnz

O

H

O

O

SEnz

OO OH3C CH3

O

SEnz

O

CH3

O O

O

OEnz-S

O

O

CH3

O

SEnz

CH3O

OH

O

OH

SEnz

CH3

O

O O

O

O O

OH

H3C

O

SEnz

CH3O

O O

O

CH3

OO

O

CO2H

CH3HO

OH OH

CH3

OOH

HO

H2O

H2Ofolding

B

Poly- -keto ester (Tetraketide intermediate)

folding

A

3x

Malonyl-CoA

aldol reaction

enolization hydrolysis

Orsellinic acid

claisen reaction

enolization

Phloracetophenone

Figure 4: Biosynthesis of aromatic polyketides

Acetyl-CoA

folding

D

folding

C

Tetraketide -pyrone

-pyrone

Page 24: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

17

O

CH3CoAS

CO2H

O

SCoA

Enz-S

O O O

NADPH

O

O

O

SEnzO

H

O

SEnz

enolization then ester formation-H2O

O

O

SEnz

O

O

HO

triacetic acid lactone

Malonyl-CoA

O

O

SEnz

Oaldol

reaction

-H2O

O

SEnz

O enolization hydrolysis OH

CO2H

O

OH

O

poly- -keto ester (Triaketide intermediate)

folding

A

2x

Malonyl-CoA

Figure 5: Biosynthesis of 6-methylsalicylic acid and triacetic acid lactone - the polyketides

Acetyl-CoA

folding

D

6-Methyl salicylic acid

4 6 4

6

Page 25: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

18

OH

OH O

HO

OH

SCoA

O O

O

O

OH

HOR

OH

O

OOH

OH

OH

OH

O

SCoA

O

O

HO

OH

OH

R

OH

O

OH O

HO

NADPH

O

OH

HO

OH

OH

R

OH

OH

OH

O

O

HO

OH

R

O

OHO

OH

OH

R

OH

O

OH

HO

OH

OH

R

OH

NADPH

OHO

OH

OH

R

OH

+ 3 Malonyl CoA

(from acetate pathway)

R = H, naringenin

R = OH, ericodictyol

(flavanones)R = H, dihydrokaempferol

R = OH, dihydroquercetin

(dihydroflavonols)

R = H, kaempferol

R = OH, quercetin

(flavonols)

O2

2-oxoglutarate

R = H, apigenin

R = OH, luteolin

(flavones)

O2

2-oxoglutrate

Claisen

chalcone synthase

Naringenin-chalcone

O2

2-oxoglutarate

R = H, leucopelargonidin

R = OH, leucocyanidin

(flavandiols; leucoanthocyanidins)

R = H, afzalechin

R = OH, (+)-catechin

(catechins)

-2 H2O

R = H, pelargonidin

R = OH, cyanidin

(anthocyanidins)

Figure 6: Biosynthetic pathways of flavonoids

RR

R

R

R = H, 4-Hydroxy

cinnamoyl-CoA

Page 26: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

19

O

SCo-A

ATP ADPHCO3

NHN

S

O

Co Enz

O

O

NHHN

S

O

Co Enz

O

SCo-AO

O

O

SCoA

SH

CysACP

SH

NADPH

S

ACP

O OHH

SH

CysS

Cys

O

CH3 S

ACP

O O

SH

CysS

ACP

O

O

O

-H2O

S

Cys

O

S

ACP

O

SH

CysS

ACP

O

SH

Cys

SH

ACP

H2O

HO

O

Claisen condensation

( -hydroxyacyl dehydratase)

transfer

Figure 7: Biosynthesis of fatty acid

+

biotin

carboxylase

+Pi

transcarboxylase

acetyl-CoA

Malonyl CoA

+ Biotin enzyme

Malonyl transacylase

(Fatty acid synthase)

acetyl-CoA

-Hydroxy acyl-ACP -keto acyl-ACP

Fatty acyl-ACP

NADPH

enoyl reductase

--Unsaturated acyl-ACP

Biotin enzyme

Acetyl transacylase

( -ketoacyl synthase) -keto acyl

reductase

E

Fatty acid

Fatty acyl-CoA

Page 27: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

20

O

SCo A

O

SCo-AHO

O

SH

CysSP

ACP

O

SR

SR

O

O

SRHO

O

SR

O

SR

O

SR

OSR

O

SR

O

SR

O

SR

O

Acetyl-CoA Malonyl CoA

+

R = CoA in animals/fungi

R = ACP in plants

Oleate (18:1, 9)

desaturation

a-Linolenate (18:3, 9,12,15

)

Fatty acid synthase

( )

Palmitate (16:0)

desaturation

( )

Malonoate (elongation)

Stearate (18:0)

desaturation (in plants only)

-Linolenate (18:3, 6,9,12

)

Eicosatrienoate (20:3, 8,11,14

)

Eicosatetraenoate (Arachidonate) (20:4, 5,8,11,14

)

elongation/desaturation

elongation

desaturation

Polyunsaturated fatty acids

EPA (20:5, 5,8,11,14,17

)

DPA (22:5, 7,10,13,16,19

)

DHA (22:6, 4,7,10,13,16,19

)

Figure 8: Biosynthesis of saturated and unsaturated fatty acids

7

Linoleate (18 : 2, 9,12

)

desaturation

Palmitate (16:1, 9)

desaturation (in plants only)

9

11

9 12

9 12 15

9 12

9

9

6

8

11 14

8 5

11 14

Page 28: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

21

step. The MVA produced, by phosphorylation in the catalysis of two dissimilar ATP-

dependent enzymes, followed via dehydration/decarboxylation, providing IPP, IPP convert to

DMAPP isomer by an enzyme named as isomerase (Figure 10). The IPP and DMAPP are

appeared through deoxyxylulose 5-phosphate, the route, commonly used in nature known as

mevalonate independent route (Figure 11).1a,b,d Different classes of terpenes are given below:

Hemiterpenes (C5):

Isoprene unit is also called as hemiterpenes whereas, IPP and DMAPP are its active forms.

Monoterpenes (C10):

Two isoperene units join to form monoterpene. IPP and DMAPP combine via an enzyme

prenyl transferase to produce geranyl diphosphate (GPP). These are the intermediate of

monoterpenes geraniol, citronellol etc. (Figure 12).

Sesquiterpenes (C15):

Sesquiterpenes are formed through three isoprene units. C5 units (IPP) combine with GPP in

the presence of catalyst prenyl transferase gives sesquiterpene precursor farensyl diphosphate

(FPP), which directs to the formation of several sesquiterpenes e.g. bisabolene etc. (Figure

12).

Diterpenes (C20):

Diterpenes are formed with the combination of four isoprene units, more addition of C5 IPP

unit in FPP produces geranyl geranyl pyrophosphate (GGPP). Diterpene (phytol), gives the

lipophylic side chain of chlorophyll (Figure 12).

Sesterpenes (C25):

Sesqueterpenes are formed, when five isoprene units combine together. Further addition of

C5 IPP unit in GGPP to forms geranyl farnesyl pyrophosphate (GFPP) (Figure 12).

Page 29: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

22

OH

O

H

O

OH

-COOH

OH

O

O

O

OH

Fatty acids

Hydrocarbons

oxidase

Figure 9: Biosynthesis of other fatty compounds via fatty acids

( ) n

Fatty acids 1o

( ) n

Fatty aldehydes

( )n

( )n

Fatty alcohols 2o

( )n

Fatty acid

( )n +

( )n ( )n

( )n

Fatty alcohols

(1o or 2

o)

Fatty ester

reductase

Page 30: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

23

HH

SCoA

O O

SCoA

O

HO2C

OHO

SCoA

SCoA

O

SEnz

O

NADPH

HO2C

OH

OHO2C

OH

SCoA HO2C

OH

SCoA

OH

HNADPH

P

O

HO

OH

ADPH

ATP

-CO2

OPPOPP

HSHR

OH

OPP

O

HO

Claisen

reaction

Acetyl-CoA

EnzSH

+ EnzSH

HMG-CoA

Acetoacetyl-CoA

enzyme-bound

acetyl group

HMG-CoA

reductase

Mevalonic acid

(MVA)

1

23

4

56

Mevaldic acidMevaldic acid

hemithioacetal

2 x ATP

isomerase

12

3

4

5

Isopentenyl PP

(IPP)

Dimethylallyl PP

(DMAPP)

Figure 10: Biosynthesis of precursors of terpenes, IPP and DMAPP through mevalonate pathway

Stereo specific

aldol reaction

Page 31: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

24

OH

OPP

-H2O

OPP

OH

OH

OP

O

OH

OP

OH

OH

CTP

N SR

1

R2

NADPH

ONCH2

OHHO

N

NH2

OOP

O

OH

OP

O

OH

O

OH

OH

OH

NADPH

OH

OPP

N SR

1

CH3C

R2

O

H OH

OH

OP

-H2O

OH

OP

OH

O

OH OH

OPP

P

O

N P

OH

T

OPP

A

OH

OP

O

OH

NADPH

O

OH

OP

H

OH O

OPP

N SR

CH3C OH

R2

OH

R

OH

ONCH2

OHHO

N

NH2

OOP

O

OH

OP

O

OH

O

OH

O P

O

OH

OH

OH

CO2

O OH

OP

OH

H

P

O

P

OOOHO

O

OHOH

OHH

O

CO2H

Pyruvic acid

Thiamine PP

(TPP)

D-glyceraldehyde

3-P

TPP/pyruvate-derived

enamine

1-Deoxy-D-xylulose 5-P

TPP anion

regenerated

Fosmidomycin

1-Deoxy-D-xylulose 5-P2-C-Methyl-D-erythritol 4-P

-------------------------------------------- steps to be determined --------------------------------------------

isomerase

Dimethyl PP

(DMAPP) Isopentenyl PP

(IPP)

2-Phospho-4-(CDP)-2-C-methyl-D-erythriol4-(CDP)-2-C-methyl-D-erythritol

2-C-methyl-D-erythritol-2,4

-cyclophosphate

Figure 11: Biosynthesis of precursors of terpenes, IPP and DMAPP via mevolonate independent

pathway-deoxyxylulose pathway

Triterpenes (C30):

Page 32: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

25

Six isoprene units give triterpenes. C5 IPP unit combine together by tail-to-tail fusion of two

molecules of farensyl pyrophosphate (FPP), forming a (squalene) hydrocarbon, after

selectively oxidation to forms squalene oxide. Intermediates of squalene oxide have been fold

on the enzyme surface pursue through Wagner-Meerwein (W-M) migration of hydrides and

methyl gives many triterpenoids such as, α- and β-amyrins, cycloartenol, and lanosterol, etc.

(Figures 13, 14).

Tetraterpenes (C40):

Eight isoprene units combine together to form tetraterpenes, for example α- and β-carotenes,

and acyclic lycopenes.

Polyterpenes:

Long chain of isoprene units combine together to form polyterpenes e.g. natural rubber having

polyisoprene structure with cis double bond.1a, b, d

Biosynthesis of steroids

Lanosterol and cycloartenol are the examples of triterpenes (vide supra, Figure 13), it is the

starting material of sterols e.g. lanosterol produces the cholesterol (animals) while,

cycloartenol gives phytosterols for example, stigmasterol, β-sitosterol, etc. and also forms

cholesterol (plants) (Figure 15).1

Shikimate pathway

Shikimate pathway is a biosynthetic route of formation of aromatic compounds, particularly

the aromatic amino acids, namely L-tyrosine, L-tryptophan, and L-phenylalanine. Amino acids

play the role of starting material for a number of aromatic secondary metabolites, for example

flavonoids, alkaloids, indole acetate, phytoalexins, and lignins.1a,b,d,5 Shikimic acid is formed

by the aldol-type condensation of two intermediates of glycolysis (Figure 1), the D-erythrose-

4-phosphate and phosphoenol-pyruvate (PEP) giving 3-deoxy-D-arabino- heptulosonic acid 7-

phosphate (DAHP). 3-Dehydroquinic acid is formed by the intramolecular aldol condensation

of DAHP, which followed the routes of dehydration,

Page 33: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

26

OPP

DMAPP

OPP

OPP

HSHR

OPP

HSHR

OPP

OPP

OPP

HSHR

OPP

OPP

OPP

OPP

OPP

HR HS

OPP

IPPOPP

OPP

HSHR

IPP

E

Geranyl PP

(GPP)

Setp 1: Monoterpene precursor

Farnesyl PP

(FPP)allylic cation

Geranylgeranyl PP

(GGPP)

Geranyl PP

(GPP) allylic cation

Farnesyl PP

(FPP)

Setp 2: Sesquiterpene precursor

Setp 3: Diterpenes precursor

Geranylfarnesyl PP

(GFPP)

Figure 12: Biosynthesis of precursors of different classes of terpenes

Setp 4: Sesterpenes precursor

Geranylgeranyl PP

(GGPP)

Page 34: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

27

FPP

*PPO

FPP*

OPP

HH

*

*

OPP**

*

H*

H

*

H

H

*

H

H

HH

*

*

**

H

H

(NADPH)O2

NADPH

HOH

H

HH

H

O HOH

H

HH

HOH

H

H

HOH

H

sequence of W-M 1,2-hydride

and 1,2-methyl shifts

cyclizations

animals

fungi

plants loss of proton leads

to cyclopropane

Squalene

synthase

Allylic cationElectrophilic addition giving tertiary cation

Allylic cation

PresqualenePP

W-M

1,3 Alkyl shift

Squalene

Lanosterol Cycloartenol

Squalene oxideProtosteryl cation

loss of proton

gives alkene

Figure 13: Biosynthesis of triterpenes

Page 35: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

28

H

HO H

H

O

H

H H

H

H

O2

NADPH

H H

**

H

HO H

H

H

HH

HO H

H

H

H

HO H

H

H

H

HO H

H

H

H

HO H

H

H

H

HH

HO H

H

H

cyclizations

Squalene

Squalene oxideDammarenyl cation

Baccharenyl cation

Lupenyl cation

Oleanyl cation

W-M

1,2-alkyl shift

Oleanyl cation

W-M

1,2-methyl shift

Taraxasteryl cation

-Amyrin

-Amyrin

W-M

1,2-hydride shiftsW-M

1,2-hydride shift

Figure 14: Biosynthetic pathway of -and -amyrin triterpenes

W-M

1,2 alkyl shift

Page 36: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

29

HO

HOH

H

H

HO

HOH

HH

H

HO

H

H

H

Lanosterol

CycloartenolCholesterol

-Sitosterol Stigmasterol

Figure 15: Biosynthetic routes for steroids

Page 37: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

30

reduction, oxidation, and changes into shikimic and aromatic acids (Figure 16). The shikimic

acid is changed into chorismic acid, by more reaction with protonated PEP followed by

elimination of phosphoric acid. Under the process of Claisen rearrangement, chorismic acid

in the presence of catalysis of enzyme chorismate mutase, transforms into prephenic acid,

following many routes to offer aromatic amino acids L-tyrosine (L-Tyr) and L-phenylalanine

(L-Phe) (Figure 17). L-Tryptophan is also attained by chorismic acid via anthranilic acid as

intermediate. The amino acids L-Phe and L-Tyr are the forerunners of large number of aromatic

secondary metabolites (Figure 18).1a,b

Biosynthesis of flavonoids

Flavonoids belong to secondary metabolites, play vital character in plant like flowers color,

auxin transport inhibition, allelopathy, defense, and UV protection. Flavonoids having several

pharmacological activities like antibacterial, anti-inflammatory, antioxidant, antitumor, and

anti-proliferative.6 Polyketide (acetate) and shikimic acid pathways unite to form flavonoids.

Shikimic acid gives cinnamoyl-CoA (vide supra, Figure 18), merges with three malonyl-CoA

units in the presence of enzyme chalcone synthase producing a polyketide which by aldol or

Claisen condensation gives chalcone precursor for many flavonoids (Figure 6).1a,b,d

Glycosylation of natural products

Several secondary metabolites having glucose (O-, N-, S- and C-glycosides) and

polysaccharides are present in nature. All these glycosides are formed through glycosylation

reaction via a compound, uridine diphospho sugar (UDP glucose), which is formed in nature

from UTP and glucose 1-phosphate (Figure 19).1a

Page 38: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

31

CO2H

OP

H

O

OP

HO

OH

CO2H

OHHO

OH

H

NADPH

CO2H

OHO

OH

CO2H

OH

H

OH

OH

POO

DAHP

- H2O

NAD

HO

OHO

OH

CO2H

H

CO2H

OH

OH

- H2O

O

OH

OHHO

CO2H

CO2H

OHOH

OH

NADH

HO

OHHO

OH

CO2H

PEP

D-Erythrose 4-P

- HOP

Shikimic acid 3-Dehydroshikimic acid Quinic acid3-Dehyroquinic acid

dehydration and

enolization

- 2H

oxidation and

enolization

Gallic aicdProtocatechuic acid

aldol-type

reaction

Aldol type

reaction

Figure 16: Biosynthetic pathway of shikimic acid and other aromatics

Page 39: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

32

CO2H

OHHO

OH

AT P

CO2H

OHPO

OH

H

PO CO2H

CO2H

O

OH

O

CO2H

O

OH

CO2H

OH

O

H

NAD

PLP

-HOP

CO2H

O

OH

CO2H

NH2

OH

CO2HO

HO

CO2H

OPO

OH

HHH

OPCO2H

CO2H

OPO

OH

CO2H

CO2H

NH2

-HOP

CO2H

NH2

OH

NAD

Shikimic acid Shikimic acid 3-P

EPSP synthase

EPSPChorismic acid

Figure 17: Biosynthesis of amino acids L-phenyalanine (L-phe) and L-tyrosine (L-tyr) via skikimic acid

Phenyl pyruvic acid

4-Hydroxyphenyl pyruvic acid

L-phe

L-tyr

L-arogenic acid

PLP

PLP

Prephenic acid

Page 40: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

33

NH2

CO2H

O2

NADPH

CO2H

O2

NADPH

O2

NADPHSAM

CO2H

OH

MeO OMe

SAM

CO2H

OH

MeO

CO2H

OH

MeO OH

CO2H

OH

HO

NH2

CO2H

OH

CO2H

OH

CH2OH

OH

MeO OMe

CH2OH

OH

MeO

CH2OH

OH

H2O

NAD+

CO2H

OH

R

HOCHO

OH

R

CO2H

OH

R

reverse

aldol

Figure 18: Biosynthesis of several aromatic compounds through amino acid L-Phenylalanine (L-Phe)

L-Phe

PAL

Cinnamic acid

hydroxylation

L-Tyr p-Coumaric acid

sequence of hydroxylation and methylation reaction

Caffeic acid Ferulic acid Sinapic acid

p-Coumaryl alcoholConiferyl alcohol

Sinapyl alcohol

Page 41: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

34

O

OHOH

H2C N

O

OO

OP

O

OP

O

OHOH

OHO

HOOH

OH

N

O

OOH2C

HO OH

OP

O

OH

OP

O

O

OH

O

OH

OH

HOHO

OHO

HO

OPOH

OHUTP

O

OH

OH

O

HO

OHO

HO

OPOH

H

OH

UTP OHO

HO

OHOR

OH

UDP

O

OH

OH

O

HO

OOH

HOOH

HO

-H+

UDP+

UDP glucose

Glucose 1-P

UDP glucose

O- -D - glucoside

Figure 19: Glycosylation in nature

Glucose 1-P

+

ROH SN2 reaction

C-glucosidation

O-glucosidation

Oreintin

(Luteolin-8-C-glucose)

Page 42: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

35

References

Page 43: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

36

1 (a) Dewick, P. M. (2002). Medicinal Natural Products, A biosynthetic approach, 2nd

Edition, John Wiley and Sons, Chichester, UK. (b) Barton, S. D. (1979).

Comprehensive Organic Chemistry, vol. 5, Pergamon Press, New York. (c) Nelson,

D. L., Cox, M. M. (2003). Lehninger principles of biochemistry, 3rd Edition, Worth

Publishers, New York, (d) http://en.wikipedia.org

2 (a) Jeong, J-C., Srinivasan, A., Grüschow, S., Bach, H., Sherman, D. H., Dordick, J.

S. (2005). Exploiting the reaction flexibility of a type III polyketide synthase through

in vitro pathway manipulation. J. Am. Chem. Soc., 127, 64-65. (b) S-Wörgötter, E.

(2008). Metabolic diversity of lichen-forming ascomycetous fungi: culturing,

polyketide and shikimate metabolite production, and PKS genes, Nat. Prod. Rep., 25,

188-200. (c) Gokhale, R. S., Saxena, P., Chopra, T., Mohanty, D. (2007). Versatile

polyketide enzymatic machinery for the biosynthesis of complex mycobacterial lipids.

Nat. Prod. Rep., 24, 267-277. (d) Thomas, R. (2004). Biogenetic speculation and

biosynthetic advances. Nat. Prod. Rep., 21, 224-248. (e) Rawlings, B. J. (1999).

Biosynthesis of polyketides (other than actionomycete macrolides). Nat. Prod. Rep.,

16, 425-484. (f) Rawlings, B. J. (1997). Biosynthesis of polyketides. Nat. Prod. Rep.,

14, 523-556. (g) Eckermann, S., Schröder, G., Schmidt, J., Strack, D., Edrada, R. A.,

Helariutta, Y., Elomaa, P., Kotilainen, M., Kilpeläinen, I., Proksch, P., Teeri, T. H.,

Schröder, J. (1998). New pathway to polyketides in plants. Nature, 396, 387-390.

3 (a) Goel, A., Ram, V. J. (2009). Natural and synthetic 2H-pyran-2-ones and their

versatality in organic synthesis. Tetrahedron, 65, 7865-7913. (b) Eckermann, C.,

Schröder, G., Eckermann, S., Strack, D., Schmidt, J., Scheider, B., Schröder, J.

(2003). Stilbenecarboxylate biosynthesis: a new function in the family of chalcone

synthase-related proteins. Phytochemistry, 62, 271-286. (c) Eckermann, C., Matthes,

B., Nimtz, M., Reiser, V., Lederer, B., Böger, P., Schröder, J. (2003). Covalent

binding of chloracetamide herbicides to the active site cysteine of plant type III

polyketide synthases. Phytochemistry, 64, 1045-1054.

Page 44: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

37

4 (a) Bernard, J. (1998). Biosynthesis of fatty acids and related metabolites. Nat. Prod.

Rep., 275-308. (b) Buist, P. H. (2004). Fatty acid desaturases: Selecting the

dehydrogenation channel. Nat. Prod. Rep., 21, 249-262. (c) Rashotte, A. M., Jenks,

M. A., Feldmann, K. A. (2001). Cuticular waxes on eceriferum mutants of

Arabidopsis thaliana. Phytochemistry, 57, 115-123. (d) E Fahy, S Subramaniam, H A

Brown, C K Glass, A H Merrill, R C Murphy, C R Raetz, D W Russell, Y Seyama,

W Shaw, T Shimizu, F Spener, G Meer, M S VanNieuwenhze, S H White, J L

Witztum, E A Dennis. (2005). A comprehensive classification system for lipids. J.

Lipid Res., 46, 839-861.

5 (a) Herrmann, K. S. (1995). The shikimate pathway as an entry to aromatic secondary

metabolism. Plant Physiol., 107, 7-12. (b) Knaggs, A. R. (2003). The biosynthesis of

shikimate metabolites, Nat. Prod. Rep., 20, 119-136.

6 (a) Buer, C. S., Imin, N., Djordjevic, M. A. (2010). Flavonoids: New roles for old

molecules. J. Integ. Plant Biol., 52(1), 98-111. (b) Crozier, A., Jagnath, I. B., Clifford,

M. N. (2009). Dietary phenolics: Chemistry bioavailability and effects on health. Nat.

Prod. Rep., 26, 1001-1043. (c) Veitch, N. C., Grayer, R. J. (2008). Flavonoids and

their glycosides, including anthocyanins. Nat. Prod. Rep., 25, 555-611.

Page 45: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

38

Part A

Analysis and quantification of medicinally important

essential oil by mass spectrometry method

Page 46: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

39

Chapter 3

Introduction

Page 47: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

40

Ixora chinensis Ixora coccinea

Ixora fulgens Ixora polyantha

Ixora coccinea

Page 48: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

41

3.1. Ixora species

3.1.1. Ixora coccinea Linn.

Ixora coccinea Linn. a time-honored medicinal plant commonly known as ‘jungle geranium’

and flame of wood or vethi in ayurvedha. It belongs to member of Rubiaceae family and found

in the tropical and subtropical areas of all over the world. It is cultivated throughout India as

an ornamental plant. There are more or less 400 species of Ixora genus, only some are

cultivated. I. coccinea is a shrub with dense, long multi-branched, twigs compressed, and thick

at nodes, generally 4-6 ft but in able of reaching 12 ft height. Leaves of Ixora are coriaceous,

from 2 cm to 6 inches in length, sessile or sub-sessile, oblong, and obtuse. The flowers appear

in clusters, which are produced at the end of branches. Each cluster may contain upto 60

individual flowers. The flowers is very small in size and tubular, with four petals.1

A. Pharmacological importance

I. coccinea is widely used in ayurvedic purposes, pharmacological studies have shown that

the plant of I. coccinea have been used in the treatment of antimicrobial, antibacterial,

antifungal, antioxidant, analgesic, cytotoxic, sedative, stomachic, fever, CNS depressant,

gonorrhea, antiseptic, dysentery, headache, sores, and chronic ulcer diseases. It has been

reported to possess many medicinal properties like hepatoprotective, chemoprotective,

antinociceptive, antiasthematic and hypolipidemic activities. The plant extracts have been

reported in the treatment of astringent, anti-mitotic, anti-inflammatory, tuberculosis, wound

healing, skin diseases, cardiovascular and antimutagenic properties. Different parts of the

plants have been used in the medication of dysmenorrheal, heamoptysis, catarrhal bronchitis,

blood diseases, anti-leucorrhoea, anti-diarrhea, anti-catarrhal, antigenotoxic and chemo

protective activities.1-16

B. Phytochemical importance

The plant is a rich source of bioactive chemical constituents with potential therapeutic

activities. Phytochemical studies revealed that the plant contains important class of

compounds including alkaloids, amino acids, carbohydrates, fatty acids, flavonoids,

glycosides, proteins, resin, saponins, steroids, tannins and terpenoids (Table 1).1,3e,17-25

Page 49: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

42

3.1.2. Ixora chinensis

I. Chinensis Lam. commonly known as Chinese Ixora, belongs to family Rubiaceae, more

than 500 species of this family have been found all over the world. It is a shrub or a small tree

native to China, Thailand and commonly found in Pakistan. Most of the species are usually

utilized as decorative plant in gardens. Leaves have small stalked, obviate, oblong, waxy, 6-

10 cm in length, pointed at both ends and borne on short petioles. Flowers are compactly

organized with 4 pink color petals. The genus Ixora has been reported to possess different

classes of compounds, including amyrins, fatty acids, aromatic acids, flavonoids, oils, tannins,

saponins, carbohydrates, triterpenoids, and sterols which were described in Table 2.26-28

A. Pharmacological importance

I. chinensis plant have been used in several medicinal purpose like antimicrobial, antibacterial,

antiaging, antioxidant, hepatoprotective, chemoprotective, antinociceptive, antimitotic,

antiinflammatory, antitumor and anticancer diseases. It is usually used in traditional system

of medicines, like liver diseases, spasmolytic, antiallergic, antihistaminic, and mental

diseases. Different parts of the I. chinensis have been used in the medication of skin diseases,

dizziness, headache, gout, hemorrhoids, melanosis, juindice, tuberculosis, chronic bronchitis,

facial paralysis, and lowering blood pressure. Moreover, several medicines have been

prepared for the treatment of digestion problems, tonsillitis, stomachache, kidney stones and

gastric ulcer. Furthermore, Chinese medicines have been prepared for the treatment of

dysmenorrhea and trigeminal neuralgia.29-38

B. Other uses

Anthocyanins are natural colorants which have increased a cultivating interest due to their

wide variety of colors and valuable health effects, assessment of anthocyanins have been

performed in red and blue color flowers. Extraction and stability of red pigment from I.

chinensis Lam and the preparation and uses of all kinds of new pigment in food products,

shampoo, and cosmetics etc. have been prepared and reported in literature.39

Page 50: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

43

Table 1: Isolated chemical constituents from Ixora coccinea

S.

No.

Compounds Molecular

formula

Molecular

weight

Parts of

plant

References

Alkyl Esters

1 2,3-Dihydroxy propyl eicosanoid acid C23H46O4 386 Leaves 1g

2 Di-n-octyl phthalate C24H38O4 390 Root 25a

Coumarins

3 Scopoletin C10H8O4 192 Leaves 1g

4 Caumarin C9H6O2 146

5 Erythro 1,2-albiflorin C16H18O5 290

Diterpenoids

6 16α-Hydroxy-19-acetoxy-(-)-kauran-

17-oic acid

C22H35O4 363 Leaves 1g

7 16α-Hydroxy-19-ol-(-)-kauran-17-

oic-acid

C20H32O3 320

Fatty Acids

8 Oleic acid C18H34O2 282 Root,

root bark

1d, 4i, 6d,

12b 9 Linoleic acid C18H30O2 278

10 Myristic acid C14H28O2 228

11 9,12-Octadecadienoic acid C18H34O6 276

12 Palmitic acid C16H32O2 256

13 Stearic acid C18H36O2 284

Flavonoids

14 Ixoratanin A-2 C45H36O18 864 Leaves 6d, 16b

15 Procyanidin A-2 C30H24O12 576

16 (+) Catechin C15H14O6 290

17 (-)-Epicatechin C15H14O6 290

18 Kaempferol C15H10O6 286

19 Kaempferol-7-O- α-L-rhamnoside C21H20O10 432

20 Kaempferol-3-O-α -L-rhamnoside C21H20O10 432

21 Kaempferol-3,7-O- α-L-dirhamnoside C27H30O14 578

Page 51: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

44

22 Quercetin-3-O-α-L-rhamnopyranoside C21H20O11 448

23 Luteolin C15H10O6 286

24 Kaempferitin C27H30O14 578 Root 6d, 16b

25 Kaempferol-7-O-glucoside C21H20O11 448

26 Quercetin C15H10O7 302

27 Cyanidin-3-glucoside C21H21O12 610 Flowers 1d, 1h

28 Delphinidine-3-glucoside C21H21O12 465

29 Rutin C27H30O16 610

30 Kaempferol-3-rutinoside C27H30O16 595

Peptides

31 Ixora peptide I C30H32O5N2 500 Leaves 6d

32 Ixora peptide II C31H42O4N4 534

Quinones

33 1,4-Dihydroxy-3-methyl-

anthraquinone

C14H8O4 240 Leaves 6d

34 α-Tocopherol C29H50O2 430

Steroids

35 Stigmasterol C29H48O 412 Leaves 6d

36 6 β-Hydroxy-stigmast-4-en-3-one C29H48O2 428

37 β-Sitosterol C29H50O 414 Flower,

Leaves

4h, 6d

Steroidal Glycosides

38 Stigmast-5-en-3-O- β-D-glucoside C35H61O6 577 Flowers 1l, 6d

Sugars

39 D-Mannitol C6H14O6 182 Root,

rootbark,

leaves

4h, 4i

Tannins

40 5-O-Caffeoyl quinic acid C6H14O6 354 Flowers 1l

41 Cinnamtannin B-1 C6H14O6 864 Leaves 5e

Terpenoids

Page 52: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

45

42 21,23-Epoxy-tirucall-7-en-3β-ol

(ixoroid)

C30H50O2 442.3 Flowers 1l

43 Ursolic acid C30H48O3 457 6d, 49

44 α- Amyrin C30H50O 426 1d, 5d

45 17β-Dammara-12,20-diene-3β-ol

(ixorene)

C30H50O 354 Leaves 4h, 5d, 6d

46 Lupeol C30H50O 426

47 3-Acetyl betulinic acid C32H50O4 498

48 Betulinic acid C30H48O3 456

49 3-Acetyl ursolic acid C32H50O4 498

50 Oleanic acid C30H48O3 456

51 β - Amyrin C30H50O 426 Roots 12b

Page 53: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

46

Table 2: Isolated chemical constituents from Ixora chinensis

S.

No.

Compounds name References

1 Rutin 27a

2 Kaempferol 27a

3 Quercetin 27a

4 Formononetin 27a

5 Catechin 27a

6 Kaempferitrin 27a

7 Rubiothiagepine 27a

8 Oleanolic acid 27a

9 β-sitosterol 28b

11 D-Mannitol 28b

12 Steric acid 28b

13 (10E)-9-Oxooctadec-10-en-12-ynoic acid 28b

14 Azelic acid 28b

15 Dihydromasticadienoic acid 28b

16 Ixorene 27a

17 Ixoric acid 28c, 28d

18 Crepenynic acid 28c, 28d

19 Ixoroside 28e

20 Ixoside (7,8-dehydroforsythide) 28e

Page 54: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

47

Ipomoea batata blackie

Ipomoea batata pink frost

Page 55: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

48

3.2. Ipomoea batatas (Ornamental sweet potato)

The genus Ipomoea with approximately 500-600 species was considered the large genus

within the Convolvulaceae family, its looks climbing woody, twining, and herbaceous plants

that commonly have funnel-shaped flowers and heart-shaped, leaves. The genus Ipomoea

arises in the warm areas of the world although a number of species were found in moderate

regions. The species are frequently scattered all through central and the south America, and

tropical Africa countries and consumed almost all over the world. Decorative sweet potato

have many types consisting 'Blackie' and 'Black Heart' with reddish-purple-black plants and

'Tricolor' or 'Pink Frost' is spotted with violet-pink and blush in colors with smaller roots.

A number of species of the genus Ipomoea, as well as, of the Convolvulaceae family have the

property of phytotoxicity, which means suppressing the growth of other plants consisting

invasive weeds. The genus Ipomoea has been used traditionally for diverse reasons, for

example, nutritional, medicinal, and agricultural purposes. The plant is used as antimicrobial,

antifungal, nematicidal, antimutagenic, anticarcinogenic, inflammatory and anticancer

diseases. They also possess antioxidant, analgesic, spasmolitic, spasmogenic, hypotensive,

hepatotoxicity and trypsin inhibitor activity. The plant has been used in the dealing of asthama,

diabetes, infections, prostatitis, anaemia, hypertension, allergies, aging, HIV and

cardiovascular diseases.

The phytochemistry of the Ipomoea genus has been examined as a result of different class of

compounds have been identified namely, alkaloids, coumarins, isocoumarins, diterpenes,

benzenoids, flavonoids, phenolics compounds, norisoprenoids, lignins, glycolipids and

triterpenes.40

3.2. 1. I. batata blackie

The plant I. batatas Lam. (blackie), commonly called “sweet potato” belongs to the family

Convolvulaceae, is a famous ornamental plants. This tender tuberous perennial with heart-

formed, lobed, leaves are black in color, flowers are bears trumpet-shaped lavender to pale

purple in color. Plant stems have thin shaped with light green and purple in color. Leaves

appear alternate heart shaped, palmate lobed leafy vegetable. The plant has good appearance,

Page 56: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

49

fast growth rate and high size. I. batata blackie plant has several biological and chemical

properties. It is the World’s most significant multipurpose food crop with greater than 133

million ton in annual production. I. batata plant have several medicinal importance, it has

been used in the treatment of cardiovascular diseases, anticancer, anti-bacterial,

anticarcinogenic, fever, tumor, asthama, burn, nausea, and stomach problems. The plant have

been used in the healing of aphrodisiac, laxative, antihyperglycemic, antidiabetes, and

hypertension. Phytochemical studies on I. batata showed that the plant contains important

class of compounds including aromatic compounds, terpenes, vitamins, hydrocarbons, fatty

acids and their esters, terpenes, and anthocyanins. The purple color of sweet potatoes are due

to the presence of anthocyanin. The total antioxidant activity of purple fleshed sweet potatoes

were higher.41-51

3.2. 2. I. batata tri-color pink frost

This sweet potato vine is blessed with leaves that are edged in pink. Use it in pots, like

groundcover, in beds and borders.42a-d

3.3. Cassia fistula

C. fistula is a very common Indian tree belongs to family Fabaceae usually known as “Golden

Shower Indian Laburnum.” It is indigenous plant to India, Sri Lanka, Mexico, China, South

Africa, West Indies and Brazil. It is a semi wild, medium deciduous tree with trunks consisting

of greenish grey smooth bark, when young hard reddish wood, attain a height of 40 feet. The

flowers are bright yellow in color and occur in clusters, the fruit is cylindrical pod and pulpy.

Seeds are described as flattish brown. Whole plant has been reported for its pharmacological

potential, so, it is called “disease killer”.52,53

A.Pharmacological importance

Medicinal plants have great significance for the treatment of diseases. Over the years,

scientists have understood the importance of active chemical constituents, which showed the

pharmacological properties of the plants. C. fistula is usually known for its antimicrobial,

antifungal, antibacterial, antioxidant, analgesic, anticancer, anti-tumor, anti-inflammatory

properties. The plant also possess anti-psoriatic, antipyretic, anti-malarial, hypolipidemic,

anti-diabetic, hepatotoxicity, anticonvulsant, antileishmanial and anthelmintic activities. It

Page 57: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

50

Cassia fistula tree

Cassia fistula flower

Page 58: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

51

has been used in the treatment of hypoglycemic, constipation, cardiac problems, dyspepsia,

fever, asthama, liver, stomach, kidney and skin diseases. The plant was widely used in the

medication of burns, diahorrea, facial paralysis, and leucoderma. It is also known to treat

intestinal disorders, hepatoprotective, jaundice, anti-cholesterol, antiulcers, antifeedant and

larvicidal activities. Nanoparticles have been synthesized by using the plant extracts and their

pharmacological activities have been studied. 53-79

B. Phytochemical importance

Several class of compounds have been isolated from the entitled plant named as alcohols,

alkaloids, amino acids, anthraquinones, carbohydrates, chromenes, fatty acids, flavonoids,

minerals, lectin, phenolic compounds, steroids, saponins, terpenoids, volatile oils, and

tannins.81-99

Alcohols:

Ethanol, 1-hexacosanol,1-octacosanol, 1, 2, 3-propanetriol 1-acetate were found in the stem

bark of the plant.80

Aldehydes:

Acetaldehydes and 2,4-dihydroxy benzaldehyde have been identified from different parts of

C. fistula.81

Alkaloids:

Fistulatins A and B, fistulalkaloid A (Isoquinoline); and 2-(2-hydroxyethyl)-5-methyl-6-

prenylisoindolin-1-one, (isoindole) and pyrrolidone have been identified as important plant

constituents.54a,82,56f

Amino acids:

Aspartic acid, asparaginine, β-alanine, arginine, leucine, methionine, phenylalanine,

tryptophan, glutamic acid were identified from different parts of the plant.83

Page 59: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

52

Anthocyanins:

Cyanidin-3-O-galactoside, and petunidin-3-O-glucoside were isolated from C. fistula.84

Anthraquinones:

Rhein (1), 6-Methylrhein, 1,3,8-trihydroxy-6-methylanthraquinone, N,N'-bis(1-

methylethyl)-6-chloro-4-phenyl-2-propylquinoline, benzoquinoline 2,4-di-methyl-,

chrysophenol (2), physcion (3), 7-methylphyscion, fistulic acid (4), 3-formyl-1-hydroxy-8-

methoxy anthraquinone (5), sennoside A (6) and B (7), 8-O-D-glucopyranosyl-1-hydroxyl-3-

methyl-anthraquinone (8) were identified from various parts of the entitled plant.

Cassiquinone A, aloe-emodin, 1,3-dihydroxy-2-methyl-5,6- dimethoxy anthraquinone, fistula

quinone A, 9,11-dihydroxy-2-(hydroxymethyl)-5-methyl-4H-naphtho [2,3] chromene-4,7,12-

trione, 9, 11-dihydroxy-2,5-dimethyl-4H-naphtho[2,3]chromene-4,7,12-trione, 4-dodecyl-

1,3,8-trihydroxyanthraquinone, hexacosanoyl quinate, 7, 12-dimethyl benzanthracene, 1,8-

dihydroxy-6-methoxy-3-methyl anthraquinone, 1,8-dihydroxy-3-methyl anthraquinone,

bianthraquinone have been isolated from C. fistula. 1,3-Dihydroxy-6,8-dimethoxy-2-

isoprenyl anthraquinone and 3-formyl-1-hydroxy-8-methoxy-anthraquinone have been

identified from the entitled plant.52,56c,80b,d,81b,86

Aromatic compounds:

Isovanillic acid, vanillic acid, salicyl alcohol, and 4-hydroxybenzyl alcohol have been

identified from the plant of C. fistula.81b

Carbohydrate:

Inisitol, galactose, mannose, epimelibiose, galactomannobiose, mannobiose, manno- tetraose,

mannopentaose and mannohexaose have been isolated from the plant.87

Carbonyl Compounds:

2-Hentriacontanone (21), 2-hexadecanone (22), 5-nonatetracontanone (23), heptacosanoic

(24), nonacosanoic (25), and triacontanoic acids (26), 5(2) hydroxyl phenoxy methyl furfural

(27), benzyl-2-hydroxy-3,6-dimethoxy benzoate (28), benzyl 2β-O-D-glucopyranosyl-3,6

Page 60: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

53

dimethoxy benzoate (29), heptacosyl eicosanoate, 5-nonatetracontanone and 2-hentriacontan-

one have been identified from the plant.88

Caumaurin:

Isoscopoletin and scopoletin have been identified from the C. fistula.89

Chromones:

Fistucacidin (17), 7-hydroxy-5-hydroxy methyl-2-(2'-hydroxypropyl) chromone (30),

fistulain A (31), and B (32), 8-hydroxy-2-(3-hydroxypropanoyl)-5-(2-oxopropyl)-4H-

chromen-4-one,2-(2-hydroxyethyl )-7-methoxy-5-(2-oxopropyl)-4H-chromen-4-one, 2-(3-

hydroxypropanoyl)-8-methoxy-5-(2-oxopropyl)-4H-chromen-4-one, 6-methoxy-3-methyl-8-

(2-oxopropyl) benzooxepin-5(2H)-one, 5-hydroxy-2,2-dimethyl-7-(2-oxopropyl)-2,3-

dihydrochromen-4-one, 8-methoxy-2,2-dimethyl-7-(2-oxopropyl)-2,3-dihydro chromen-4-

one, 5-methoxy-2,2-dimethyl -7-(2-oxopropyl)-2,3-dihydrochromen-4-one, 5-methoxy-2,2-

dimethyl-8-(2-oxopropyl)-2,3-dihydrochromen-4-one,1-(3,4-dihydro-5-methoxy-2,2-dimeth

yl-2H-chromen-7-yl) propan-2-one, 7-hydroxy-2-(2'-hydroxy propyl)-5-methylchromone,

2,5-dimethyl-7-hydroxychromone, and 2,5-dimethyl-7-methoxy chromone have been isolated

from various parts of the plant of C. fistula.86a,u,89,90

Essential oil:

Eugenol, phytol, camphor, 1,8-cineole, limonene, linalool, nerolidol, and 2-hexadecanone

have been identified from the essential oil of the plant.81a,92

Fatty acids and their esters:

2-Propenoic acid, octanoic, palmitic, stearic, oleic, linoleic, linolenic, myristic, myristoleic,

arachidonic, behenic acids and heptacosyl eicosanate have been identified from different parts

of the C. fistula.54a,86r,u,93

Flavonoids

Kaempferol (9), kaempferol-3-O-glucoside, kaempferol 3-neohesperidoside, (+)

epiafzelechin (10), (-) epiafzelechin (11), epiafzelechin-3-O-glucoside, procyanidin B2 (12),

catechin (13), epicatechin (14), naringenin, flavanol, quercetin, rutin, hesperidin, rhamnetin-

Page 61: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

54

3-O-gentiobioside (15), rhamnetin 3-O-β-D-glucopyranosyl-(1→6)-β-D-glucopyranoside,

5,7,3',4'-tetrahydroxy 6,8-dimethoxy flavone-3-O-α-arabinopyranoside, biochannin A, fistula

flavonoids B and C; 5,7,4'-trihydroxy-6,8,3'-trimethoxyflavone-3-O-α-L-rhamnosyl (1→2)-

O-β-D-glucopyranoside; 1,8-dihydroxy-3,7-dimethoxyxanthone-4-O-α-L-rhamnosyl (1→2)-

O-β-D-glucopyranoside, and 3-neohesperidoside have been identified from different parts of

C. fistula plant.56a,d,58f,84,85,94a-e

Glycerols:

Glycerol-1-tetra-eicosanoate, glycerol-1-penta-eicosanoate, tri-myristin, and glyceryl tri-

linoleate have been isolated from the entitled plant. 80c,94g

Heterocyclic compounds:

Ascorbic acid (vitamin C), 2(3H)-furanone, naphtho [1,2] furan, 2,9-dihydroxy-7-methoxy-4-

methyl naphtha [1,2] furan-3(2H)-one, 5-(2-hydroxyphenoxymethyl) furfural (27) and 5,6-

dihydroxyisoaurone-4'-O-β-D-glucoside have been identified from different parts of C.

fistula.53b,54a,58b,86u,95

Hydrocarbons:

Glyceryl-1-tetracosanoate, heptacosanyl-5-hydroxypentadec-2-enoate, and octacosan-5,8-

diol were isolated from the entitled plant.96

Minerals:

Minerals namely K, Na, P have been identified from C. fistula.86l

Phenolic Compounds:

Vanillic acid, cinnamic acid, gallic acid, benzofuran 2,3,dihydro-2-methoxy-4-vinylphenol,

3-(4-hydroxyphenyl)-methyl ester, phenolic amide, 3-(3,4-dihydroxyphenyl)-N-[2-(4-

methoxyphenyl)-2-oxoethyl]-prop-2-enamide, benzyl 2-hydroxy-3,6-dimethoxy benzoate

(28), benzyl 2β-O-D-glucopyranosyl-3,6-dimethoxy benzoate, and dibenzyl 2,2'-dihydroxy-

3,6,3'',6''-tetramethoxy-biphenyl-1,1'-dicarboxylate (I), have been identified from the plant.

86u,87b, 97a-d

Page 62: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

55

Steroids:

β-sitosterol (16), β-sitosterol-3-O-β-glucopyanoside, stigmasterol, ergosterol, lupeol, β-

amyrin, friedelin, daucosterol, aurantiamide acetate, fucosterol, and 28-isofucosterol were

isolated from different parts of the C. fistula.54a,69,80c,86r,87b,94d,98

Terpenes:

Lupeol (19), nerolidol (20), 3β-hydroxy-lup-20(29) en-28-oic acid, and 3β-17-norpimar-8(9)-

en-15-one were identified from the plant.56,86r,89,99a,b

3.4.3. Other uses:

The plant has been used for the manufacturing of chemical fertilizer, decolorization of

reactive dyes, and textile application.100

Page 63: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

56

O

OOH OH

COOH

O

OOH OH

CH3 O

OOH OH

CH3H3COO

OOH OH

H3CO CH3

COOHH3CO

OH

O

OOCH3

OH

OCH3

Physcion (3)Rhein (1) Chrysophenol (2) Fistulic acid (4)

3-Formyl-1-hydroxy-8-

methoxy anthraquinone (5)

Sennoside A (6) Sennoside B (7)

O

O

HH

HO

O

OH

O

O

O

O

O

OH

OHHO OH

HO OH

OH

HO O

O

H

HO

O

OH

O

O

O

O

O

OH

OHHO OH

HO OH

OH

HO

H

8-O-Glucopyranosyl-1-hydroxyl

-3-methyl anthraquinone (8)

OH

CH3

OO

OH

OH

OHHO

O

O

OH

OH

OH

HO

Kaempferol (9)

O

OH

OH

HO

(+) Epiafzelechin (10)

OH

Figure 1: Chemical constituents identified from C. fistula

Page 64: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

57

O

OH

OH

HO

(-) Epiafzelechin (11)

OH

O

OHOH

HO

OH

OH

O

OH

OH

OHHO

OH

O

OH

OH

OH

OH

HO

O

OH

OH

OH

OH

HO

Catechin (13)

Epicatechin (14)

Procynidin B2 (12)

O

O

H3CO

OH

OHOH

O

O

OH

OHOHO

O

OHOHOH

HO

Rhamnetin-3-O-gentiobioside (15)

HO

Sitosterol (16)

HO

O

OH

HO

OH

OH

Fistucacidin (17 )

OH

Hexacosanol (18 ) Lupeol (19)

HO

OH( )23

Nerolidol (20 )

Page 65: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

58

2-Hentriacontanone (21 )

O

2

2-Hexadecanone (22) 5-Nonatetracontanoate (23)

( )10

O

2( )25

O

5( )40

OH

O

Triacontanoic acid (26 )Heptacosanoic acid (24)

OHH3CO

OCH3

O

O

HO

OO

H

O

Benzyl 2-hydroxy 3,6 dimethoxy benzoate (28)5(2) Hydroxy phenoxy methyl furfural (27)

Nonacosanoic acid (25)

( )20 OH

O

( )22 OH

O

( )24

O

OH

OHO

HO

H3CO

OCH3

O

O

O

OHOHO

OH

HO

(2'S)-7-Hydroxy-5-hydroxy methyl-

2-(2-hydroxypropyl) chromone (30) Benzyl 2--O-D-glucopyranosyl

3,6-dimethoxy benzoate (29)

Fistulain A (31)

ON

O

CH3

OH3C

O

HO

CH3

O

O

O

HO

OH3C

O

O

OMe

Fistulain B (32)

Page 66: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

59

Chapter 4

Results and discussion

Page 67: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

60

Present studies

Phytochemical and biological research on medicinally important plants namely, Ixora fulgens

(red flowers), I. polyantha (white flowers), I. chinensis (pink flowers), I. coccinea (orange and

yellow color flowers), Ipomoea batata blackie, I. batata pink frost and Cassia fistula showed

that it has remarkable medicinal significance in folk and traditional medicines. In the present

studies bioassay directed isolation method on flowers, leaves and stalks of all the above

mentioned plants were carried out for the extraction and evaluation of anticancer, antibacterial,

antifungal, antioxidant and immunomodulatory activities. Flowers were extracted with hexane,

chloroform and methanol to understand its biology and chemistry more elaborately.

All extracts showed promising cytotoxic activity, against three human cancer cell lines namely,

HeLa (cervical cancer), MCF-7 (breast cancer), and NCI H-460 (lung cancer) cell lines, which

have been used for the evaluation of cytotoxic effect. Triplicate experiments have been

performed, while doxorubicin was used as a standard drug (Tables 3, 11, 18). The extracts were

studied through GC and GC-MS examination, with the identification of 349 chemical

constituents from hexane extracts, 273 compounds from chloroform extracts, and 26

phytochemicals from I. chinensis methanol extracts (Tables 4-6, 12, 13, 19, 20).

The extracts were screened for antibacterial assay against two Gram positive (Bacillus subtilis

and Staphylococcus aureus) and four Gram negative bacteria (Escherichia coli, Shigella

flexenari, Pseudomonos aeruginosa and Salmonella typhii) and most of the samples were found

to be inactive against all the tested bacteria (Tables 7, 14, 21). Subjected plant extracts have

been examined for antifungal assay against five fungi namely Trichphyton rubrum, Candida

albicans, Aspergillus niger, Microsporum canis, Fusarium lini and Candida glabrata, which

were found to be inactive against all the tested fungi (Tables 8, 15, 22). These plants extracts

also possessed antioxidant and immunomodulatory properties.

Page 68: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

61

OH( )n

n

07 = (1)

11 = (2)

12 = (233)

13 = (3)

15 = (338)

16 = (434)

21 = (4)

25 = (5)

20 = (386)

31 = (389)

OH

(7)

OH

(12)

(8)

(E)OH( )5

(9)

HO

(6)

HO

(11) (10)

CH2 O

(232)

OH

HO(E) (E)

(15)

HO

(E)

(E)

(14)

HO(E)

(16)

(17)

OH

CH2

OO

O

HO (Z)

(18)

(13)

HO

( )5( )7

(19)

HO OH

OH

(22)

OH

(20)

Figure 2: Chemical constituents identified from medicinal plants extracts

Page 69: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

62

(24)

OH

(E) (E)

(E) (E)

(23)

H

O

( )11H

O

(29)

( )13

(30)

(Z)H

O

( )11

(28) (31)

O

O(E)

(25)

H

O

(E)

(27)

( )6

HON

O

OH

(32)

( )10

OOH

(33) (34)

N

O

O

(Z)(E)

OOH

OCH3

OH

(36)

(26)

H

O

OOH

OH

OCH3

(35)

O

O

O

O

(40)

OH

OH

OCH3

(38)

OH

OCH3

(39)

OO

O

H

OH

OCH3H3CO

(37)

(44) (43)

O

O

O

O

( )3

( )3

(42)

O

O

O

O

(41)

(45)

(48) (49) (47) (46)

Page 70: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

63

(50)(51)

(52)

(54) (53) (55)

(56)

CH2

(58) (57)

(Z)

(59)

(60)

(57)

(r)

(r)

(Z) (Z)

(62) (63) (64)

(Z)

(65)

( )3

(67) (68) (66)

(70)(69)

( )6( )6

(71) (72)

Page 71: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

64

(73)

(Z)

(E)

(74)

CH2

CH2

(76) (75)

(Z)

OH

O

(77)

(Z)H

O

(78) (80)

(Z)

(79)

(E)

(83)

(E)

(Z)

(87)(86)

O

(Z)

(82)

(89)

H2C

H3C

O

(Z)

(E)

(84)

O

(Z)(E)

(81)

O

H2C

(88)

(85)

(91)

O

(97)

O

O ( )15

O( )7 ( )7

(96)

H3C

O

CH2

(93)

CH3O

(94)

O

(95)

Page 72: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

65

(99)

O

(100)

O

(98)

(103)

ON

O

NH

O

O

(101)

OO

CH2

HO

(106) (105)

O

OO

O

( )14

OO

O

O

OO

(104)

( )3

O

(Z)

O

(102)

Cl ( )11

(116)

Cl

O

(E) (E)

(115)

( )7 ( )4

O

(E)

(114)

OF

O

F F

F F

FF

( )17

(119)

OCl

O

(120)

( )13

(S)N

Cl

O

OCH3

O

(117)

(118)

OFF

F

FF

O

(121)

( )18

(122)

Cl

O

( )8

(255)

Cl( )17

(123)

Cl

O

(140)

( )10

(139)

HO H

O O

( )7H OCH3

OO

(E)( )4

8

9

(138)

O

(141)

O

(142)

CH3

O

(E) (E)

(143)(144)

(E)

O

(145)

O

(146)

CH3

H3CO

Page 73: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

66

( )n

n

09 = (124)

10 = (125)

11 = (126)

12 = (127)

13 = (128)

14 = (129)

15 = (355)

16 = (426)

17 = (130)

18 = (131)

19 = (133)

21 = (357)

22 = (132)

27 = (358)

28 = (455)

31 = (134)

32 = (135)

33 = (136)

34 = (137)

41 = (427)

OO

( )8

(149)

(147)OH

OH

O

(148)

OO

H3COOH

O

O

H3CO

OCH3O

H3CO OCH3

OO

H3CO

O

(156)

(152) (154)

( )6

(157)

O O

H3CO

HO

(151)

H3CO OH

OO

H3CO H

O O

(159)(158)

( )7

( )7

(160)

H3CO O

O OCH3

( )7H3CO OCH3

OO

(161)

( )8O

O

O

O

(162)

( )9( )8( )9

OH

O

( )n

n

03 = (107)

04 = (108)

08 = (109)

12 = (110)

14 = (111)

15 = (112)

16 = (113)

06 = (344)

07 = (454)

10= (345)

19 = (346)

13 = (418)

OCH3

O

( )n

n

06 = (155)

10 = (164)

12 = (165)

14 = (166)

15 = (172)

16 = (174)

17 = (181)

18 = (191)

19 = (184)

20 = (185)

21 = (186)

22 = (187)

23 = (188)

24 = (189)

26 = (183)

O

O

( )14

(168)

OCH3

O

(163)

( )8 OCH3

O

O

O( )7

( )5

(167) (169)

( )14

O

O

( )7( )5

(173)

Page 74: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

67

OCH3

O

OCH3

O

(170) (169)

O

O

(171)

OCH3

O

(E) OCH3

O

(E) (E)

9

10

(175) (177)

9

1012

13

O

O

(E)( )7( )7

(176)

OCH3

O

(178)

( )7 OCH3

O

(E) (E) (E)

(179)

9

1012

1315

16

O

O

(E) (E)

(180)

()7()4

9

1012

13

O

O

( )14

(182)

OCH3

O

(190)

( )19

OCH3

O

(193)

( )8

OCH3

O(E)

(192)

O

POF

(194)

Page 75: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

68

(197)

NH(E)

(Z)

O

HS

O

HO(Z)

(200)

O

(198)

O

OH(E)

(E)

(199)

OS

O

O

(196)

( )12

NP

N

O

CH3(Z)

(Z)

(Z)

(Z)

(195)

O O

(203)

(201)

O

OH3C

OO Si(E)

(202)

O

OOCH3

(204)

(209)

OH

(E)

(205)

O

O

O

O

(206)

OCH3

O

O

O

( )7

N

O

O

CH3

OCH3H3CO

(Z)

(207) (208)

OH

(210)

O

(211)

(213)

(E) (E) O

O

(212)

HO (E)

Page 76: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

69

(215)

OH

(216)

O

OH

CH3

OH

CH2

(218)(217)

OO

HO

(220)

H2CCH2

(219)

(217)

OH OH3C

O

(221)

(222)

(227)

HO

(223)(224)

(225)

(228)

O

CH3HO

CH3

H3C

(229)

O

CH3HO

CH3

(230)

O

HO

CH3

H3C

Page 77: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

70

(235)

OH

(236)

(E)OH

(237)

(Z) OH

(239)

(238)

H3C O(E)

O

H3C O(E)

O

(240)

(E)

OH

(243)

OH

OH

(242)

OH OH

2 63 7

(241)

OH

(234)

HO

(247)

(E) (E) H

O

(248)

H

O

(250)

O

(251)

(E)

O

(249)

O (E) ( )4

O(E)

(244)

( )5

(245) (246)

H

O

(Z)

(E)

H

(Z)

(E)

O

HON

O

HO

HO

OCH3

OH

(252)

( )9

(253)

OHOH

OCH3OCH3

(254) (256)

O

O

O

O

HHH

Page 78: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

71

(257) (258)(259) (260)

(261)

H3CO

O

O

(E)

O

HOOCH3

(E)

(262)

( )3

(263) (272)

(273) (274) (275)

(276) (277) (278)

4

5 53 5

3

84

7

5 7

(279) (280)

3

6 2

73

(281)

2 6 10

(282)(283) (284)

(E)

2

7

10 2

5 6

H

Page 79: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

72

(285)

5

(286) (287)(288)

(289) (290)

(291)

(E)

O

23 5

2

5

253

7

(292)

(293)

(E)13

4

3 5

(295)

O

(294)

(E)( )13 ( )3

O

(309)

OO

(Z)

(329)

(Z)

(318)

HO

O

(E)

(349)

( )5( )9

O

(343) (347)

OH

OO

(348)

(E) (E) (E) OH

O

(356)

O(E)

O

OH

OH

(350)

HO

OH

Page 80: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

73

O

(359)

SO

O

(361)

(369)

OS

O

O

( )10

(370)

SiO

SiO

SiO

Si

OSi

OSi

O

O

Si

Si

(371)

SiO

HS

OSi

OS

O

O

Si

Si

(372)

O

SiO

Si

OSi

OSi

OSi

OSi

OSi

OSi

OSi Si

O

(374)

OS

O

O

( )10

(375)

S

O

O

OH

OH

HO

H3COOH

(376)

(377) (378)

(373)

Si

OSi

O

SiO

SiO

SiO

SiO

SiO

SiO

SiO

(379) (380)

OH

(383)

HO

(381)

O

OHOH O

HO

(382)

Page 81: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

74

(385)

OO

OH

3

(390)

(393)

O

O

( )9 ( )2

(391)

HO

OHOH

OH

(392) (394) (395)

H3CO

O

O

(398) (397)

H

O

CH3

OOHHO

(399)

(400)

O

O

O

O

(396)

HOO

(402)

(403) (406)

CH2

HO

O

O

(408)

(407)

O

(404)(405)

(401)

O

O

O

O 7

7

O

OHO

(411)

(414)

H3CO

H3CO

O

(413)OH

H3COO

(415)

Page 82: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

75

O

(416)

( )5

(419)

O

Cl

O

O

O

O

(417)

OF

FF

O

(420)

( )9

ClOH

Cl

Cl

(421)

(422)

Cl

Cl O

(428)

(424)

Cl Cl

ClCl

(425)

(426)

ClCl

Cl

Cl

Cl

(423)

O

O

(431)

( )14 ( )5

HO

OH

O

(433)

H3CO

O

(432)

( )14

O

H3COO

O

O

(429) (430)

(436)

OH

5

68

911

12

(437)

OH( )10( )3

O

OH

O

OCH3

H3CO

O

OH

HO

(438) (439) (440)

O

OH

(442)

Page 83: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

76

(460)

OS

O

O

( )14

H

O

(465)

O

O

(457)

(461)

O OH

(462)

HO

(463)

(464)

( ) 6

( )7

(460)

OS

O( )13( )4

OCH3

H3CO

HN

NHO

O OCH3

OCH3

(441)

(443)

3 5

64

(467)

H

O

( )5( )3

(469)

OH

(470) (468)

(475)

(471)

(472) (474)

O

O

(473)

O

O

CH3OH

OH

O

( )7

(476)

O

OCl

O

O

(479)

OH

O

(478) (480)

Br

( )10

Page 84: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

77

O

OH

OCH3

(485)

(E)

(482)

( )5( )5

O

(481)

( )9

(484)

2

(486)

S

(490)

HON

O

O

( )9

O

OO

O

(488)

(493)

2

3 5

OHO

OH

(492) (491)

OH

151153

(514)

O

O

(513)

HSi

(Z)

(Z)

Si

OSi

O

SiO

SiO

SiO

SiO

SiO

SiO

SiO

(512)

(506)

(E) O

O

(505)

OH

O17

Page 85: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

78

A) Bioassay guided isolation studies on Ixora species

a) Cytotoxic activity

World has facing a cruel health disease known as cancer, extensive types of cancers, namely

stomach, liver, lung, cervical, and breast cancer; lung cancer (men) and breast cancer (women)

have been recognized the major widespread cancer. Cancer deaths (>70 %) happened in poor

countries. Conventional treatments of cancer consist of involvements such as psychosocial

support, radiotherapy, chemotherapy and surgery. On the other hand, death rate increase

related with cancer and harmful results of cancer radiation therapy and chemotherapy,

isolation of anticancer agents from plants, is currently under investigation. Numerous natural

products, with diverse structures, were identified as anticancer compounds. A number of

compounds such as vincristine, podophyllotoxin, camptothecin, taxol, combretastatins,

vinblastine, etc. were identified from plants and modified to produce enhanced analogues for

toxicity, activity or solubility. More than a few flourishing molecules also known as potential

drugs and several are forthcoming.1d,101a,b

Uncrushed, dried flowers, leaves and stalks of Ixora species were subjected for the chemical

and biological studies named as including I. fulgens (red), I. polyantha (white), I. chinensis

(pink), I. coccinea (orange and yellow). All the above mentioned plants were extracted

through soxhlet extraction method with hexane (H) followed by chloroform (C), and methanol

(M) to give respective extracts, which were evaporated through rotary evaporator

(Experimental). Total twelve extracts were obtained from hexane (H1-H12), twelve from

chloroform (C1-C12) and twelve from methanol (M1-M12), which were examined for

phytochemical and pharmacological studies.

All the extracts were tested for anticancer activity (Tables 3a-c). All the non-polar (hexane)

and moderately polar (chloroform) extracts and methanol extract of I. chinensis flowers were

examined to GC-FID and GC-MS evaluation, which demonstrated the occurrence of alcohols,

aldehydes, amide group, aromatic compounds, benzene derivatives, cyclic and bicyclic

compounds, hydrocarbons, branched chain hydrocarbons, heterocyclic compounds, fatty

acids, and their esters, halogen containing compounds, phenols, terpenes, tocopherols, and

miscellaneous compounds (Tables 4-6)(Figure 2).101c

Page 86: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

79

All extracts of I. fulgens, I. polyantha, I. chinensis, and I. coccinea plants (orange and yellow

color flowers) (10-250 µg/mL) have been evaluated for growth inhibitory and cytotoxic

activity. Among I. fulgens flowers, chloroform extracts was found to be most potent in growth

inhibition and cytotoxic effect (GI50: 10 ± 2.9 µg/mL and LC50: 165 ± 3.1 µg/mL) in

opposition to HeLa cell line. It was ¬ 4.8 times less potent than MCF-7 and H-460 cell lines.

While leaves extracts of I. fulgens showed less potent growth inhibitory effect (Tables 3a-c;

Figure 3).

Chloroform extract of I. polyantha leaves was consistently most active against NCI H-460 in

producing growth inhibitory effect (GI50: 50 ± 4.5 µg/mL) and equipotent effect against both

HeLa and MCF-7 cell lines (GI50: 128 ± 3.5 µg/mL) (Table 3). However, flowers extracts

were inactive against all aforementioned cell lines. Among I. coccinea flowers again

chloroform extract was equipotent (GI50: 15 ± 3.8 µg/mL) against HeLa, MCF-7 and NCI H-

460 cancer cell lines, while its leaves and stalks demonstrated non significant growth

inhibitory effects. Both leaves and flower extracts of I. chinensis displayed weaker growth

inhibitory consequences not in favor of tested cell lines. These results are in agreement with

previously reported work that I. coccinea flowers exhibited cytotoxic effect, extract of the

flower was reported to include flavonoids, phenols, terpenoids and tannins. Ethanol extract

fractionate by using petroleum ether to give lupeol that has potential of cytotoxicity.

Kaempferol has been isolated earlier from the plant showed anti-platelet aggregation activity.

In addition, ixora peptide I, a peptide isolated from I. coccinea revealed cytotoxicity against

the Hep3B liver tumor cell line.4,6,5d,20

The chemical constituents of the flowers, leaves and stalks of Ixora species were presented in

Tables 4-6. Total twelve different plant extracts have been studied for GC-MS analysis

including five extracts from different (species and colors) flowers, five extracts from leaves

and two extracts from stalks. Total 233 chemical constituents have been identified from

hexane extracts of Ixora species, 225 from chloroform extracts and 26 chemical constituents

were identified from methanol extract of I. chinensis flowers. The extracts were dominated by

different class of compounds. Total 55 phytochemicals have been identified from hexane

extract of I. fulgens leaves, 56 from hexane extract of I. polyantha leaves, 51 from hexane

extract of I. chinensis leaves, 33 from chloroform extract of I. fulgens flowers, 72 from I.

Page 87: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

80

fulgens leaves, and 17 from I. coccinea flowers (yellow)(Figure 2). Bis (2-ethylhexyl) 1,2-

benzene dicarboxylate (40), 2,6-dimethyl-2,6-octadiene (64), 3-(4-methyl-3-pentenyl)-3-

cyclohexene-1-carboxaldehyde (77), n-tetradecanoic acid (110), n-tridecane (126), n-

hexadecane (129), n-eicosane (131), methyl tetracosanoate (187), 4,8,12-trimethyltridecan-

4-olide (203), 3,7,11-trimethyl-1,6,10-dodecatrien-3-ol (218), α-tocopherol (228) and β-

tocopherol (229) were the identical compounds present in hexane extracts of I. fulgens, I.

polyantha and I. chinensis leaves. Whereas, bis (2-ethyl hexyl)-1,2-benzenedicarboxylate

(40), 6,10,14-trimethyl-2-pentadecanone (295), n-tetradecanoic acid (110), n-hexadecane

(129), n-eicosane (131), methyl octadecanoate (174), methyl hexadecanoate (166), were

identified as alike phytochemicals present in chloroform extracts of I. fulgens flowers, I.

fulgens leaves, and I. coccinea flowers (yellow color). Some of compounds present in extracts

have been reported to exhibit cytotoxic effect. Bis (2-ethylhexyl)-1,2-benzene dicarboxylate

(40)102a,b n-tetradecanoic acid (110),102c n-tridecane (126), n-hexadecane (129), n-eicosane

(131),103a have been reported to have anticancer potential. Methyl tetracosanoate (187),

methyl hexadecanoate (166), methyl octadecanoate (174) showed good anticancer activity

against MCF-7 cancer cell line.103b 1,6,10-Dodecatrien-3-ol, 3,7,11-trimethyl- (15), exhibited

significant cytotoxic potential on colon and breast cancer cells.103c α-Tocopherol (228), and β-

tocopherol (229) possesess strong anticancer activity against colon cancer cell line.103d

whereas, 6,10,14-trimethyl-2-pentadecanone (295), has been identified in Viscum album L.

extract on ehrlich tumour cells line.103e Strong cytotoxic effect of hexane extracts of I. fulgens,

I. polyantha, and I. chinensis leaves and chloroform extracts of I. fulgens flowers, leaves, and

I. coccinea flowers (yellow color), were found to be active against cervical (HeLa), breast

(MCF-7) and lung cancer cell lines (NCI H-460), because of the synergistic behaviour of

chemical compounds identified through GC-MS analysis (Table 3). The structures of chemical

constituents were identified through GC and GC-MS studies and verified through mass library

search software were given in Figure 2.101c

These studies showed that the Ixora species flowers, leaves and root extracts contained 33

chemical constituents have been identified from I. fulgens flowers while 17 chemical

constituents were present from I. coccinea flowers (yellow color) generally accountable for

its growth inhibitory and cytotoxic potential, which is favorable in the direction of cervical

Page 88: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

81

cancer cell line. Furthermore, all the non-polar and moderately polar extracts, were

investigated for their identifications of phytochemicals by using GC-MS technique, which

revealed the presence of alcohols, aldehydes, amide group, aromatic compounds, benzene

derivatives, bicyclic compounds, branched chain hydrocarbons, cyclic and heterocyclic

compounds, fatty acids and their esters, halogen containing compounds, hydrocarbons,

phenols, terpenes, tocopherols, and miscellaneous compounds (Tables 4-6). The identification

of phytochemicals were made by GC and GC-MS spectra and Mass hunter library search data

base.101c Present investigation showed that chloroform extracts of I. fulgens and I. coccinea

flowers were found to be highly active extracts against HeLa cell lines.

Clustering of chloroform extracts of plants metabolites

Hierarchical clustering was presented by using Euclidean distance metric, whole linkage to

create a dendrogram for clustering of different flower species extracts using normalized

intensities of important chemical compounds. Vertical lines length in the dendrogram is a

determination of difference, wheras, small lines showed close linkage of the groups. This

method clustered the five different plant species. The two plant species metabolites namely I.

coccinea flowers (orange color) and I. fulgens flowers were the most similar from other

species. While, the most dissimilar species were examined of dissimilarity index according to

plant metabolite, named as I. coccinea flowers (orange color) and I. chinensis flowers Figure

4.

b) Antibacterial activity

Plants having medicinal properties commonly known for their disease protecting character,

are used as a source of active phytochemicals.104 A number of plant derived compounds are

well recognized as antimicrobial agents.105 So, the current work clearly documented the

significant chemical compounds which act as an antibacterial agents.

Hexane (H) and methanol (M) extracts of Ixora species namely, I. coccinea (orange and

yellow flowers), I. fulgens, I. polyantha, and I. chinensis were evaluated for antibacterial

Page 89: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

82

Table 3a. Growth inhibitory and cytotoxic effects of Ixora species extracts against Hela cell lines (Cervical).

S.

No.

Plant name (Codes)

Do

ses

(µg

/mL

)

Cervical cancer cell line

(HeLa)

% Cell growth

inhibition/

kill

(µg/mL)

GI50 LC50

1 I. fulgens flowers (H1) 250 +39 ± 2.8 >250 >250

2

I. fulgens flowers (C1)

10 +51 ± 2.9***

10 ± 2.9b 165 ± 3.1b

50 +62 ± 1.5***

100 +92 ± 2.8***

200 -80 ± 1.6***

250 -87 ± 2.3***

3 I. fulgens flowers (M1) 250 10 ± 1.9 >250 >250

4

I. fulgens leaves (H2)

10 +00 ± 1.5

130 ± 2.1 >250

50 +03 ± 1.9

100 +30 ± 2.5

200 +93 ± 2.4

250 -14 ± 2.5

5

I. fulgens leaves (C2)

10 +08 ± 2.1

52 ± 2.7

>250

50 +48 ± 1.6

100 +98 ± 0.9

200 -13 ± 3.1

250 -23 ± 2.8

6

I. fulgens leaves (M2)

10 +49 ± 3.4

150 ± 3.2 >250

50 +56 ± 2.7

100 +59 ± 3.9

200 +74 ± 3.4

250 +88 ± 1.9

7

I. polyantha flowers (C3)

10 +18 ± 1.5*

140 ± 3.7c >250

50 +32 ±2.4**

100 +43 ± 3.1***

200 +61 ± 2.7***

250 +69 ± 3.4***

8 I. polyantha flowers (M3) 250 +00 ± 1.4 >250 >250

Page 90: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

83

9 I. polyantha leaves (H4)

10 +01 ± 2.4

14 ± 1.0 22 ± 0.8

50 +16 ± 2.6

100 +19 ± 1.6

200 +51 ± 3.7

250 +65 ± 2.4

10 I. polyantha leaves (C4)

10 +03 ± 1.4

128 ± 3.5 >250

50 +16 ± 2.9

100 +26 ± 3.4

200 +90 ± 4.1

250 -47 ± 2.7

11 I. polyantha leaves (M4) 250 +35 ± 2.8 >250 >250

12 I. chinensis flowers (C5) 250 +26 ± 2.4* >250 >250

13 I. chinensis flowers (M5) 250 00 ± 2.4 >250 >250

14 I. chinensis leaves (H6)

10 +11 ± 1.6

200 ± 3.0 >250

50 +11 ± 1.5

100 +12 ± 2.4

200 +36 ± 3.5

250 +61 ± 2.1

15

I. chinensis leaves (C6)

10 +03 ± 1.3

110 ± 3.1 >250

50 +08 ± 2.6

100 +48 ± 3.4

200 -39 ± 2.1

250 -41 ± 0.9

16 I. chinensis leaves (M6) 250 +15 ± 2.9 >250 >250

17

I. coccinea flowers (Y)(H7)

10 +00 ± 2.6

40 ± 1.5 170 ± 1.8

50 +60 ± 1.4

100 -16 ± 2.9

200 -61 ± 3.8

250 -72 ± 2.4

18

I. coccinea flowers (Y) (C7)

10 +45 ± 2.2***

15 ± 3.8b 230 ± 3.9c

50 +99 ± 3.1***

100 -13 ± 2.4***

200 -36 ± 1.9***

250 -54 ± 2.5***

Page 91: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

84

19

I. coccinea leaves (Y) (H8)

10 +00 ± 1.9 90 ± 2.9 >100

50 +07 ± 1.4

100 +58 ± 1.9

200 +64 ± 1.8

250 +88 ± 2.7

20 I. coccinea leaves (Y) (C8)

10 +00 ± 1.5

120 ± 3.1 >250

50 +20 ± 1.3

100 +37 ± 3.1

200 -62 ± 2.9

250 -65 ± 2.1

21 I. coccinea leaves (Y)(M8)

10 +00 ± 2.6

110 ± 3.0 >250

50 +21 ± 1.4

100 +43 ± 2.9

200 +84 ± 3.8

250 +93 ± 2.4

22 I.coccinea stalks (Y)(H9) 250 +00 ± 2.8 >250 >250

23 I. coccinea stalk (Y) (M9)

10 -

>250 >250

50 -

100 -

200 -

250 +00 ± 2.5

24 I .coccinea flowers (O)(H10) 250 +01 ± 3.7 >250 >250

25 I. coccinea flowers (O) (C10)

10 +13 ± 1.4

60 ± 2.7c >250

50 +49 ± 2.4***

100 +68 ± 3.5***

200 +89 ± 3.4***

250 -31 ± 4.1***

26 I. coccinea flowers (O)(M10) 250 +00 ± 2.5 >250 >250

27

I. coccinea leaves (O) (H11)

10 +00 ± 3.7

230 ± 3.7 >250

50 +05 ± 1.4

100 +13 ± 3.7

200 +26 ± 2.1

250

-52 ± 1.9

Page 92: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

85

28 I. coccinea leaves(O)(M11) 10 +03 ± 1.4 190 ± 2.6 >250

50 +06 ± 2.9

100 +13 ± 3.4

200 +52 ± 4.1

250 +64 ± 2.7

29 I.coccinea stalks (O)(H12)

10 +61 ± 4.2

120 ± 2.4 240 ± 3.5

50 +35 ± 1.4

100 +42 ± 2.1

200 +75 ± 2.4

250 -61 ± 1.4

30 I. coccinea stalks (O)(M12) 250 00 ± 2.7 >250 >250

31 Doxorubicin µg/mL (µM)

(standard)

0.006 +5.0 ± 3.0

0.5±0.02a

(0.88 ±0.04)

5.8±0.1a

(10±0.1)

0.06 +7.0 ± 3.0

0.6 +60 ± 3.0***

6.0 -52 ± 7.0***

0.006 +5.0 ± 3.0

H = Hexane extract; C = chloroform extract; M = methanol extract; O = orange color flowers containing plant

extracts; Y = yellow color flowers containing plant extracts

Control absorbance (515 nm): MCF-7 cell line (2.9 ± 0.6), NCI H-460 cell line (2.7 ± 0.5), HeLa cell line (2.4

± 0.9)

Each value represents mean ± SEM of three independent experiments

Growth inhibition = (+); cytotoxicity = (–)

Concentration causing 50 % of cell growth inhibition = GI50

Concentration of drug that killed 50% cells = LC50

Values within parentheses are expressed in µM.

Asterisk indicates significant (*p < 0.05, **p < 0.01 and ***p < 0.001) growth inhibition and

cytotoxicity as compared to respective controls

In columns, dissimilar superscript alphabets (a-d) represent significant

(p < 0.05) and similar alphabets non-significant GI50 and LC50 values.

Page 93: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

86

Table 3b. Growth inhibitory and cytotoxic effects of Ixora species extracts against MCF-7 cell lines (Breast

cancer cell lines).

S.

No.

Plant name (Codes)

Do

ses

(µg

/mL

)

Breast cancer cell line

(MCF-7)

% Cell growth

inhibition/

kill

(µg/mL)

GI50 LC50

1 I. fulgens flowers (H1) 250 +16 ± 1.5 >250 >250

2

I. fulgens flowers (C1)

10 +04 ± 1.2

48 ± 2.2c >250

50 +53 ±2.2***

100 +71 ± 1.8***

200 +80 ± 1.5***

250 +87± 2.7***

3 I. fulgens flowers (M1) 250 +00 ± 2.9 >250 >250

4

I. fulgens leaves (H2)

10 +00 ± 1.3

110 ± 2.6 >250

50 +36 ± 1.9

100 +41 ± 2.5

200 -04 ± 3.4

250 -25 ± 2.9

5

I. fulgens leaves (C2)

10 +12 ± 2.2

38 ± 2.5

200 ± 2.2

50 +68 ± 2.6

100 +87 ± 1.4

200 -49 ± 3.2

250 -63 ± 1.0

6

I. fulgens leaves (M2)

10 -

>250 >250

50 -

100 -

200 -

250 +32 ± 3.0

7 I. polyantha flowers (C3)

10 +01 ± 0.4

220 ± 4.3d >250

50 +09 ± 1.1

100 +37 ± 2.5**

200 +43 ± 3.5***

250 +55 ± 4.1***

Page 94: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

87

8 I. polyantha flowers (M3)

250 +18 ± 2.1 >250 >250

9 I. polyantha leaves (H4)

10 +00 ± 1.6

160 ± 3.5 >250

50 +02 ± 1.9

100 +12 ± 2.2

200 +68 ± 3.1

250 +86 ± 2.1

10

I.polyantha leaves (C4)

10 +00 ± 1.4

125 ± 3.2 >250

50 +11 ± 2.9

100 +37 ± 3.4

200 +74 ± 4.1

250 +95 ± 2.7

11 I. polyantha leaves (M4)

250 +07 ± 2.4 >250 >250

12 I. chinensis flowers (C5) 250 +00 ± 2.4

>250

>250

13 I. chinensis flowers (M5)

250 +02 ± 2.4

>250 >250

14

I. chinensis leaves (H6)

10 +00 ± 2.6

190 ± 2.2 >250

50 +00 ± 1.4

100 +04 ± 2.9

200 +58 ± 3.8

250 +83 ± 2.4

15

I. chinensis leaves (C6)

10 +00 ± 1.5

150 ± 3.5 >250

50 +11 ± 2.2

100 +30 ± 2.4

200 +68 ± 2.5

250 +84 ± 1.0

16 I. chinensis leaves (M6)

250 +04 ± 2.6 >250 >250

17 I. coccinea flowers (Y)(H7)

10 +02 ± 2.6

68 ± 2.9 230 ± 3.3

50 +26 ± 1.4

100 +95 ± 2.9

200 -42 ± 3.8

250 -52 ± 2.4

10 +45± 1.3*** 12 ± 1.4b 205 ± 4.5b

Page 95: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

88

18 I. coccinea flowers (Y) (C7) 50 +92 ± 1.5***

100 -26 ± 1.9***

200 -49 ± 2.1***

250 -64 ± 0.8***

19

I.coccinea leaves (Y) (H8)

10 +00 ± 0.9

178 ± 3.2 >250

50 +00 ± 1.2

100 +02 ± 0.8

200 +59 ± 1.4

250 +67 ± 2.5

20

I. coccinea leaves (Y) (C8)

10 +00 ± 0.6

210 ± 2.1 >250

50 +22 ± 1.4

100 +34 ± 2.0

200 +46 ± 2.1

250 +71 ± 2.5

21

I. coccinea leaves (Y)(M8)

10 +02 ± 2.1

150 ± 3.5

>250

50 +16 ± 1.9

100 +23 ± 2.9

200 +73 ± 3.0

250 +84 ± 2.9

22 I.coccinea stalks (Y)(H9)

250 +00 ± 2.8 >250 >250

23

I.coccinea stalk (Y) (M9)

10 -

>250 >250

50 -

100 -

200 -

250 +36 ± 2.2

24 I.coccinea flowers (O) (H10)

250 +45 ± 3.2 >250 >250

25 I. coccinea flowers (O) (C10)

10 +24 ± 1.2*

58 ± 3.7c >250

50 +41 ± 2.4***

100 +72 ± 3.1***

200 +89 ± 2.7***

250 -38 ± 4.5***

26

I.coccinea flowers (O) (M10)

250 +00 ± 4.2 >250 >250

Page 96: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

89

27 I. coccinea leaves (O)(H11)

10 +00 ± 4.7

150 ± 2.3 >250

50 +00 ± 2.4

100 +24 ± 3.7

200 +77 ± 2.9

250 +86 ± 1.8

28

I.coccinea leaves(O)(M11)

10 -

>250 >250

50 -

100 -

200 -

250 +44 ± 2.5

29

I.coccinea stalks (O)(H12)

10 +00 ± 2.2

100 ± 3.1 250 ± 3.3

50 +25 ± 3.1

100 +51 ± 2.9

200 +98 ± 1.9

250 -03 ± 3.2

30 I.coccinea stalks (O)(M12)

250

+18 ± 1.9 >250 >250

31 Doxorubicin µg/mL

(µM) (standard)

0.1 +37±5.0**

0.17±0.03a

(0.3±0.05)

5.8±0.01 a

(10±0.02)

0.5 +71±2.0***

5.0 -18±3.0***

10.0 -50±2.0***

0.1 +37±5.0**

H = Hexane extract; C = chloroform extract; M = methanol extract; O = orange color flowers containing plant

extracts; Y = yellow color flowers containing plant extracts

Control absorbance (515 nm): MCF-7 (2.9 ± 0.6), NCI-H460 (2.7 ± 0.5) and HeLa (2.4 ± 0.9).

Each value represents mean ± SEM of three independent experiments

Growth inhibition = (+) and cytotoxicity = (–)

Concentration causing 50 % of cell growth inhibition = GI50

Concentration of drug that killed 50% cells = LC50

Values within parentheses are expressed in µM.

Asterisk indicates significant (*p < 0.05, **p < 0.01 and ***p < 0.001) growth inhibition and cytotoxicity as

compared to respective controls

In columns, dissimilar superscript alphabets (a-d) represent significant

(p < 0.05) and similar alphabets non-significant GI50 and LC50 values.

Page 97: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

90

Table 3c. Growth inhibitory and cytotoxic effects of Ixora species extracts against NCI H-460 (Lung cancer

cell line).

S.

No.

Plant name (Codes)

Do

ses

(µg

/mL

)

Lung cancer cell line

(NCI H-460)

% Cell growth

inhibition/

kill

(µg/mL)

GI50 LC50

1 I. fulgens flowers (H1) 250 +42 ± 4.3 >250 >250

2

I. fulgens flowers (C1)

10 +07 ± 1.9

46 ± 1.9c

>250

50 +56 ± 1.7***

100 +63 ± 1.4***

200 +94 ± 2.8***

250 -12 ± 2.1***

3 I. fulgens flowers (M1) 250 +00 ± 2.9 >250 >250

4 I. fulgens leaves (H2)

10 +00 ± 1.7

46 ± 1.9

>250

50 +34 ± 1.7

100 +63 ± 2.9

200 -14 ± 1.5

250 -66 ± 1.9

5 I. fulgens leaves (C2)

10 +45 ± 1.1

40 ± 2.7

190

50 +53 ± 1.9

100 -14 ± 1.9

200 -52 ± 2.1

250 -70 ± 1.8

6 I. fulgens leaves (M2)

10 +00 ± 1.7

120 ± 1.1 190 ± 1.9

50 +08 ± 2.5

100 +38 ± 1.9

200 -65 ± 3.0

250 -70 ± 2.9

7 I. polyantha flowers (M3) 250 +00 ± 4.4 >250 >250

8 I. polyantha leaves (H4)

10 +01 ± 3.5

40 ± 2.7

190

50 +05 ± 3.4

100 +15 ± 3.9

200 +66 ± 4.1

250 +71 ± 3.8

Page 98: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

91

9 I.polyantha leaves (C4)

10 +00 ± 1.9

50 ± 4.5 250 ± 3.1

50 +54 ± 2.4

100 +88 ± 2.4

200 -24 ± 3.1

250 - 46 ± 4.7

10 I. polyantha leaves (M4) 250 +01 ± 2.4 >250 >250

11 I. chinensis flowers (C5) 250 +01 ± 3.8 >250 >250

12 I. chinensis flowers (M5)

250 +00 ± 2.4 >250 >250

13 I. chinensis leaves (H6)

10 +05 ± 2.6

50 ± 4.5 250 ± 3.1

50 +10 ± 1.4

100 +16 ± 2.9

200 +60 ± 3.8

250 +65 ± 2.4

14 I. chinensis leaves (C6)

10 00 ± 1.3

200 ± 3.5 >250

50 +00 ± 1.9

100 +04 ± 2.2

200 +48 ± 1.0

250 +91 ± 0.9

15 I. chinensis leaves (M6)

250 +00 ± 2.4 >250 >250

16 I. coccinea flowers (Y)(H7) 10 +00 ± 2.9

200 ± 3.5 >250

50 +29 ± 1.9

100 +88 ± 2.1

200 -34 ± 2.7

250 -40 ± 2.8

17 I. coccinea flowers (Y) (C7) 10 +40 ± 2.4***

12 ± 3.1b 200 ± 4.7b

50 +98 ± 2.9***

100 -31 ± 3.9***

200 -51± 4.2***

250 -62 ± 4.6***

18 I.coccinea leaves (Y) (H8)

10 -

>250

>250

50 -

100 -

200 -

Page 99: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

92

250 +47 ± 2.1

19 I. coccinea leaves (Y) (C8)

10 +7.0 ± 1.6

120 ± 1.1 >250

50 +20 ± 2.1

100 +32 ± 2.1

200 +90 ± 1.9

250 +96 ± 1.7

20 I. coccinea leaves (Y)(M8)

10 -

>250 >250

50 -

100 -

200 -

250 +00 ± 2.6

21 I.coccinea stalks (Y)(H9) 250 +00 ± 2.8

>250

>250

22 I.coccinea stalk (Y) (M9)

10 +01 ± 1.9

250 ± 3.1 >250

50 +02 ± 3.1

100 +20 ± 2.8

200 +44 ± 3.4

250 +50 ± 2.7

23 I.coccinea flowers (O )(H10)

250 +02 ± 2.5

>250 >250

24

I. coccinea flowers (O) (C10)

10 +20 ± 1.6*

60 ± 3.1c

>250

50 +46 ± 2.7***

100 +58 ± 2.9***

200 +78 ± 3.0***

250 +88 ± 3.9***

25 I.coccinea flowers (O) (M10)

250 +01 ± 2.1 >250 >250

26

I. coccinea leaves (O) (H11)

10 +01 ± 2.2

220 ± 1.9 >250

50 +02 ± 1.3

100 +10 ± 2.8

200 +43 ± 2.0

250 +52 ± 1.9

27 I.coccinea leaves(O)(M11) 10 -

>250 >250

50 -

100 -

200 -

250 +01 ± 2.9

Page 100: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

93

H = Hexane extract; C = chloroform extract; M = methanol extract; O = orange color flowers containing plant

extracts; Y = yellow color flowers containing plant extracts

Control absorbance (515 nm): MCF-7cell line (2.9 ± 0.6), NCI H-460 cell line (2.7 ± 0.5), HeLa cell line (2.4 ±

0.9)

Each value represents mean ± SEM of three independent experiments

Growth inhibition = (+) and cytotoxicity = (–)

Concentration causing 50 % of cell growth inhibition = GI50

Concentration of drug that killed 50% cells = LC50

Values within parentheses are expressed in µM

Asterisk indicates significant (*p < 0.05, **p < 0.01 and ***p < 0.001) growth inhibition

and cytotoxicity as compared to respective controls

In columns, dissimilar superscript alphabets (a-d) represent significant (p < 0.05) and similar alphabets non-

significant GI50 and LC50 values.

28 I.coccinea stalks (O)(H12)

10 +00 ± 2.2

135 2.1 >250

50 +06 ± 2.6

100 +21 ± 3.2

200 +98 ± 3.1

250 +99 ± 2.8

29 I.coccinea stalks (O) (M12) 250 00 ± 1.8 >250 >250

30 Doxorubicin µg/mL

(µM) (standard)

0.1 +42±5.0**

0.17±0.05a

(0.26 ±0.08)

5.4 ± 1.2a

(9.3 ± 1.2)

0.5 +76±2.0***

5.0 -18±3.0***

10.0 -53±2.0***

0.1 +42±5.0**

Page 101: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

94

aa) 50 % Cell growth inhibition (GI50) against hexane series

Treatments

ab) 50 % Cell growth inhibition (GI50) against chloroform series

Treatment

Figure 3: The bar graph represents concentration values of (aa, ab, ac) GI50 (50 % cell growth inhibition)

and (ba, bb, bc) LC50 (50 % cell kill) of Ixora species hexane, chloroform and methanol extracts against

HeLa, MCF-7 and NCI H-460 cancer cell lines.

0

50

100

150

200

250

300

Co

nce

ntr

ati

on

g/m

L)

HeLa

MCF-7

NCI H-460

0

50

100

150

200

250

300

Co

nce

ntr

ati

on

g/m

L)

HeLa

MCF-7

NCI H-460

Page 102: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

95

ac) 50 % Cell growth inhibition (GI50) against methanol series

Treatments

ba) 50 % Cell kill (LC50) against hexane series

Treatments

0

50

100

150

200

250

300

Co

nce

ntr

atio

n (

µg/

mL)

HeLa

MCF-7

NCI H-460

0

50

100

150

200

250

300

Co

nce

ntr

ati

on

g/m

L)

HeLa

MCF-7

NCI H-460

Page 103: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

96

bb) 50 % Cell kill (LC50) against chloroform series

Treatments

bc ) 50 % Cell kill (LC50) against methanol series

Treatments

0

50

100

150

200

250

300

Co

nce

ntr

ati

on

g/m

L)

HeLa

MCF-7

NCI H-460

0

50

100

150

200

250

300

Co

nce

ntr

ati

on

g/m

L)

HeLa

MCF-7

NCI H-460

Page 104: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

97

I. coccin

ea (O

)

I. fulg

ens

I. coccin

ea (Y

)

I. polya

nth

us

I. chin

ensis

Methyl tetradecanoate

Methyl tetracosanoate

2-Decenal

Methyl octanoate

2-Heptenal

Methyl 9-oxo nonanoate

n-Hexadecanoic acid

n-Octanoic acid

9-Oxononanoic acid

Methyl octadecanoate

Dibutyl 1,2 benzenedicarboxylate

n-Hexadecane

n-Eicosane

Bis (2ethyl hexyl)-1,2-benzenedicarboxylate

n-Tridecane

Methyl eicosanoate

Methyl hexadecanoate

Methyl docosanoate

6,10,14-Trimethyl 2-pentadecanone

N,N−Bis(2-hydroxyethyl) dodecanamide

2,6,10,14-Tetramethyl hexadecane

n-Tricosane

n-Tetradecanoic acid

9,12-Octadecadienoate

4,7-Dimethyl undecane

n-Octadecanoic acid

1500

1000

500

0

−500

−1000

Figure 4: Hierarchical clustering of significant metabolites (p value < 0.05) in five different species of

flowers chloroform extracts by using normalized intensity.

Page 105: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

98

Table 4: Identification of chemical compounds through GC and GC-MS studies of hexane extracts on Ixora species.

Hexane extracts

S.

No.

Compounds name

I. f

ulg

ens

flo

wer

s

I.fu

lgen

s le

av

es

I. p

oly

an

tha

flo

wer

s

I. p

oly

an

tha

lea

ves

I. c

hin

ensi

s fl

ow

ers

I. c

hin

ensi

s le

av

es

I. c

occ

inea

flo

wer

s (Y

)

I.co

ccin

ea l

eav

es (

Y)

I. c

occ

inea

s ta

lks

(Y)

I.

cocc

inea

flo

wer

s (O

)

I. c

occ

inea

lea

ves

(O

)

I. c

occ

inea

sta

lks

(O)

1 1-Octanol (1) - - - + - - - - - - - -

2 1-Dodecanol (2) - - - - - - - - + - - -

3 1-Tetradecanol (3) - - + - - - - + + - - -

4 1-Docosanol (4) - - - - - - + - - - - -

5 1-Hexacosanol (5) - - - - - - - - + - - -

6 2-Butyl 1-octanol (6) - + - + - - - - - - - +

7 4-Ethylcyclohexanol (7) - + - - - - - - - - - -

8 2-Decen-1-ol (8) - - - + - - - - - - - -

9 cis-Myrtanol (9) - + - - - - - - - - - -

10 2-Methylene-3-(1-methylethenyl) cyclohexyl acetate (10) - - - + - - - + - - - -

11 3,7,11,15-Tetramethyl-1-hexadecanol (11) - - - + - - - + - - - -

12 14-Methyl-8-hexa decyn-1-ol (12) - + - - - - - - - - - -

13 2,3-Dimethyl-undec-1-en-3-ol (13) - - - - - - - + - - - -

14 7,11-Dimethyldodeca-2,6,10-trien-1-ol(14) - - - + - - - - - - - -

Page 106: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

99

15 cis-Farnesol or [3,7,11-trimethyl 2,6,10-dodecatrien-1-ol] (15) - - - + - + - - - - - -

16 Phytol or [3,7,11,15-Tetramethyl 2-hexadecen-1-ol] (16) - + - + - - + + + - - -

17 5-(tert-Butoxy carbonyloxy)- or 2-(1-buten-3-yl) phenol(17) - + - - - - - - - - - -

18 4-Methyl- 4-hexen-1-ol (18) - - + - - - - - - - - -

19 2-Hexyl-1-decanol (19) - - - - - - - - - - + -

20 5-Methyl-1-heptanol (20) - - - - - - - - - - - +

21 Pluchidiol (21) - - - - - - - - + - - -

22 1,2,3-Propanetriol (22) - - - - - - - - + - - -

23 2,6,10,15, 19,23-Hexamethyl- 1,6,10,14,18,22-tetracosahexaen-3-ol (23) - - - - - + - - - - - -

24 Cycloheptane methanol (24) - - - - + - - - - - - -

25 2-Heptenal (25) - - - - - - - - - - + +

26 n-Nonanal (26) - - - - - - - - - - + +

27 2-Decenal (27) - - - - - - - - - - + +

28 Tetradecanal (28) + - - + - + - - - - - -

29 Pentadecanal (29) - + - - + + + - - + + -

30 13-Octadecenal (30) - - - - + - + - - - - -

31 3-Methyl-2-butenal (31) - - - - - - - + - - - -

32 N,N-Bis(2-hydroxyethyl) dodecanamide (32) + - + + - + + - + + + +

33 Benzoic acid (33) - - - - - - - - + - - +

34 3-Pyridinyl benzoate (34) - - - - - - - + - - - -

35 4-Hydroxy 3-methoxy benzoic acid or (Vanillic acid) (35) - - - - - - - - + - - -

36 3-Hydroxy-4-methoxybenzaldehyde (36) - - - - - - - - + - - -

37 4-Hydroxy-3,5-dimethoxy benzaldehyde (Syringaldehyde) (37) - - - - - - - - + - - -

38 4-Hydroxy 3-methoxy benzaldehyde or (Vanillin) (38) - - - - - - - - - - - +

39 Ethyl homovanillate or (Ethyl 4-hydroxy-3-methoxy phenyl acetate) (39) - - + - - - - - - - - -

Page 107: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

100

40 Bis (2-ethylhexyl) 1,2-benzene dicarboxylate (40) + + + + + + + + + + + +

41 Butyl 2-methylpropyl 1,2-benzenedicarboxylate (41) - - - - - - - - - - - +

42 Dibutyl 1,2-benzenedicarboxylate (42) - + - - - + - - - - - -

43 (1-Propyloctyl) benzene (43) - - + - - + - - - - - -

44 (1-Propyl nonyl) benzene (44) - - + - - - - - - - - -

45 (1-Propyl decyl) benzene (45) - - + - - - - - - - - -

46 1-Ethyl-4-methyl benzene (46) - - + - - - - - - - - -

47 (1-Ethyl nonyl) benzene (47) - - + - - + - - - - - -

48 (1-Ethyl decyl) benzene (48) - - + - - - - - - - - -

49 (1-Ethyl undecyl) benzene (49) - - + - - - + - - - - -

50 (1-Butylheptyl) benzene (50) - - + - - + - - - - - -

51 (1-Butyl octyl) benzene (51) - - + - - - - - - - - +

52 (1-Butyl nonyl) benzene (52) - - + - - - - - - - - -

53 (1-Methyl decyl) benzene (53) - - + - - - - - - - - -

54 (1-Methyl undecyl) benzene (54) - - + - - + - - - - - +

55 (1-Pentyl heptyl) benzene (55) - - + - - - - - - - - -

56 (1-Pentyl octyl) benzene (56) - - + - - - - - - - - -

57 Hexamethyl benzene (57) - - - - - - - - - + - -

58 2-Methylene bicyclo[4.3.0] nonane (58) + - - - - - - - - - - -

59 Bicyclo[4.3.1]dec-1(9)-ene (59) - - - - - - - - - + - -

60 7-Methylene-2,4,4-trimethyl-2-vinyl-bicyclo[4.3.0] nonane (60) - - - - - - + - - - - -

61 1,2,3,6-Tetramethyl bicyclo[2.2.2]octa-2,5-diene (61) + - - - - - - - - - - -

62 4-Methylene-2,8,8-trimethyl-2-vinyl- bicyclo[5.2.0] nonane (62) - + - - - - - - - - - -

63 2,6,10,14 Tetramethyl hexadecane (Phytane) (63) - - + - + - - - - - - +

64 2,6-Dimethyl-2,6-octadiene (64) - + - + - + - - - - - -

Page 108: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

101

65 3-Methyl-5-propyl nonane (65) + - - - - - - - - - - -

66 2-Methyl-5,7-dimethylene-(1,8-nonadiene) (66) - - + - - - - - - - - -

67 3,8-Dimethyl decane (67) - - - - - - - + - - - -

68 5,9-Dimethylpentadecane (68) - - + - - - - - - - - -

69 8-Heptyl pentadecane (69) - - + - - - - - - - - -

70 Tetradeca-6,8-diyne (70) - - + - - - - - - - - -

71 4-Methyl- 1-undecene (71) - - - + - - - - - - - -

72 2,6,11-Trimethyl dodecane (72) - - - - - - - + - - - -

73 6-Methyl tridecane (73) - - + - - - - - - - - -

74 3-(1-Hexenyl) cyclohexene (74) - + - - - - - - - - + +

75 4-Hydroxy-2-cyclo hexen-1-one (75) - - - + - - - - - - - -

76 1,1,4,4-Tetramethyl-2,5-dimethylene-cyclohexane (76) + - - - - - - - - - - -

77 3-(4-Methyl-3-pentenyl)- 3-cyclohexene-1-carboxaldehyde (77) - + - + - + - - - - - -

78 1,2,4-Trivinyl cyclohexane (78) - + - - - - - - - - - -

79 3-Ethyl cyclohexene (79) - - - - - - - - - + + -

80 2,4-Diethenyl-1-methyl cyclohexane (80) - - - - - - - - - - + -

81 4-(3-Hydroxy-1-butenyl) 3,5,5-tri methyl 2-cyclohexen-1-one(81) - - - - - - - + + - - -

82 Tricyclo[3.3.0.0(2,8)]octan-3-one, 8-methyl-(82) - + - - - - - - - - + +

83 1-(1-Methylethyl) cyclopentene (83) - - - - - + - - - - - -

84 3-Methyl-2-(2-pentenyl), 2-cyclopenten-1-one (84) - - - - - - - - - + - +

85 1,3-Dimethyl-2-(1-methyl ethenyl) cyclopentane (85) - - - - - - - - - - - +

86 3-t-Pentylcyclopentanone (86) - - - - - + - - - - - -

87 1,5-Cyclodecadiene (87) - - - - - + - - - - - -

88 Octahydro-1-methylene 4(1H)-azulenone (88) - - - - - - - - - - + -

89 1,5-Dimethyl-6-methylene spiro [2.4] heptane (89) - + - - - - - - - - - -

Page 109: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

102

90 7-Octylidene bicycle [4.1.0] heptane (90) - - + - - - - - - - - -

91 1,5-Dimethyl 7-oxa bicycle [4.1.0] heptane (91) - - - + - - - - - - - -

92 2,3,4,5-Tetra methyl- tricyclo [3.2.1.02,7]oct-3-ene (92) - - - + - - - - - - - -

93 Dihydrocarvone (cyclohexanone, 2-methyl-5-(1-methyl ethenyl))(93) - - - - - - - - + - - -

94 3-Cyclohexylidene-4-ethyl- 2-hexanone (94) - - - - - - - - - - + -

95 Pulegone or (cyclohexanone, 5-methyl-2-(1-methylethylidene)) (95) - - - - - - - - - - - +

96 1-Octyl ether (96) - - - - - + + - - - - -

97 Oxirane, [(hexadecyloxy) methyl] (97) - - - + - - - - - - - -

98 2-Hexadecyloxirane (98) - - - - - + - - - - - -

99 Decahydro-1,6-dimethyl naphthalene (99) + - - - - - - - - - - -

100 N-Methyl-2-pyrrolidone (100) - + - - - + - - - - - -

101 2,5-Pyrrolidinedione (101) - - + - - - - - - - - -

102 5,6,7,7-Tetra hydro-4,4,7-trimethyl 2(4H)-benzofuranone (102) - + - + - - + - - - + -

103 (1'S,5S)-5-Aminomethyl-3-(1'-phenyl ethyl)-1,3-oxazolidin-2-one (103) - - + - - + - - - - - -

104 Phthalic acid, butyl ester, ester with butyl glycolate (104) - - - - - - + - + - - -

105 (2,2-Dimethyl-1,3-dioxolan-4-yl) methyl hexadecanoate (105) - - - - - - - - - - - +

106 4-(Hydroxyl methyl)-4-methyl-2-methylene butanolide (106) - - - - - - - - + - - -

107 n- Pentanoic acid (107) - + - - - - - - - - - -

108 n-Hexanoic acid (108) - - - - - - - - - - - +

109 n-Decanoic acid (109) - - - - - - - - + - - -

110 n-Tetradecanoic acid(110) + + + + + + + + + + + +

111 n-Hexadecanoic acid (111) - - + - + + + + + + + +

112 n-Heptadecanoic acid (112) - - - - - - - - - - + +

113 n -Octadecanoic acid (113) - - - + + + + + + - + +

114 5-Dodecenoic acid (114) - - - - - - - + - - - -

Page 110: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

103

115 9,12-Octadecadienoyl chloride (115) + - - - - - - - + + - -

116 1-Chloro dodecane (116) - - - - - + - - - - - -

117 3-Chloro-4-oxo-1-(1-phenyl ethyl) azetidine-2-carboxylic acid methyl ester isomer

(117)

- - - - - - - - - - + -

118 5β-Iodo methyl-1β-iso propenyl-4α, 6β-bicyclo[4.3.0]nonane (118) - - - - - - - + - - - -

119 n-Octadecyl heptafluorobutyrate (119) - - + - - - - - - - - -

120 Tetra decyl chloro acetate (120) - - - - - - - - - + - -

121 Nona decyl penta fluoro propionate (121) - - - - - - - - - + - -

122 10-Undecenoyl chloride (122) - - - - - - - - - - + +

123 1-Chloro octadecane (123) - - - + - - - - - - - -

124 n-Undecane (124) - - + - - - - - - - - -

125 n-Dodecane (125) - + - - - - - - - - - -

126 n-Tridecane (126) - + - + + + - - - - - +

127 n-Tetradecane (127) - - - - - + - - - - - +

128 n-Pentadecane (128) - - - - - + - - - - + -

129 n-Hexadecane (129) + + + + + + + + + + + +

130 n-Nonadecane (130) - + - - - + - - - - + -

131 n-Eicosane (131) + + + + + + + + - + + +

132 n-Tetracosane (132) - - - + - - - - - - - -

133 n-Heneicosane (133) + + - - + - - - - - - -

134 n-Tritriacontane (134) - - - - - - - - - - - +

135 n-Tetratriacontane (135) - - + - - - + - - - - -

136 n-Pentatriacontane (136) - - - - - - - - - - + -

137 n-Hexatriacontane (137) - - - - - + - - - - + -

138 Methyl 10-oxo-8-decenoate (138) + - - - - - - - - + - -

Page 111: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

104

139 9-Oxo nonanoic acid (139) - - - + - - - - - + + +

140 2-Tridecanone (140) - + - - - - - - - - - -

141 5-Hexen-2-one (141) - - - - - + - - - - - -

142 3-Penten-2-one, 4-methyl-(142) - - - - - + - - - - - -

143 6,10-Dimethyl 5,9-dodecadien-2-one (143) - - - + - - - - - - + -

144 6,10-Dimethyl- 5,9-undecadien-2-one (144) - - - + - - - - - - - -

145 6-Methyl-5-hepten-2-one (145) - - - + - - - - - - - -

146 1-(4-Methylphenyl) ethanone (146) - - - + - - - - - - - -

147 1-(3',5'-Dihydroxy phenyl) heptan-2-one (147) - + - - - - - - - - - -

148 Pent-2-en-1,4-dione (148) - - - - - - - + - - - -

149 2,11-Dodecanedione (149) - - + - - - - - - - - -

150 8-Methyl-5-(1-methylethyl) 6,8-nonadien-2-one (150) - - - - - + - - - - - -

151 7-Hydroxy-6-methoxy-2H-1-benzopyran-2-one (151) - - - - - - - - + - - -

152 Methyl methoxy acetate (152) - - - - - - - - + - - -

153 4-Pentadecyl valerate (153) - - - - - - - + - - - -

154 Butanedioic acid, monomethyl ester (154) - - + - - - - - - - - -

155 Methyl octanoate (155) - + - - - - - - - - + -

156 Dimethyl octanedioate (156) - + - - - - - - - - - -

157 Methyl 6-methyl octanoate (157) - - - - - - - - - + - -

158 Nonanedioic acid, mono methyl ester (158) + - + + - - - - - + + +

159 Dimethyl nonanedioate (159) - + + - - - - - - - - -

160 Methyl 9-oxo-, nonanoate (160) + + - + - - - - - + + +

161 Dimethyl decanedioate (161) - + - - - - - - - - - -

162 Didecyl decanedioate (162) - - - - - - - - - - + -

163 Methyl 10-undecenoate (163) - + - - - - - - - - - -

Page 112: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

105

164 Methyl dodecanoate (164) - + - - - - - - - - - -

165 Methyl tetradecanoate (165) + + + + - - - - - + + -

166 Methyl Hexadecanoate (166) - - + + + + + + + + + +

167 Methyl 9-hexadecenoate (167) + - + - - - - - - + - -

168 Ethyl hexadecanoate (168) + - - - - - - - - + - -

169 Ethyl 1-methyl hexadecanoate (169) - - + - - - + - + - - -

170 15-Methyl, hexadecanoate (170) + - - - - - - - - - - -

171 2,6,10,14-Tetramethyl-15-hexadecen-1-yl acetate (171) - - - - - - - - - - + -

172 Methyl heptadecanoate (172) - - - + - - - - - - - -

173 Methyl10-heptadecenoate (173) + - - - - - - - - - - -

174 Methyl octadecanoate (174) + + + + - - + + + + + +

175 Methyl 9-octadecenoate (175) - - + - - - - + - + - +

176 Ethyl 9-octadecenoate (176) + - - - - - - - - - - -

177 Methyl 9,12-octadecadienoate (177) + - + + + + + - - + + -

178 Methyl 9,12-octadecadiynoate (178) + - + + - - - - - + - +

179 Methyl 9,12,15-octadecatrienoate (179) + - + - + - + - - + + +

180 Ethyl linoleate (180) + - - - - - - - - + - -

181 Methyl nonadecanoate (181) - + - - - - - - - - - -

182 Isopropyl palmitate (182) - - - - + - - + - + - +

183 Methyl octacosanoate (183) + - - - - - - - - + - -

184 Methyl heneicosanoate (184) + - - - - + - - - + - -

185 Methyl docosanoate (185) - + - - - + - - - - + -

186 Methyl tricosanoate (186) + + - + - - - - - + - -

187 Methyl tetracosanoate (187) + + + + - + - - - + + -

188 Methyl n-pentacosanoate (188) + + - - - - - - - - - -

Page 113: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

106

189 Methyl hexacosanoate (189) + - - - - - - - - - - -

190 2,4,6-Trimethyl, 1-methyl hexacosanoate (190) - - - - + - - - - - - -

191 Methyl eicosanoate (191) - + + - - + - - - - - -

192 Methyl 11-eicosenoate (192) - - - - - - - - - + - -

193 Methyl 10,12-octadecadiynoate (193) - - - + - - - - - - - -

194 2-Tertbutyl cyclohexyl propyl phosphono fluoridate (194) - - + - - - - - - - - -

195 1,3-Dihydro-2-methyl-1,3,2-naphtho [1,8]diaza phosphole-2-oxide (195) - - - - - - - + - - - -

196 2-Propyl tridecyl ester sulfurous acid (196) - - - - - - - - + - - -

197 3-Mercapto-2(1H)-pyridinone (197) - - - + - - - - - - - -

198 2-Octylfuran (198) - - - - - - - - - - + -

199 3,4-Di[1-butenyl]- tetrahydrofuran-2-ol (199) - - - - - - - - - - + -

200 3,4-Bis(1,3-benzo dioxol-5-ylmethyl) dihydro, 2(3H)-furanone (200) - - + - - - - - - - - -

201 3-Acetoxy 2,4-dimethylfuran (201) - - - - - - - - - - - +

202 1-Ethoxy 4-trimethylsilyl 1,2-butadiene (202) - - - - - - - + - - - -

203 4,8,12-Trimethyltridecan-4-olide (203) + - + + + + + + + + + +

204 2,2-Diphenyl-1-(4-methoxyphenyl)-1,2-dihydroazeto[2,1]quinazolin-8-one (204) - - + - - - - - - - - -

205 Diisopropylidene mannitol (205) - - - - - - - - - - - +

206 Methyl octyl Phthallate (206) - - - - - - - - - - - +

207 7,8-Dimethoxy-3-(3',4'-methylene dioxyphenyl)-2-methyl-1,2,3,4-tetrahydro isoq...

(207)

- - - - - - - - - - + -

208 Cyclohexanol (208) - + - - - - - - - - - -

209 4-(1-Methylethyl) cyclohexanol (209) - - - + - - - - - - - -

210 Isomyocorene (2,6-Dimethyl-1,3,7-octatriene) (210) - + - - - - - - - - - -

211 6,10-Dimethyl 5,9-undecadien-2-one (211) - + - - - - - - - - - -

212 Farnesol isomer a (212) - - - + - - - - - - - -

Page 114: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

107

213 Farnesol, acetate (213) - + - - - - - - - - - -

214 Geranyl linalool isomer B (214) - + - + - + - - - - - -

215 Geranyl geraniol (215) - + - - - - - - - - - -

216 7-Methyltocol (216) - + - - - - - - - - - -

217 Nerolidol 1(217) - - - + - - - - - - - -

218 3,7,11-Trimethyl- 1,6,10-dodecatrien-3-ol or (E-farnesol) (218) - + - + - + - - - - - -

219 Neophytadiene (7,11,15-trimethyl,3-methylene-1-hexadecene) (219) - + - + - + + + + - - -

220 (-)-Loliolide (220) - - - + - + - + + - + +

221 Isomyrcenyl acetate or [ 2-(2-methyl-1-propenyl)-5-hexenyl acetate] (221) - - - + - - - - - - - -

222 2,6,10,15,19,23-Hexamethyl- 2,6,10,14,18,22-tetracosa hexaene (221) - - - + - + + - - - - -

223 Elemene (223) - - - - - + - - - - - -

224 Elemol (224) - - - - - + - - - - - -

225 Norolean-12-ene (225) - - - - - + - - + - - -

226 Noruns-12-ene (226) - - - - - - - - + - - -

227 Ergost-5-en-3-ol (227) - - - + - - - - - - - -

228 α-Tocopherol (228) - + - + + + + + + - + +

229 β-Tocopherol (229) + + + + - + + + - - + -

230 δ- Tocopherol (230) - - - + + - - - + + - -

Ixora = I.; + = present; - = absent

Page 115: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

108

Table 5: Identification of chemical compounds through GC and GC-MS studies of chloroform extract on Ixora species.

S.

No.

Compounds name

I. f

ulg

ens

flo

wer

s

I. f

ulg

ens

lea

ves

I. p

oly

an

tha

flo

wer

s

I. p

oly

an

tha

lea

ves

I. c

hin

ensi

s fl

ow

ers

I. c

hin

ensi

s l

eav

es

I. c

occ

inea

f l

ow

ers

(Y)

I. c

occ

inea

lea

ves

(Y)

I. c

occ

inea

sta

lks

(Y)

I. c

occ

inea

flo

wer

s (O

)

I. c

occ

inea

lea

ves

(O

)

I. c

occ

inea

sta

lks

(O)

1 1-Tetradecanol (3)

- - - - + - - - - - - -

2 1-Hexacosanol (5)

- - - + - - - - - - - -

3 3,7,11,15-Tetramethyl-1-hexadecanol (11)

- - - + - - - + - - + -

4 3,7,11,15-Tetramethyl 2-hexadecen-1-ol (16)

- + - - - + - + - - + -

5 Pluchidiol (21)

+ - - - - - - - - - - -

6 2-Heptenal (25)

+ + - - - + - + + + + -

7 n-Nonanal (26) - - - + - - - - - + + -

8 2-Decenal (27)

+ + - + - - - - + + + +

9 n-Pentadecanal (29)

- - - + - - - - - - - -

10 13-Octadecenal (30)

- - - + - - + - + - - -

11 Benzoic acid (33)

- + - - - + - - - - - -

Page 116: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

109

12 Syringaldehyde (37)

- - - - - + - - + - - -

13 Vanillin (38) - - - - + + - - + + - -

14 Dibutyl 1,2-benzenedicarboxylate (42)

- - - - + + - + - + - -

15 Hexamethyl benzene (57)

- + - - - - - - - - - -

16 3,8 Dimethyl decane (67)

- - + - - + - - - - - -

17 2,6,11 Trimethyl dodecane (72)

- - - - - - - + - - - -

18 3-(1-Hexenyl) cyclohexene (74)

- - - - - - - - - - + -

19 4-Hydroxy 2-cyclohexen-1-one (75)

- + - - - - - - - - - -

20 1,1,4,4-Tetramethyl 2,5-dimethylene cyclohexane (76)

- - - - - - - - - + - -

21 1-(1-Methylethyl) cyclopentene (83)

- - - - - - - + - - - -

22 Octahydro-1-methylene 4(1H) azulenone (88)

- - - - - - - - - - - +

23 3 Cyclohexylidene-4-ethyl- 2-hexanone (94)

- + - - - - - - - - - -

24 Phthalic acid, butyl ester, ester with butyl glycolate (104)

- - + + - - - - + - - -

25 n-Decanoic acid (109)

- + - - - - - - + - - -

26 n-Tetradecanoic acid (110)

+ + + + + + + + + + + +

27 n-Hexadecanoic acid (111)

+ - - + - + + + - + + +

28 n-Octadecanoic acid (113)

- + + + + + - + - + + -

Page 117: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

110

29 10-Undecenoyl chloride (122) - + - - - - - - - + - -

30 n-Dodecane (125)

- - - - - - - - - - + -

31 n-Tridecane (126) - - + + + + - + + - + -

32 n-Tetradecane (127)

- - - - - - - + - + - -

33 n-Pentadecane (128)

- - - - + + - + - - - +

34 n-Hexadecane (129)

+ + + + + + + + + + + -

35 n-Nonadecane (130)

- - - - + - - - - - - -

36 n-Eicosane (131)

+ + + - + + + + + + - -

37 n-Tritriacontane (134)

- - - - + - - - - - - -

38 n-Pentatriacontane (136)

- - - + - - - + - - - -

39 n-Hexatriacontane (137)

- - - - - - - - + - - -

40 6,10-Dimethyl- 5,9-dodecadien-2-one (143)

- - - - - - - - + - + -

41 Pent-2-en-1,4-dione (148)

- + - - - - - - - - - -

42 Methyl octanoate (155)

+ + - - - - - - - + + -

43 Nonanedioic acid, mono methyl ester (158)

- + - - - - - - - + + -

44 Dimethyl nonanedioate (159)

- + - - - - - - - - - -

45 Methyl 9-oxo, nonanoate (160)

+ + - + - - - - + + + -

Page 118: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

111

46 Methyl tetradecanoate (165)

+ + - - - - - - - + + -

47 Methyl hexadecanoate (166)

+ + + + - + + + + + + +

48 Ethyl hexadecanoate (168)

+ - - + - - - + - - - -

49 Ethyl 1-methyl hexadecanoate (169)

- - - - - - - - - + - -

50 Methyl 15-methyl, hexadecanoate (170)

- - - - - - - - - - - +

51 Methyl 9-octadecenoate (175)

+ - - - - - - + - - - +

52 Methyl heptadecanoate (176)

- + - - - - - - - - - -

53 Methyl 9,12-octadecadienoate (177)

+ + + - + + - + + - + -

54 Methyl octadecanoate (178)

+ + + - + + + + + + + +

55 Methyl 9,12,15-octadecatrienoate (179)

+ - - - - + - - - - + +

56 Isopropyl palmitate (182)

- - + + - + - + + - - -

57 Methyl octacosanoate (183)

- - - + - - - - - - + -

58 Methyl heneicosanoate (184)

- + - - - - - - - - - -

59 Methyl docosanoate (185)

+ + + + - - - + + + + -

60 Methyl tricosanoate (186)

+ + - - - - - - + - + -

61 Methyl tetracosanoate (187)

+ + - + - - - - - + - -

62 Methyl pentacosanoate (188)

- + - - - - - - - - - -

Page 119: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

112

63 Methyl eicosanoate (191)

+ - + - - - + + + + - -

64 3-Mercapto-2(1H)-pyridinone (197)

- - - - - - - - + - - -

65 4,8,12-Trimethyltridecan-4-olide (203)

- - - + - - - + - - - -

66 4-(1-Methylethyl) cyclohexanol (209)

- + - - - - - - - - - -

67 7,11,15-Trimethyl, 3-methylene-1-hexadecene (219)

- + - - - + - + - - + -

68 (-)-Loliolide (220)

+ + - + - + - + + - + -

69 Norolean-12-ene (225)

- - - - - - - + - - - -

70 α-Tocopherol (228)

- + - + - + - + + - + -

71 β-Tocopherol (229)

- + - + - + - + - - + -

72 δ-Tocopherol (230)

- + - - - - - + - - - -

73 3-Pentanol (232)

- + - - - - - - - - + -

74 1-Tridecanol (233) - + - - - - - - - - - -

75 (2,4,6-Trimethylcyclohexyl) methanol (234)

- + - - - - - - - - + -

76 5-Methyl-5-hexen-3-yn-2-ol (235)

- + - - - + - - - - + -

77 2,5,5-Trimethyl-3,6-heptadien-2-ol (236)

- - - - - - - - - - + -

78 1-Cyclopenten-4-ol (237)

- - - + - - - + - - + -

79 2-Hexen-1-ol, acetate (238) - - - - - - - + - - + -

Page 120: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

113

80 3-Hexen-1-ol, acetate (239) - - - - - - - + - - - -

81 3,3,6-Trimethyl-1,4-heptadien-6-ol (240) - + - - - - - + - - - -

82 5-Methyl-2-(1-methylethyl) 1-hexanol (241)

- - - + - - - - - - - -

83 2,6-Dimethyl 3,7-octadiene-2,6-diol (242)

- - - - - - - - + - - -

84 2,6-Dimethyl- 1,7-octadiene-3,6-diol (243)

- - - - - - - - + - - -

85 2-Nonenal (244)

- - - - - - - - + - - -

86 2,4-Heptadienal (245)

- + - - - - - - - - + -

87 2,4-Decadienal (246)

- + - - - - - - - - + -

88 2,4-Dodecadienal (247)

- + - - - - - - - - - -

89 2 Ethyl butanal (248) - - - + - - - - - - - -

90 n-Octenal (249)

- - - - - - + - - - - -

91 n-Undecenal (250)

- - - - - - - - - - - -

92 14-Methyl 8 hexadecenal (251)

- - - + - - - - - - - -

93 N,N-Bis(2-hydroxy ethyl) dodecanamide (252)

- + + + - - - + + + - -

94 Isovanillic acid (253)

- - + - - - - - - - - -

95 3,4-Dimethoxybenzene1,2-diol (254)

- - - - - - - - + - - -

96 Bis (2-ethyl hexyl) 1,2-benzenedicarboxylate (255)

+ + + + + + + + + + + +

Page 121: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

114

97 Bis (2-methyl propyl) 1,2-benzenedicarboxylate (256)

- - - + - - - - - - - -

98 1 Methyldecyl benzene (257)

- - - - + - - - - - - -

99 1 Methylundecyl benzene (258)

- - - - + - - - - - - -

100 1,4 Dimethyl benzene (259)

- - - + - - - - - - - -

101 1,3,5-Trimethyl benzene (260)

- - - + - - - - - - - -

102 1-Methyl-4-(1-methylethyl) benzene (261)

- + - + - + - - - - + -

103 3-(4-Methoxy phenyl), 2-ethyl hexyl 2-Propenoate (262)

- - - + - - - - - - - -

104 3-(4-Hydroxy-3-methoxy phenyl)- 2-propenal (263)

- - - - - - - - + - - -

105 Bicyclo[[7.1.0]dec-2-ene (264)

- - - - - - - - - - + -

106 Bicyclo[3.1.1]hept-2-en-4-ol, 2,6,6-trimethyl-, acetate (265)

- - - - - - - - - - + -

107 Bicyclo[4.3.0]non-3-ene, 3,4,5-trimethyl-(266) - + - - - - - - - - - -

108 5,7,7-Trimethylbicyclo[3.3.0]oct-8-en-2-one (267)

+ - - - - - - - - - - -

109 1,5-Dimethyl- 7-oxabicyclo [4.1.0] heptane (268)

- - - - - - - + - - - -

110 1,6,8-Trimethyl-10-methylene-5-phenyl-1,2,3-triazo[4,5-β]tricyclo[3... (269)

+ - - - - - - - - - - -

111 Methyl-4-isopropyl-bicyclo [2.2.2] octa-5-ene-2,3-dicarboxylic anhydride

(270)

- - + - - - - - - - - -

112 Hexahydro 2,5-methano-1H-inden-7(4H)-one (271)

- + - - - - - - - - - -

113 4 Methyl undecane (272)

+ - - - - - - - - - - -

Page 122: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

115

114 5 Methyl undecane (273)

- - + - - - - - - - - -

115 5 Ethyl undecane (274)

- - - - - - - - - - + -

116 3,5 Dimethyl undecane (275)

- - - - - + - - - - - -

117 3,8 Dimethyl undecane (276)

- - - + - - - - - - - -

118 4,7 Dimethyl undecane (277)

- - + + + - - - - - - -

119 5,7 Dimethyl undecane (278)

- - - - - - + - - - - -

120 3,3,6 Trimethyl decane (279)

- + - - + - - - - - - -

121 2,3,7 Trimethyl decane (280)

- - - - - + - - - - - -

122 2,6,10 Trimethyl dodecane (281)

- + - - - - + + + - + -

123 2,7,10 Trimethyl dodecane (282)

- - - - - - - - - - + -

124 2,5 Dimethyl tridecane (283)

- - + - - - - - - - - -

125 7 Methyl 6-tridecene (284)

- - - - - - - - + - - -

126 5-Propyl tridecane (285)

- - - - - - - - + - - -

127 2,5-Dimethyl tetradecane (286)

- - + - - - - - - - - -

128 3,5-Dimethyl 2-octanone (287)

- - - - - - - - - - + -

129 2,3,5-Trimethyl hexane (288) - - - - - - - - - - + -

130 2,6,10,14-Tetramethyl hexadecane (289)

- - + + - - + + - - - +

Page 123: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

116

131 2,6,10,15-Tetramethyl heptadecane (290)

- - + - - - - - - - - -

132 7-Hexadecene (291)

- - - + - - - - - - - -

133 3-Methyl 1,4-heptadiene (292)

- + - - - - - - - - - -

134 3 Methyl-5-propyl nonane (293)

- - + - - - - + - - - -

135 5-Eicosene (294)

- + - - - - - - - - - -

136 6,10,14-Trimethyl 2-pentadecanone (295)

+ + + + - + + + + + + +

137 5,7-Dimethyl 1,6 octadiene (296)

- + - - - - - - - - - -

138 Branched nonadecane (297)

- - - - + - - - - - - -

139 3,13-Dimethyl heptadecane (298)

- - - - - + - - - - - -

140 2,3-Dimethyl 2-pentene (299)

- - - - - - - + - - - -

141 3 Hydroxy 3,5-dimethyl-2-hexanone (300)

- - - - - - - + - - - -

142 Acetate, 4-hydroxy-3-methyl-2-butenyl (301) - - - - - - - + - - - -

143 4-(3-Hydroxy-1-butenyl)-3,5,5-trimethyl-2-cyclohexen-1-one (302)

- + - - - - - + + - - -

144 1-Methyl cyclohexene epoxide (303)

- - - + - - - - - - - -

145 1,5-Diethenyl-2,3-dimethyl cyclohexane (304) - - - - - - - - - + - -

146 3-Isopropenyl-1,2-dimethyl cyclopentane (305)

- + - - - + - - - - - -

147 1,1,3 Trimethyl cyclopentane (306)

- - - + - - - - - - - -

Page 124: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

117

148 2,4,4-Trimethylcyclopentanol (307)

- - - - - - - + - - - -

149 2-Ethyl-1,1-dimethyl cyclopentane (308)

- - - - - - - - - - + -

150 8-Methyl tricyclo [3.3.0.0(2,8)]octan-3-one (309)

- + - - - - - - - + + -

151 Tricyclo[4.3.1.0(2,5)]decane (310)

- + - - - - - - - + - -

152 1-(2-Methylene-3-butenyl)-1-(1-methylene propyl) cyclopropane (311)

- + + - - - - - - - - -

153 3-Cyclopropyl-2-butanone (312)

- - - - - - - + - - - -

154 2-(1,1-Dimethyl ethyl) anthracene (313)

- - + - - - - - - - - -

155 1-(1-Cyclohexen-1-yl) ethanone (314)

- - - + - - - + - - + -

156 1 Cyclopropyl ethanone (315)

- - - - - - - + - - - -

157 α-Pinene, 2,6,6-Trimethyl- (-)-bicyclo[3.1.1]hept-2-ene (316)

- - - + - - - - - - - -

158 1-Methyl-1,3-cyclononadiene (317)

- - - + - - - - - - - -

159 4,8,12,16-Tetramethylhepta decan -4-olide (319)

- - - - - - + - + - - -

160 2-Isopropenyl-5-methyl cyclohexyl acetate (320)

- - - - - - - + - - - -

161 Cyclopentylcyclopentanol (321)

- - - - - - - + - - - -

162 3-(2-Butenyl)-2-cyclohepten-1-one (322)

- - - - - - - - + - - -

163 1-[(1,2-epoxy-3-hydroxy) propyl] cyclohexane (323)

- - - - - - - - - - + -

164 1,5-Dimethyl- 7-oxabicyclo[4.1.0]heptanes (324)

- - - - - - - - - - + -

Page 125: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

118

165 2-Methyl[1,3,4] oxadiazole (325)

- + - - - - - - - - - -

166 3-Ethyl-4-methyl- 1H-pyrrole-2,5-dione (326)

- + - - - + - - - - + -

167 1H-Pyrrole-2,5-dione, 3-ethyl-4-methyl- 2-decenal (327)

- - - - - - - + - - - -

168 2-2,4-Ethanopentaleno[1,2]oxirene, hexahydro (328) - + - - - - - - - - - -

169 5,6,7,7-Tetrahydro-4,4,7-trimethyl 2(4H) benzofuranone (329)

- + - - - + - + + - + -

170 7-Hydroxy-6-methoxy-2H-1-benzopyran-2-one (330)

- - + - - + - - + - - +

171 Methyl 8-(2-furyl) octanoate (331)

- + - - - - - - - - - -

172 Dihydro-5-(hydroxymethyl)-2(3H)-furanone (332)

- + - - - - - - - - - -

173 2-Pentyl furan (333)

- - - + - - - - + - - -

174 Methyl-2,3,4,5-tetrahydro-4-methyl-1,5-dioxo-1H-benz[c]azepine-3-c.. (334)

- - - - - + - - - - - -

175 Dihydro methyl furanone (335)

- - - - - - - + - - - -

176 1 Methyl 1H-pyrazole (336)

- - - - - - - - - - + -

177 3 Methyl 1H-pyrazole (337)

- - - - - - - + - - - -

178 Tetramethyl 1-benzoyloxy-4,5-dihydro pyrido(1,2)azepine-2,3,4,5-

tetracarbox... (338)

- - - - - - - - + - + -

179 2-Hydroxy-3-methyl-5-methoxy-p-benzo quinone (339)

- - - - - - - - + - - -

180 6,7-Dimethoxy-1,4-dihydro-2,3-quinoxalinedione (340)

- - - - - - - - + - - -

181 6,7-Dimethyl-1,2,3,5,8,8-hexahydro naphthalene (341)

- - - - - - - - + - - -

Page 126: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

119

182 2-Methyl[1,3,4] oxadiazole (342)

- - - - - - - - - - + -

183 1,2 Epoxy dodecane (343)

- - - - - - - - - - + -

184 n-Octanoic acid (344)

+ - - - - - - - - + - +

185 n-Dodecanoic acid (345)

+ - - - - - - - - - - -

186 n-Eicosanoic acid (346)

- - - - - - - - - - + -

187 9-Oxononanoic acid (347)

+ + - + - + - - + + - +

188 6,9,12-Octadecatrienoic acid (348)

- + - - - - - - - - - -

189 cis-Vaccenic acid (349)

- - - - - - - + - - - -

190 Kaempferol (350)

+ - - - - - - - - - - -

191 2-Fluoro-3,3-dimethylbutanal (351)

- - + - - - - - - - - -

192 3,7-Dimethyl-1-octyl methyl phosphono fluoridate (352)

- + - - - - - - - - - -

193 1-Chloroheptylacetate (353)

- - - - - - - + - - - -

194 1,2-Dicyclohexyl-1,1,2,2-tetrafluoro ethane (354)

- - - - - - - - - - - +

195 n-Heptadecane (355)

- - - - - - - + - - - -

196 1-Nonadecene (356)

- - - - + - - - - - - -

197 n-Tricosane (357)

- - + - - - + - - - - -

198 n-Nonacosane (358)

- - + - - - - - - - - -

Page 127: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

120

199 2-Pentadecanone (359)

- - - - - - - - + - - -

200 5-Methyl- 3-hexen-2-one (360)

- + - - - - - - - - + -

201 Hexadecanoic acid, trimethylsilyl ester (361)

- - - - - - + - - - - -

202 Methyl 10-oxo-8-decenoate (362)

+ - - - - - - - - - - -

203 Methyl 8-oxo octanoate (363)

- + - - - - - - - - - -

204 Methyl 9-octadecenoate (364)

- - - - - - - - - + - -

205 Methyl 6-octadecenoate (365)

- - - - - - - - - - + -

206 Methyl 4,7,10,13-hexadecatetraenoate (366)

- + - - - - - - - - - -

207 Acrylic acid octadecanyl ester (367)

- - - + - - - - - - - -

208 Neopentyl 2,2-dimethylbutanoate (368)

- - - - - - - - - - + -

209 2-Ethylhexyl tridecyl sulfuate (369)

- - + - - + - - - - - -

210 3-Isopropoxy-1,1,1,7,7,7-hexa methyl-3,5,5-tris (trimethyl siloxy)

tetrasiloxane (370)

- - - + - - - - - - - -

211 1,1,1,5,7,7,7-Heptamethyl-3,3-bis (trimethyl siloxy)tetrasiloxane (371)

- - - + - - - - - - - -

212 Eicosa methyl cyclodecasiloxane (372)

- - - + - - - - - - - -

213 Octadeca methyl cyclonona siloxane (373)

- - - + - - - - - - - -

214 2-Propyl undecyl sulfate (374)

- - - - - - - + - - - -

215 1,1-Dioxide 2,3-dimethylthiirane (375)

- - - - + - - - - - - -

Page 128: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

121

216 4-Vinylphenol (376)

+ - - - - - - - - - - -

217 2,4-Bis(1,1-dimethyl ethyl) phenol (377)

- - - - + - - - - - - -

218 4-3-Hydroxy-1-propenyl)-2-methoxy phenol (378)

- - - - - - - - + - - -

219 α-Amyrin (379)

- - - - - - - - + - - -

220 β- Amyrin (380)

- - - - - - - - + - - -

221 Vomifoliol (381)

- + - - - - - - + - - -

222 γ-Tocopheryl methyl ether (382)

- + - - - - - - - - - -

223 Stigmasterol (383) - - - - - + - - - - - -

224 9-Octadecenoic acid (478)

+ - - - - - - - - - - -

I = Ixora; + = present; - = absent; O = orange color flowers containing plant; Y = yellow color flowers containing plant

Page 129: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

122

Table 6: Identification of chemical compounds of I. chinensis flowers methanol

extracts through GC and GC-MS studies.

S.

No.

List of Compounds

1 2-Heptenal (25)

2 2-Decenal (27)

3 N,N-Bis(2-hydroxyethyl) dodecanamide (32)

4 Bis (2-ethylhexyl) 1,2-benzenedicarboxylate (40)

5 (1-Propyloctyl) benzene (43)

6 Decanoic acid (109)

7 Tetradecanoic acid (110)

8 Hexadecanoic acid (111)

9 Heptadecanoic acid (112)

10 Octadecanoic acid (113)

11 n-Hexadecane (129)

12 Methyl hexadecanoate (166)

13 Methyl 9-octadecenoate (175)

14 Methyl 9,12-octadecadienoate (177)

15 Methyl octadecanoate (178)

16 Isopropyl palmitate (182)

17 Methyl docosanoate (185)

18 Methyl eicosanoate (191)

19 α-Tocopherol (228)

20 1-Tridecanol (233)

21 Undecenal (250)

22 6,10,14-Trimethyl- 2-pentadecanone (295)

23 5,9-Dimethyl 4,8-decadienal (384)

24 4,8,12,16-Tetramethylheptadecan-4-olide (385)

25 1-Eicosanol (386)

26 (3β)- Cholesta-4,6-dien-3-ol, benzoate (387)

Page 130: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

123

activity against two Gram positive and four Gram negative bacteria (Table 7). B. subtilis and

S. aureus were the name of Gram positive bacteria while, E. coli, S. flexenari, P. aeruginosa

and S. typhii were the name of Gram negative bacteria. I. fulgens flowers (H1), I. fulgens

leaves (H2), I. polyantha flowers (H4), I. chinensis flowers (H7), I. chinensis leaves (H8), I.

coccinea flowers (yellow, H10), I. coccinea leaves of yellow flowers (H11), and stalks (H12),

I. coccinea flowers (orange, H13), I. coccinea leaves of orange flowers (H14), and stalks

(H15), were the hexane extracts. Whereas, I. fulgens flowers (M1), I. fulgens leaves (M2), I.

polyantha flowers (M4), I. polyantha leaves (M5), I. chinensis flowers (M7), I. chinensis

leaves (M8), I. coccinea flowers (yellow, M10), I. coccinea leaves of yellow flowers (M11),

and stalks (M12), I. coccinea flowers (orange, M13), I. coccinea leaves of orange flowers

(M14), and stalks (M15), were the extracts of methanol solvent, which were used for the

evaluation of antibacterial activity. Hexane extracts showed inactive behavior against all the

examined organisms except few, which showed non significant activity. H1 (11.87 %), H7

(15.36 %), H8 (8.47 %), H11 (20.74) and H15 (13.66 %) showed low % of inhibition of

compounds against E. coli. All the tested methanol extracts were exhibited insignificant

antibacterial potential against B. subtilis, S. flexenari and S. aureus. Methanol extracts of

different parts of the plants exhibited, M1 (13.28 %), M5 (12.58 %), M7 (16.17 %), M8 (31.66

%), M10 (24.44 %), M11 (24.98 %), M12 (14.15 %), M13 (38.80 %), and M15 (6.57 %)

inhibition against B. subtilis. Moreover, only four extracts were exhibited activity against S.

aureus, M1 (3.78 %), M4 (23.69 %), M8 (29.96 %) and M13 (22.32 %) inhibition. M1 (6.91

%), M4 (16.39 %), M5 (6.13 %), M7 (6.72 %), M10 (12.51 %), M11 (2.42 %), M12 (7.03 %),

M13 (10.07 %), and M14 (13.59 %) showed low activity against S. flexnari. Whereas, only

M4 showed (5.98 %) inhibition against P. aeruginosa and M10 exhibited (3.47 %) inhibition

against S. typhii. All the tested methanol extracts were inactive agaist E. coli. Amount of

samples were used 06mg, while the concentration of compounds used 150 µg/mL. As

mentioned earlier different plant extracts have earlier been reported in literature having as

antibacterial agents.1d-g,3a-c,4a-c

c) Antifungal activity

Hexane (H) and methanol (M) extracts of Ixora species namely, I. coccinea (orange and

yellow flowers), I. fulgens, I. polyantha, and I. chinensis were examined for antifungal activity

against A. niger, C. albicans, C. glabrata, F. lini, M. canis, and T. rubrum (Table 8). Ixora

Page 131: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

124

fulgens flowers (H1), I. fulgens leaves (H2), I. polyantha flowers (H4), I. chinensis flowers

(H7), I. chinensis leaves (H8), I. coccinea flowers (yellow, H10), I. coccinea leaves of yellow

color flowers (H11), and stalks (H12), I. coccinea flowers (orange, H13), I. coccinea leaves

of orange flowers (H14), and stalks (H15), were the hexane extracts. Whereas, I. fulgens

flowers (M1), I. fulgens leaves (M2), I. polyantha flowers (M4), I. polyantha leaves (M5), I.

chinensis flowers (M7), I. chinensis leaves (M8), I. coccinea flowers (yellow, M10), I.

coccinea leaves of yellow flowers (M11), and stalks (M12), I. coccinea flowers (orange,

M13), I. coccinea leaves of orange flowers (M14), and stalks (M15), were the extracts of

methanol solvent, which were used for the evaluation of antifungal assay and found to be

inactive against all the tested fungi. Concentration of compounds were used 400 µg/mL, while

standard drug were named as micrnazole and amphotericin B. Antifungal activity of Ixora

species have been cited previously in literatue. 1d-g,3a-c,4a-c

d) Antioxidant activity

Antioxidant assay can be defined as, the activity of a chemical constituents to decrease

oxidative degradation, similar to lipid peroxidation. Phenolic class is the major example of

antioxidant element of food material. Although antioxidant assay of polyphenols are

distributed with various mechanisms, the supporting activity of phenolics towards of active

free radicals is considered as the important mechanism. Antioxidant reaction ability provides

the knowledge about the time period of antioxidative reaction, the reactivity tells the first

dynamics of antioxidation at a exact concentration of an antioxidant. The valuable influence

of a lot of food stuff consisting fruits, vegetables, tea, and coffee on man physical state to

initiate from the chain-breaking antioxidant action of natural polyphenols, a significant factor

of the above mentioned products. The dietary worth of products is created to a large amount

by their antioxidant potential.106 DPPH estimation is the method for determining antioxidant

assay. The DPPH test is situated on the potential of stable free radical 2,2-diphenyl-1-

picrylhydrazyl to react with H-donors consisting phenolics. As DPPH shows a very intensive

absorption in the visible region, it can be easily concluded by the UV–Vis spectroscopy, while

ESR method in addition is appropriate.106

The antioxidant potential of the flowers, leaves and stalks extracts of Ixora species were

Page 132: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

125

estimated by using DPPH assay. Methanol extact (M9) of I. coccinea stalk showed maximum

inhibition whereas, I. coccinea leaves (M8) and I. chinensis leaves (M6) sowed significant

activity as compared to standard compound (Table 9).

Furthermore, I. fulgens flowers, and leaves, I. coccinea leaves (orange color flowers) and I

chinensis flowers and I. polyantha leaves showed good activity. The order of antioxidant

potency trend of methanol extracts of the plants were as follows: I. coccinea stalk > I.

chinensis leaves > I. coccinea leaves (yellow color flowers) > I. fulgens flowers > I. chinensis

flowers = I. coccinea leaves (orange color flowers) > I. polyantha leaves > I. fulgens leaves >

I. coccinea stalk (orange color flowers) (Table 9). All the hexane and chloroform extracts of

the plants were inactive on DPPH assays. Antioxidant activity of plant extracts and isolated

compounds were reported in literature as antioxidant agent.1a-g,5a-c

e) Immunomodulatory activity

Immunomodulation is a process in which immune system of an organism can be transform

with its function, it results in increase of immune responses,is known as an immunostimulative

behavior which mainly indicates support of non specific system, like, macrophages,

granulocytes, complement, and T-lymphocytes. Immunosuppression implies usually to reduce

opposition against stress, infections, and chemotherapeutic issues. Both processes equally

required to be tackled in order to control the normal immunological tasks. Natural and

synthetic compounds are used as immunosuppressive and immunostimulative representatives.

Both types of immunomodulating agents have their own position for productive compounds

for appling these activities in the field of main impact in the world. However there are

restrictions to the general use of these compounds for example increased chances of infection

and complete results all over the immune system.107

In these studies, immunomodulatory assay of hexane, chloroform and methanol extracts of

Ixora species (flowers, leaves, and stalks) have been determined. Effects of these extracts on

extra and intracellular eactive oxygen species (ROS) production were studied. Intracellular

effects was determined by using oxidative brust assay chemiluminesence technique (whole

blood phagytes, isolated neutophils and from mice peritoneum macrophages). These studies

Page 133: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

126

showed that, all the extracts except only one methanol extract were found to be non active

against ROS. I. chinensis leaves methanol extract showedsignificant activity on extracellular

ROS production from whole blood, macrophages and neutrophil assay. It showed a very

potent inhibitory effect of chemluminesence, with IC50 value of 19.5 ± 0.4 µg/mL. For

immunomodulating assay Ibuprofen has been used as standard compound (Table 10). This is

the first time investigation of immunomodulatory assay on this plant extracts.

B) Bioassay guided isolation studies on Ipomoea species:

a) Cytotoxic activity

Medicinally important phytochemicals have been isolated and identified from medicinal

plants. These chemical constituents have been recognized for their healing properties. A large

number of plant derived natural chemical constituents have been isolated from the plants are

well known and well documented in literature a anticancer agent.40a,42,51 Uncrushed, dried

leaves of two Ipomoea species plant were subjected for the chemical and biological studies

namely Ipomea batata blackie, and I. batata pink frost. Both plants were extracted with hexane

(H) followed by chloroform (C), and methanol (M) through soxhlet extraction method. All

the above mentioned extracts were evaporated through rotary evaporator to give respective

residue (Experimental). Total two extracts were obtained from hexane (H1-H2), two from

chloroform (C1-C2) and two from methanol (M1-M2). Hexane and chloroform extracts were

evaluated through GC and GC-MS examination for the identification of chemical compounds.

The cytotoxic activity of extracts of flowers of Ipomoea species Linn. (Convolvulaceae),

reported for the first time against HeLa, NCI H-460 and MCF-7 human cancer cell lines and

identification of chemical constituents via GC-MS analysis of all the subjected extracts.

Hexane extract, of I. batata pink frost was found to be most active against HeLa cell line,

exhibiting both growth inhibitory (GI50: 85 ± 3.2 µg/mL) and cytotoxic properties (LC50: 20

± 3.5µg/mL) against HeLa cancer cell line (HeLa). While, chloroform extract of I. batata

(blackie) exhibited good effects against HeLa cell line showed growth inhibition (GI50: 80 ±

3.9 µg/mL). Moreover, methanol extract of I. batata pink frost was most potent against

Page 134: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

127

Table 7: In vitro antibacterial activity of extracts of different parts of Ixora species.

S.

No.

Plants name (parts)

Pla

nt

co

de

Gram positive

bacteria

Gram negative bacteria

Ba

cill

us

sub

tili

s

Sta

ph

ylo

cocc

us

au

reu

s

Esc

heri

chia

co

li

Sh

igel

la f

lex

ena

ri

Pse

ud

om

on

os

aer

ug

ino

sa

Sa

lmo

nel

la t

yph

ii

Percent (%) inhibition of drugs

1 I. fulgens (flowers) H1 - - 11.87 - - -

2 I. fulgens (leaves) H2 - - - - - -

3 I. polyantha (flowers) H3 - - - - - -

4 I. polyantha (leaves) H4 - - - - - -

5 I. chinensis (flowers) H5 - - 15.36 - - -

6 I. chinensis (leaves) H6 - - 8.47 - - -

7 I. coccinea (flowers)(Y) H7 - - - - - -

8 I. coccinea (leaves)(Y) H8 - - 20.74 - - -

9 I. coccinea (stalk) (Y) H9 - - - - - -

10 I. coccinea (flowers) (O) H10 - - - - - -

11 I. coccinea (leaves)(O) H11 - - - - - -

12 I. coccinea (stalk) (O) H12 - - 13.66 - - -

13 I. fulgens (flowers) C1 20.28 25.37 23.35 - - -

14 I. fulgens (leaves) C2 - - - - - -

15 I. polyantha (flowers) C3 - 10.98 - - - -

16 I. polyantha (leaves) C4 - - - - - -

Page 135: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

128

Amount of extracts = 6 mg; Concentration of extracts =150 µg/mL; - = Inactive; Y = yellow color flowers

containing plant; O = orange color flowers containing plant; H = hexane extract; C = chloroform extract; M =

methanol extract

17 I. chinensis (flowers) C5 - - - - - -

18 I. chinensis (leaves) C6 - 38.57 - - - -

19 I. coccinea (flowers) (Y) C7 - 2.86 12.89 - - -

20 I. coccinea leaves (Y) C8 - 19.27 - - - -

21 I. coccinea (stalk) (Y) C9 - - - - - -

22 I. coccinea (flowers) (O) C10 32.59 7.60 - - - -

23 I. coccinea (leaves) (O) C11 - - - - - -

24 I. coccinea (stalk) (O) C12 - - 6.48 - 5.11 -

25 I. fulgens (flowers) M1 13.28 3.78 - 6.91 - -

26 I. fulgens (leaves) M2 - - - - - -

27 I. polyantha (flowers) M3 - 23.69 - 16.39 5.98 -

28 I. polyantha (leaves) M4 12.58 - - 6.13 - -

29 I. chinensis (flowers) M5 16.17 - - 6.72 - -

30 I. chinensis (leaves) M6 31.66 29.96 - - - -

31 I. coccinea (flowers) (Y) M7 24.44 - - 12.51 - 3.47

32 I. coccinea (leaves) (Y) M8 24.98 - - 2.42 - -

33 I. coccinea (stalk) (Y) M9 14.15 - - 7.03 - -

34 I. coccinea (flowers) (O) M10 38.80 22.32 - 10.07 - -

35 I. coccinea (leaves)(O) M11 - - - 13.59 - -

36 I. coccinea (stalk) (O) M12 6.57 - - - - -

37 Ampicillin (standar drug) 94.97 92.45 93.12 90.64 93.97 90.23

Page 136: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

129

Table 8: In vitro antifungal activity of different parts of Ixora species.

S.

No.

Plants name (part)

Pla

nt

co

de

Tri

chp

hyt

on

ru

bru

m

Ca

nd

ida

alb

ica

ns

Asp

erg

illu

s n

iger

Mic

rosp

oru

m c

an

is

Fu

sari

um

lin

i

Ca

nd

ida

gla

bra

ta

Percent (%) inhibition of drugs

1 I. fulgens (flowers) H1 - - - - - -

2 I. fulgens leaves H2 - - - - - -

3 I. polyantha (flowers) H3 - - - - - -

4 I. polyantha leaves H4 - - - - - -

5 I. chinensis (flowers) H5 - - - - - -

6 I. chinensis leaves H6 - - - - - -

7 I. coccinea (flowers) (Y) H7 - - - - - -

8 I. coccinea leaves (Y) H8 - - - - - -

9 I. coccinea stalk (Y) H9 - - - - - -

10 I.coccinea (flowers) (O) H10 - - - - - -

11 I.coccinea leaves (O) H11 - - - - - -

12 I. coccinea stalk (O) H12 - - - - - -

13 I. fulgens (flowers) M1 - - - - - -

14 I. fulgens leaves M2 - - - - - -

15 I. polyantha (flowers) M3 - - - - - -

16 I. polyantha leaves M4 - - - - - -

17 I. chinensis (flowers) M5 - - - - - -

18 I. chinensis leaves M6 - - - - - -

19 I. coccinea (flowers) (Y) M7 - - - - - -

Page 137: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

130

Concentration of extracts = 400 µg/mL; - = Inactive; Y = yellow color flowers containing plant; O = orange

color flowers containing plant; H = hexane extract; M = methanol extract

20 I. coccinea leaves (Y) M8 - - - - - -

21 I. coccinea stalk (Y) M9 - - - - - -

22 I. coccinea (flowers) (O) M10 - - - - - -

23 I. coccinea leaves (O) M11 - - - - - -

24 I. coccinea stalk (O) M12 - - - - - -

25 Micronazole (standard drug) - - - - - - -

26 Amphotericin B (standard drug) - - - - - - -

Page 138: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

131

Table 9: Antioxidant (DPPH) activity of extracts on Ixora species.

S. No. Plants name (parts) Sample

codes

% RSA

(Radical Scavenging

Activity)

(µg/mL)

IC50 ± SEM

µg/mL

1 I. fulgens (flowers) H1 16.084 -

2 I. fulgens (leaves) H2 15.611 -

3 I. polyantha (flowers) H3 36.097 -

4 I. polyantha (leaves) H4 24.471 -

5 I. coccinea (leaves) (O) H11 37.680 -

6 I. coccinea (stalk) (O) H12 35.418 -

7 I. fulgens (leaves) C2 21.467 -

8 I. polyantha (flowers) C3 29.745 -

9 I. polyantha (leaves) C4 29.616 -

10 I. chinensis (flowers) C5 14.852 -

11 I. coccinea (stalk) (Y) C9 58.747 Insoluble

12 I. coccinea (flowers) (O) C10 20.414 -

13 I. coccinea (leaves) (O) C11 17.105 -

14 I. coccinea (stalk) (O) C12 36.779 -

15 I. fulgens (flowers) M1 90.377 116.107± 1.19

16 I. fulgens (leaves) M2 88.173 116.536 ±2.13

17 I. polyantha (flowers) M3 54.169 390.839±4.2

18 I. polyantha (leaves) M4 89.240 86.367±1.55

19 I. chinensis (flowers) M5 89.811 105.134±0.27

20 I. chinensis (leaves) M6 91.435 54.261±0.94

21 I. coccinea (flowers) (Y) M7 20.218 -

Page 139: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

132

IC50 = 50% effective conc. of antioxidant activity; - = Inactive; Y = yellow color flowers containing plant;

O = orange color flowers containing plant; H = hexane extract; C = chloroform extract; M = methanol

extract

22 I. coccinea (leaves) (Y) M8 90.725 25.501±0.132

23 I. coccinea (stalk) (Y) M9 92.145 30.110±0.24

24 I. coccinea (flowers) (O) M10 59.403 389.60±2.47

25 I. coccinea (leaves) (O) M11 89.811 120.52±0.5

26 I. coccinea (stalk) (O) M12 82.452 193.57±1.6

27 Gallic acid (standard drug) - 93.93 23.436±0.43

28 N-acetyl cysteine

(standard drug)

- 95.95 111.44±0.7

Page 140: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

133

Table 10: Immunomodulatory activity of extracts on Ixora species.

S. No. Plants name (parts) Sample

codes

% Inhibition

/stimulation

IC50 ± SD

1 I. fulgens (flowers) H1 -25.8 -

2 I. fulgens (leaves) H2 20.2 -

3 I. polyantha (flowers) H3 - -

4 I. polyantha (leaves) H4 -31.4 -

5 I. chinensis (flowers) H5 - -

6 I. chinensis (leaves) H6 - -

7 I. coccinea (flowers)(Y) H7 - -

8 I. coccinea (leaves) (Y) H8 - -

9 I. coccinea (stalk) (Y) H9 30.6 -

10 I. coccinea (flowers)(O) H10 - -

11 I. coccinea (leaves) (O) H11 - -

12 I. coccinea (stalk) (O) H12 - -

13 I. fulgens (flowers) C1 12.8 -

14 I. fulgens (leaves) C2 1.8 -

15 I. polyantha (flowers) C3 22.2 -

16 I. polyantha (leaves) C4 19.2 -

17 I. chinensis (flowers) C5 -3.0 -

18 I. chinensis (leaves) C6 -7.4 -

19 I. coccinea (flowers)(Y) C7 -2.5 -

20 I. coccinea (leaves) (Y) C8 - -

21 I. coccinea (stalk) (Y) C9 36.3 -

22 I. coccinea (flowers) (O) C10 - -

23 I. coccinea (leaves) (O) C11 - -

Page 141: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

134

Concentration of extracts = 25 µg/mL; * = 250, 50, 10 µg/mL; - = Inactive; Y = yellow color flowers

containing plant; O = orange color flowers containing plant; H = hexane extract; C = chloroform

extract; M = methanol extract

24 I. coccinea (stalk) (O) C12 - -

25 I. fulgens (flowers) M1 15.2 -

26 I. fulgens (leaves) M2 - -

27 I. polyantha (flowers) M3 - -

28 I. polyantha (leaves) M4 16.5 -

29 I. chinensis (flowers) M5 3.5 -

30 I. chinensis (leaves)* M6 - 19.5 ± 0.4

31 I. coccinea (flowers) (Y) M7 - -

32 I. coccinea (leaves) (Y) M8 34.3 -

33 I. coccinea (stalk) (Y) M9 - -

34 I. coccinea (flowers) (O) M10 -16.9 -

35 I. coccinea (leaves) (O) M11 13.2 -

36 I. coccinea (stalk) (O) M12 25.0 -

37 Ibuprofen (drug) - 73.2 11.2 ± 1.9

Page 142: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

135

HeLa cell line showing both growth inhibitory (GI50: 12 ± 3.4 µg/mL) and cytotoxic properties

(LC50: 70 ± 4.7 µg/mL). All the extracts were tested for anticancer activity (Table 11) (Figure

5). Moreover, 41 chemical constituents have been identified from hexane extract of I. batata

blackie leaves extract and 49 Phytochemicals were identified from chloroform extract of I.

batata blackie. Whereas, 77 chemical constituents have been identified from hexane extract

of I. batata pink frost leaves while, 37 Phytochemicals were identified from chloroform

extract of I.batata pink frost leaves including hydrocarbons, fatty acids, esters of fatty acids,

alcohol, aromatic acids, their esters, terpenes and tocopherols through GC and GC-MS studies

(Tables 12,13).

In conclusion, the cytotoxic activity was examined for the first time of extracts of Ipomoea

species. These studies revealed that the leaves of non-polar and moderately polar extracts of

Ipomoea species contained medicinal chemical constituents, which were analyzed by GC and

GC-MS technique (Tables 12, 13). The identification of compounds were made through GC

and GC-MS spectra and mass hunter data base.101c

b) Antibacterial activity:

Hexane (H) and methanol (M) leaves extracts of Ipomoea species namely, I. batata (Blackie)

and I. batata pink frost were screened for antibacterial assay against Gram positive (B. subtilis

and S. aureus) and Gram negative bacteria (E. coli, P. aeruginosa, S. flexenari, and S. typhii)

and found to be non significant against all the examined bacteria (Table 14). The antibacterial

activity of Ipomoea species have been previously reported in literature.40a

c) Antifungal activity:

Hexane (H) and methanol (M) leaves extracts of Ipomoea species namely, I. batata (Blackie)

and I. batata pink frost were examined for antifungal activity against T. rubrum, C. albicans, A.

niger, M. canis, F. lini and C. glabrata. I. batata blackie (H16, M16), and I. batata pink frost

leaves (H17, M17), were the extracts, which have been used for the evaluation of antifungal

assay and found to be inactive against all the tested fungi. Concentration of compounds were

used 400 µg/mL, while standard drug were named as micrnazole and amphotericin B (Table

15).

Page 143: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

136

d) Antioxidant activity:

Leaves extracts of I. batata (blackie) and I. batata pink frost were screened for antioxidant

activity, by using DPPH radical scavenging assay. Methanol extract of I. batata blackie

(91.187 % RSA) and I. batata pink frost (85.609 % RSA) showed significant activity.

Whereas, hexane and chloroform extracts showed non-significant antioxidant assay (Table

16). The antioxidant activity of I. batata have been previously reported in literature.40a,c,41b,42

e) Immunomodulatory activity

The immune system is suggested to maintain the host from invading pathogens and to decrease

disease. Establishment of the system by alloantigen or auto antigen is commonly considered

to need practicing of the antigen from beginning to end the phagocytic cells like macrophages,

monocytes, or related cells. Changes of the immune reaction by medicinal agents is facilitate

in treatment is start than disclosure to the antigen has a possibility to create a initial reaction.

An autoimmune sickness, like nephritis, thyroiditis, uveitis, diabetes mellitus and rheumatoid

arthritis, demonstrate to involve response to auto antigen, a likely role for immunosuppressive

drug has been reported. The drug which effects the immune system is known as

immunomodulatory. Some suppress the system, like, preventing rejection of transplanted

organs and other are stimulating and can be used to help combat viral infection such as AIDS

or help in the medication of cancer.108

In the current studies, immunomodulatory activity of I. batata blackie and I. batata pink frost

leaves have been determined, which exhibited non-active results against ROS (reactive

oxygen species) production from wholeblood, macrophages and neutrophil assays (Table 17).

The concentration of compounds were used 25µg/mL. This is the first report for the

determination of immunomodulatory activity of Ipomoea species.

C) Bioassay guided isolation studies on C. fistula:

a)Cytotoxic activity:

Uncrushed, dried flowers, and leaves with stalks of C. fistula plant were subjected for the

chemical and biological studies. Plant material were sequentially extracted with different

polarity solvents, first non polar solvent hexane (H) then moderately polar solvent,

Page 144: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

137

aa) 50 % Cell growth inhibition (GI50)

Treatment

ab) 50 % Cell kill (LC50)

Treatment

Figure 5: The bar graph represents concentration values of (aa) GI50 (50 % cell growth inhibition) and

(ab) LC50 (50 % cell kill) of Ipomoea species hexane, chloroform and methanol extracts against HeLa,

MCF-7 and NCI H-460 cancer cell lines.

0

50

100

150

200

250

300

Co

nce

ntr

ati

on

g/m

L)

HeLa

MCF-7

NCI H-460

0

50

100

150

200

250

300

I. batata

blackie

hexane

I. batata

blackie

chloroform

I. batata

blackie

methanol

I. batata

pink frost

hexane

I. batata

pink frost

methanol

Co

nce

ntr

ati

on

g/m

L)

HeLa

MCF-7

NCI H-460

Page 145: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

138

Table 12: Identification of chemical compounds of Ipomoea batata species hexane extracts

through GC and GC-MS studies.

S.

No.

Compounds name

I. b

ata

ta b

lack

ie

I. b

ata

ta p

ink

fro

st

1 1-Dodecanol (2) - +

2 1-Tetradecanol (3) - +

3 3,7,11,15-Tetramethyl- -+1-hexadecanol (11) + -

4 3,7,11,15-Tetramethyl -2-hexadecen-1-ol (16) + +

5 2-Hexyl-1-decanol (19) + -

6 N,N-Bis (2-hydroxyethyl) dodecanamide (32) + -

7 Bis (2-ethylhexyl) 1,2-benzene dicarboxylate (40) + +

8 Dibutyl 1,2-benzenedicarboxylate (42) + -

9 (1-Propyloctyl) benzene (43) - +

10 (1-Propyl nonyl) benzene (44) - +

11 (1-Propyl decyl) benzene (45) - +

12 (1-Ethyl decyl) benzene (48) - +

13 (1-Ethyl undecyl) benzene (49) - +

14 (1-Butylheptyl) benzene (50) - +

15 (1-Butyl octyl) benzene (51) - +

16 (1-Butyl nonyl) benzene (52) - +

17 (1-Methyl decyl) benzene (53) - +

18 (1-Pentyl heptyl) benzene (55) - +

19 (1-Pentyl octyl) benzene (56) - +

20 3,8-Dimethyldecane (67) - +

21 Decanoic acid (109) + -

22 n-Tetradecanoic acid (110) + -

23 n-Heptadecanoic acid (112) + -

24 n -Octadecanoic acid (113) + -

25 n-Octyl chloride (123) - +

26 n-Undecane (124) - +

Page 146: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

139

27 n-Dodecane (125) - +

28 n-Tridecane (126) - +

29 n-Tetradecane (127) + -

30 n-Pentadecane (128) - +

31 n-Hexadecane (129) + +

32 n-Nonadecane (130) - +

33 n-Eicosane (131) + +

34 n-Tritriacontane (134) - +

35 n-Pentatriacontane (136) - +

36 Nonanedioic acid, monomethyl ester (158) + -

37 Methyl 9-oxo, nonanoate (160) + -

38 Methyl hexadecanoate (166) + +

39 Methyl octadecanoate (174) + -

40 Methyl 9-octadecenoate (175) + -

41 Methyl 9,12-octadecadiynoate (178) + -

42 Methyl 9,12,15-octadecatrienoate (179) + -

43 Isopropyl palmitate (182) + +

44 Methyl hexacosanoate (189) - +

45 3-Acetoxy-2,4-dimethyl-furan (201) + -

46 4,8,12-Trimethyltridecan-4-olide (203) + +

47 Diisopropylidene mannitol (205) + -

48 Methyl octyl phthallate (206) + -

49 (-)-Loliolide (220) + +

50 Norolean-12-ene (225) - +

51 α-Tocopherol (228) + +

52 1-Tridecanol (233) + -

53 2-Nonenal (244) + -

54 2,6,10-Trimethyl dodecane (281) + +

55 1-Dodecene oxide (343) + -

56 Vaccenic acid (349) + -

57 n-Heptadecane (355) - +

58 1-Nonadecene (356) + +

59 n-Tricosane (357) + -

60 1-Eicosanol (386) + +

61 1-Hexadecanol (388) + -

Page 147: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

140

62 1-Dotriacontanol (389) - +

63 3-Hexanol (390) - +

64 2-Ethyl-2-methyl tridecanol (391) - +

65 3,7,11-Trimethyl 1-dodecanol (392) + -

66 11-Hexadecen-1-ol, acetate (393) - +

67 3-Methyl-6-(1-methyl ethyl) 2-cyclohexen-1-ol (394) + -

68 3,4,4-Trimethylcyclohexa-2-en-1-ol (395) + -

69 5-Methoxy-2-methyl-2-pentanol (396) - +

70 Benzaldehyde (397) - +

71 4-Hydroxy cinnamic acid (398) - +

72 2,3-Dihydroxy 5-methyl acetophenone (399) - +

73 Bis(1-methylheptyl) 1,2-benzenedicarboxylate (400) - +

74 Diisodecyl 1,2-benzenedicarboxylate (401) - +

75 (1-Ethyloctyl) benzene (402) - +

76 4,5-Dimethyl nonane (403) - +

77 2,3,3,4-Tetramethyl pentane(404) - +

78 4,8-Dimethyl undecane (405) - +

79 1-Tert-butyl-3-methylene-1-cyclobutanol (406) - +

80 Cyclohexanone (407) - +

81 Cyclohexyl propionate (408) - +

82 3-Cyclohexyl undecane (409) - +

83 Di(2-ethylhexyl) adipate (410) - +

84 2-Benzyloxy phenyl acetic acid (411) - +

85 3,5-Di-tert-butyl-4-hydroxy phenyl propionic acid (412) - +

86 3,4,4,5,6,7-Hexahydro-9,10,11-trimethoxy-2H-dibenzocyclohepten-2-one (413) - +

87 Isopropyl 2-phenylheptanoate (414) - +

88 Methyl-3-(3,5-ditertbutyl-4-hydroxyphenyl) propionate (415) - +

89 1-Methoxy hexane (416) - +

90 4-Hydroxy-5-oxohexanoic acid lactone (417) - +

91 n-Pentadecanoic acid (418) + -

92 4-Chloropentylacetate (419) - +

93 Decyl trifluoroacetate (420) + -

94 2,2,2-Trichloroethanol (421) - +

95 3,4-Dichloro 3-buten-2-one (422) - +

96 Pentachloro ethane (423) - +

97 1,1,1,5-Tetrachloropentane (424) - +

Page 148: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

141

+ = present; - = absent

98 1-Hexadecene (425) - +

99 n-Octadecane (426) - +

100 n-Triatetracontane (427) - +

101 (trans)-2-Nonadecene (428) - +

102 Methyl 9-oxo-8-oxabicyclo[4.3.0]nona-1(6),2-diene-2-carboxylate (429) - +

103 Friedelan-3-one (430) - +

104 Hexadecyl hexadecanoate (431) - +

105 Methyl 16-methyl, heptadecanoate (432) - +

106 3-(4-Methoxyphenyl), 2-ethylhexyl 2-propenoate (433) - +

Page 149: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

142

Table 13: Identification of chemical compounds of Ipomoea batata species chloroform extracts through

GC and GC-MS studies.

S.

No.

Compounds name

I. b

ata

ta b

lack

ie

I. b

ata

ta p

ink

fro

st

1 3,7,11,15-Tetramethyl 2-hexadecen-1-ol (16) + +

2 2-Heptenal (25) + +

3 2-Decenal (27) - +

4 N,N-Bis(2-hydroxyethyl) dodecanamide (32) + +

5 Benzoic acid (33) + -

6 Phthalic acid, butyl ester, ester with butyl glycolate (104) + +

7 n-Decanoic acid (109) - +

8 n-Tetradecanoic acid (110) + +

9 n-Hexadecanoic acid (111) + +

10 n-Heptadecanoic acid (112) + -

11 n-Octadecanoic acid (113) - +

12 n-Dodecane (125) - +

13 n-Tridecane (126) - +

Page 150: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

143

14 n-Hexadecane (129) + -

15 n-Nonadecane (130) - +

16 n-Eicosane (131) + -

17 n-Tetracosane (132) + -

18 6,10-Dimethyl, 5,9-dodecadien-2-one (143) - +

19 Methyl hexadecanoate (166) + +

20 Methyl 9,12-octadecadienoate (177) + -

21 Methyl octadecanoate (178) + +

22 Methyl 9,12,15-octadecatrienoate (179) + -

23 Isopropyl palmitate (182) - +

24 Methyl tetracosanoate (187) + -

25 Methyl eicosanoate (191) + -

26 7,11,15-Trimethyl,3-methylene-1-hexadecene (219) + +

27 Loliolide (220) + -

28 α-Tocopherol (228) + -

29 1-Tridecanol (233) + -

30 2,4-Decadienal (246) + -

31 n-Undecenal (250) - +

32 Bis (2-ethyl hexyl) 1,2-benzenedicarboxylate (255) + +

Page 151: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

144

33 4,7-Dimethyl undecane (277) - +

34 2,6,10-Trimethyl dodecane (281) + +

35 6,10,14-Trimethyl 2-pentadecanone (295) + +

36 n-Octanoic acid (344) - +

37 cis-Vaccenic acid (349) - +

38 n-Heptadecane (355) - +

39 1-Nonadecene (356) - +

40 4,8,12,16-Tetramethylheptadecan-4-olide (385) + -

41 1-Hexadecanol (388) - +

42 1-Octadecanol (434) - +

43 n-Eicosanol (435) + +

44 5,8,11-Heptadecatrien-1-ol (436) + -

45 11-Hexadecyn-1-ol (437) + -

46 Cinnamic acid (438) + -

47 2-Ethyl hexyl 4-methoxy cinnamate (439) - +

48 p-Coumaric acid (440) + -

49 2-(2, 3-Dimethoxy phenyl) carbonyl amino-N-(2,3-dimethoxy benzyl)-3-methylb...

(441)

+ -

50 Benzene acetic acid (442) + -

51 3-Heptadecen-5-yne (443) + -

52 2-Methyl-5-propyl- nonane (444) - +

53 2-Methyl nonadecane (445) + +

Page 152: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

145

54 Tetracyclo[6.3.2.0(2,5).0(1,8)]tridecan-9-ol, 4,4-dimethyl (446) + -

55 1,2,3,4,4α, 5,8,9,12,12α-Decahydro-1,4-methanobenzocyclodecene (447) + -

56 1-[1-Methoxy-3,3-dimethyl-2-(3-methyl buta-1,3-dienyl) cyclopentyl] ethanone (448) + -

57 3-Methyl-4-(1,3,3-tri methyl-7-oxabicyclo[4.1.0] heptan-1-yl) 3-buten-2-one (449) + -

58 Di(2-ethylbutyl) ether (450) - +

59 Methyl octyl ether (451) - +

60 5,6,7,7-Tetrahydro-4,4,7-trimethyl 2(4H) benzofuranone (452) + -

61 Octahydro1,4,9,9-tetramethyl-1H-3α,7-methanoazulene (453) + -

62 n-Nonoic acid (454) - +

63 n-Triacontane (455) + -

64 5,9-Dimethyl 2-decanone (456) + -

65 1,1-Dimethoxyhexan-2-one (457) + -

66 2-Methylpropyl 3-phenyl-2-propenoate (458) - +

67 2-Ethyl hexyl 3-(4-hydroxyphenyl) propenoate (459) + -

68 Hexyl tetradecyl Sulfate (460) - +

69 Linalool oxide (461) + -

70 Lanceol (462) + -

71 Ledane (463) + -

72 Octahydro-1-(2-octyldecyl) pentalene (464) + -

I = Ipomoea; + = present; - = absent

Page 153: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

146

Table 14: In vitro antibacterial activity of extracts of leaves of Ipomoea species.

Amount of extracts = 6 mg; Concentration of extracts = 150 µg/mL; - = Inactive; H = hexane extract; C =

chloroform extract; M = methanol extract

S.

No.

Plants name P

lan

t c

od

e

Gram positive

bacteria

Gram negative bacteria

Ba

cill

us

sub

tili

s

Sta

ph

ylo

cocc

us

au

reu

s

Esc

heri

chia

co

li

Sh

igel

la f

lex

ena

ri

Pse

ud

om

on

os

aer

ug

ino

sa

Sa

lmo

nel

la t

yph

ii

Percent (%) inhibition of drugs

1 I. batata blackie H16 - - - - - -

2 I. batata blackie C16 - 11.6 - - - -

3 I. batata blackie M16 27.74 - - 18.66 - -

4 I. batata pink frost H17 - - - - - -

5 I. batata pink frost C17 - - 7.93 - - -

6 I. batata pink frost M17 3.56 6.85

7 Ampicillin (standard drug) - 94.97 92.45 93.12 90.64 93.97 90.23

Page 154: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

147

Table 15: In vitro antifungal activity of extracts of leaves on Ipomoea species.

Concentration of extracts = 400 µg/mL; - = Inactive; H = hexane extract; M = methanol extract

S.

No.

Plants name P

lan

t c

od

e

Tri

chp

hyt

on

ru

bru

m

Ca

nd

ida

alb

ica

ns

Asp

erg

illu

s n

iger

Mic

rosp

oru

m c

an

is

Fu

sari

um

lin

i

Ca

nd

ida

gla

bra

ta

Percent (%) inhibition of drugs

1 I. batata blackie H16 - - - - - -

2 I. batata blackie M16 - - - - - -

3 I. batata pink frost H17 - - - - - -

4 I. batata pink frost M17 - - - - - -

5 Micronazole (standard drug) - 97.8 113.1 - 98.1 73.50 -

6 Amphotericin B

(standard drug)

- - - 20.70 - - -

Page 155: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

148

Table 16: Antioxidant (DPPH) activity of leaves extracts on Ipomoea species.

IC50 = 50% effective conc. of antioxidant activity; - = Inactive; H = hexane extract;

C = chloroform extract; M = methanol extract

Table 17: Immunomodulatory activity of leaves extracts on Ipomoea species.

Concentration of extracts = 25 µg/mL; - = Inactive; H = hexane extract;

C = chloroform extract; M = methanol extract

S. No.

Plants name

Sample

codes

% RSA

(Radical

Scavenging

Activity)

(µg/mL)

IC50 ± SEM

µg/mL

1 I. batata blackie H16 - Insoluble

2 I. batata blackie C16 33.751 -

3 I. batata blackie M16 91.187 73.227± 1.1

4 I. batata pink frost H17 38.940 -

5 I. batata pink frost C17 - Insoluble

6 I. batata pink frost M17 85.609 177.15± 5.93

S. No. Plants name Sample

codes

% Inhibition

/stimulation

IC50 ± SEM

µg/mL

1 I. batata blackie H16 3.2 -

2 I. batata blackie C16 7.0 -

3 I. batata blackie M16 9.5 -

4 I. batata pink frost H17 10.0 -

5 I. batata pink frost C17 -

6 I. batata pink frost M17 - 4.1 -

7 Ibuprofen (drug) - 73.2 -

Page 156: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

149

chloroform (C), and in the last with polar solvent methanol (M). Soxhlet extraction method

was used for the process of extraction. All the extracts were collected and evaporated through

rotary evaporator to give respective residue (Experimental). Two extracts were obtained from

hexane, two from chloroform and two from methanol. The hexane and chloroform extracts

were examined by GC-FID and GC-MS spectral studies for the identification of chemical

constituents. All the hexane and chloroform extracts of the plants were subjected to mass

spectral studies, resulting 22 phytochemicals from hexane extract of leaves, 41 metabolites

from chloroform extract of leaves, 45 chemical compounds from hexane extract of flowers,

whereas, 08 metabolites from chloroform extracts of flowers of C. fistula. These studies

disclosed the presence of different class of compounds, which have been listed in Tables 18-

19.

The cytotoxic potential of the C. fistula flowers and leaves extracts were determined by the

Sulforhodamine-B assay using MCF (breast), Hela (cervical) and NCI H-460 (lung) cancer

cell lines. Triplicate experiments were performed. The extracts showed non significant

activity against all the examined cell lines (Table 20a-c). The extracts and compounds isolated

from the entitled plants have been previously reported in literature as anticancer agent.52,56

b)Antibacterial activity:

Hexane (H) and methanol (M) extracts of C. fistula flowers and leaves were examined for

antibacterial assay against Gram positive (B. subtilis and S. aureus) and Gram negative

bacteria (E. coli, P. aeruginosa, S. flexenari and S. typhii) and found to be insignificant against

all the examined bacteria (Table 21). The extracts and compounds isolated from the entitled

plants have been previously reported in literature as antibacterial agents.52,54

c)Antifungal activity:

Hexane (H) and methanol (M) leaves extracts of C. fistula flowers and leaves were examined

for antifungal activity against A.niger, C. albicans, F. lini, T. rubrum, M. canis, and C.

glabrata and were found to be inactive. 400 µg/mL Concentration of extracts were used for

Page 157: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

150

the evaluation of antifungal activity, while standard drug which were used in experiment

named as micrnazole and amphotericin B (Table 22). The extracts and compounds isolated

from the plants have been previously reported as antifungal agents in literature.52,54

d)Antioxidant activity:

Extraction on different parts of plants were performed by using different polarity solvents to

give respective extracts. These extracts were analyzed by in vitro antioxidant activity by using

DPPH assay. The methanol extract of C. fistula flowers and leaves were examined. The flowers

extract of methanol exhibited 64.159 % RSA while, the leaves of the plant showed 65.770 %

RSA. Both extracts showed the antioxidant activity with IC50 value of >> 200 µg/mL (Table

23). Gallic acid and N-acetyl cysteine were used as standard compounds. The extracts and

compounds isolated from the entitled plants have been previously reported in literature as

antioxidant agents.52,55

e) Immunomodulatory activity

In the current investigation, immunomodulatory potential of hexane, chloroform and methanol

extracts of C. fistula flowers and leaves have been determined, which were found to be non

active against the ROS chemiluminesence technique (Table 24). Ibuprofen was applyied as a

standard drug in this assay. Extracts and compounds isolated from the entitled plants have been

previously reported in literature as immunomodulating agents.75

Page 158: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

151

Table 18: Identification of compounds of C. fistula hexane extracts through GC and

GC-MS studies.

S.

No.

Compounds name

C.

fist

ula

lea

ves

C.

fis

tula

flo

wer

s

1 1-Dodecanol (2)

+ +

2 3,7,11,15-Tetramethyl-(2-hexadecenol) (16)

+ -

3 Pentadecanal (29)

- +

4 N,N-Bis(2-hydroxyethyl) dodecanamide (32)

- +

5 Benzoic acid (33)

- +

6 Bis (2-ethylhexyl) 1,2-benzene dicarboxylate (40)

+ +

7 2-Hexadecyloxirane (98)

- +

8 Decanoic acid (109)

- +

9 n-Tetradecanoic acid (110)

- +

10 n-Hexadecanoic acid (111)

+ -

11 n -Octadecanoic acid (113)

+ -

12 n-Tetradecane (127)

- +

13 n-Pentadecane (128)

- +

14 n-Hexadecane (129)

- +

15 n-Eicosane (131)

- +

16 n-Heneicosane (133)

- +

17 2,11-Dodecanedione (149)

- +

18 Methyl hexadecanoate(166)

+ +

19 Ethyl hexadecanoate (168)

+ -

20 Ethyl 1-methyl hexadecanoate (169)

+ -

21 Methyl octadecanoate (178)

+ +

22 Methyl 9-octadecanoate (175)

+ -

Page 159: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

152

23 Methyl 9,12-octadecadienoate (177)

+ +

24 Methyl 9,12,15-octadecatrienoate (179)

- +

25 4,8,12-Trimethyltridecan-4-olide (203)

+ +

26 7,11,15-Trimethyl,3-methylene-1-hexadecene (219)

+ -

27 (-)-Loliolide (220)

+ -

28 α-Tocopherol (228)

+ -

29 Octenal (249)

- +

30 2,6,10,15-Tetramethyl heptadecane (290)

- +

31 Stigmast-5-en-3-ol (318)

- +

32 n-Tricosane (357)

+ -

33 n-Triacontane (455)

- +

34 Decanal (465) - +

35 7,10 Hexadecadienal (467)

+ -

36 (1-Methyldodecyl) benzene (468)

- +

37 5-(2-Methylpropyl) nonane (469)

- +

38 1-Ethynyl-1-cyclopentanol(470)

- +

39 2-Ethyl-1,1-dimethyl cyclopentane (471)

+ -

40 Anthracene (472)

- +

41 1,8-Dihydroxy-3-methyl 9,10-anthracenedione (473)

- +

42 4-Methyldecahydronaphthalen-1-yl Acetate (474)

- +

43 8-Methyl-exo-tricyclo [5.2.1.0 (2.6)] decane (475)

+ -

44 Nonanoic acid (476)

- +

45 9-Octadecenoic acid (478)

- +

46 Butyl 2-chloroethyl Phthallate (479)

- +

47 2-Bromotetradecane (480)

- +

48 2-Methyl tetradecane (481)

- +

49 7-Tetradecene (482)

+ -

50 5-Eicosene (483)

- +

Page 160: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

153

+ = present; - = absent

Table 19: Identification of chemical compounds of C. fistula chloroform extracts through GC and

GC-MS studies.

S.

No.

Compounds name C. fistula

leaves

C. fistula

flowers

1 3,7,11,15-Tetramethyl 1-hexadecanol (11) + -

2 3,7,11,15-Tetramethyl 2-hexadecenol (16) + -

3 n-Pentadecanal (29) + -

4 N,N-Bis(2-hydroxyethyl) dodecanamide (32) + -

5 Dibutyl 1,2-benzenedicarboxylate (42) + -

6 2,6-Dimethyl 2,6-octadiene (64) + -

7 n-Decanoic acid (109) + -

8 n-Tetradecanoic acid (110) + -

9 n-Hexadecanoic acid (111) + -

10 n-Octadecanoic acid (113) + -

11 n-Hexadecane (129) + -

12 n-Heneicosane (133) + -

13 Methyl hexadecanoate (166) + -

14 Ethyl hexadecanoate (168) + -

15 Methyl 9,12-octadecadienoate (177) + -

16 Methyl octadecanoate (178) + -

17 Methyl 9,12,15-octadecatrienoate (179) + -

18 Isopropyl palmitate (182) + -

19 4,8,12-Trimethyltridecan-4-olide (203) + -

51 2-Dodecanone (484)

- +

52 5-Hydroxy-6-methoxy-1-indanone (485)

- +

53 1-Methyldibenzothiophene (486)

- +

54 Thioxanthene (487)

- +

55 2-[1,3-Dioxan-2-yl]-1,3-dioxane (488)

- +

56 Mome inositol (489)

+ -

57 N-Methyl-N-(1-oxododecyl) glycine (490)

+ -

Page 161: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

154

20 7,11,15-Trimethyl,3-methylene-1-hexadecene (219) + -

21 (-)-Loliolide (220) + -

22 α-Tocopherol (228) + -

23 6,10,14-Trimethyl- 2-pentadecanone (295) + -

24 Bis (2-ethyl hexyl) 1,2-benzenedicarboxylate (255) + +

25 4,8-Dimethyl undecane (405) + -

26 3,5,11,15-Tetramethyl 1-hexadecen-3-ol (491) + -

27 4-Hydroxy benzoic acid (492) - +

28 α-Isopropoxymethoxy-2-isopropoxy methoxy benzyl (493) - +

29 2,3,5 Trimethyl decane (493) + -

30 β-Decalone (494) + -

31 2,6,10, 15,19,23-Hexamethyl 2,6,10,14,18,22-tetracosa hexaene

(495)

+ -

32 2,6,10-Trimethyl 1,5,9-undecatriene (496) + -

33 1-(1-Methylethyl) cyclopentene (497) + -

34 1-Cyclopropyl ethanone (498) + -

35 1-Acetyl-2-methylcyclopropane (499) + -

36 2(4H)-Benzofuranone, 5,6,7,7-tetrahydro-4,4,7-trimethyl (500) + -

37 n-Cetyl thiocyanate (501) + -

38 2-(1-oxy-2,2,6,6-tetramethylpiperidin-4-yl) 6-hydrogen

naphthalene dicarboxylate (502)

+ -

39 5-Methyl- 2(3H)-furanone (503) - +

40 Adenine (504) - +

41 17-Octadecynoic acid (505) + -

42 3,7-Dimethyl-2,6-octadienyl butanoate (506) + -

43 5-Chloro-6,6,6-trifluoro-2,2-dimethyl-4-hexen-3-one (507) - +

44 Ethyl 2-dichloromethyl hexanoate (508) - +

45 1-Butenyl methyl ketone (509) + -

46 Farnesol, acetate (510) + -

47 Isopulegol acetate (511) + -

48 Octadeca methyl cyclononasiloxane (512) - +

49 1-Silacyclo-2,4-hexadiene (513) + -

50 Limonene dioxide 1 (514) + -

51 α -Tocopheryl methyl ether (515) + -

+ = present; - = absent

Page 162: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

155

Table 20a: Growth inhibitory and cytotoxic effects of C. fistula plant extracts

against Hela cell lines (Cervical).

S.

No.

Plant name

(Codes)

Doses

(µg/mL)

Cervical cancer cell line

(HeLa)

% Cell

growth

inhibitio

n/

kill

(µg/mL)

GI50 LC50

1 C. fistula leaves (H18) 250 +00 ± 3.5 >250 >250

2 C. fistula flowers (H19) 250 +20 ± 3.2 >250 >250

3 C. fistula leaves (C18) 250 +00 ± 1.8 >250 >250

4

C. fistula leaves (M18)

10 +04 ± 0.7

250 ± 3.9 >250

50 +05 ± 1.4

100 +15 ± 2.8

200 +44 ± 1.1

250 +51 ±

2.4

5 C. fistula flowers (M19) 250

+09 ±

2.5 >250 >250

H = hexane extract; C = chloroform extract; M = methanol extract

Page 163: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

156

Table 20b: Growth inhibitory and cytotoxic effects of C. fistula plant extracts

against MCF cell lines (Breast cell lines).

S.

No.

Plant name (Codes)

Doses

(µg/mL)

Breast cancer cell line

(MCF-7)

% Cell growth

inhibition/

kill

(µg/mL)

GI50 LC50

1 C. fistula leaves (H18) 250 +10 ± 2.8 >250 >250

2 C. fistula flowers (H19) 250 +29 ± 1.9 >250 >250

3 C. fistula leaves (C18) 250 +00 ± 2.9 >250 >250

4

C. fistula leaves (M18)

10 -

>250

>250

50 -

100 -

200 -

250 +02 ± 3.3

5 C. fistula flowers (M19) 250 +00 ± 2.5 >250 >250

H = hexane extract; C = chloroform extract; M = methanol extract

Page 164: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

157

Table 20c: Growth inhibitory and cytotoxic effects of medicinally important

plant extracts against NCI H-460 (Lung cancer cell line).

S.

No. Plant name (Codes)

Doses

(µg/m

L)

Lung cancer cell line

(NCI H-460)

% Cell growth

inhibition/

kill

(µg/mL)

GI50 LC50

1 C. fistula leaves (H18) 250 +00 ± 2.5 >250 >250

2 C. fistula flowers (H19) 250 +34 ± 0.9 >250 >250

3 C. fistula leaves (C18) 250 +01 ± 2.3 >250 >250

4 C. fistula leaves (M18)

10 -

>250

>250

50 -

100 -

200 -

250 +01 ± 1.9

5 C. fistula flowers (M19) 250 +00 ± 2.3 >250 >250

H = hexane extract; C = chloroform extract; M = methanol extract

Page 165: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

158

Table 21: In vitro antibacterial activity of extracts of flowers and leaves on C. fistula.

Amount of extract = 6 mg; Concentration of extract =150 µg/mL; - = Inactive ; H = hexane extract; C =

chloroform extract; M = methanol extract

S.

No.

Plants name (parts)

Pla

nt

co

de

Gram positive

bacteria

Gram negative bacteria

Ba

cill

us

sub

tili

s

Sta

ph

ylo

cocc

us

au

reu

s

Esc

heri

chia

co

li

Sh

igel

la f

lex

ena

ri

Pse

ud

om

on

os

aer

ug

ino

sa

Sa

lmo

nel

la t

yph

ii

Percent (%) inhibition of drugs

1 C. fistula (flowers) H19 - - - - - -

2 C19 - - - - - -

3 M19 18.97 - - 6.58 - -

4 C. fistula (leaves) H18 - - - - - -

5 C18 - 18.3 - - - -

6 M18 33.64 22.32 - - - -

7 Ampicillin (standard drug) - 94.97 92.45 93.12 90.64 93.97 90.23

Page 166: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

159

Table 22: In vitro antifungal activity of extracts of flowers and leaves on C. fistula.

Concentration of extracts = 400 µg/mL; - = Inactive; H = hexane extract; M = methanol extract

Table 23: Antioxidant (DPPH) activity of methanol extracts on C. fistula.

IC50 = 50% effective conc. of antioxidant activity; M = methanol extract

S.

No.

Plants name

Pla

nt

co

de

Tri

chp

hyt

on

ru

bru

m

Ca

nd

ida

alb

ica

ns

Asp

erg

illu

s n

iger

Mic

rosp

oru

m c

an

is

Fu

sari

um

lin

i

Ca

nd

ida

gla

bra

ta

Percent (%) inhibition of drugs

1 C. fistula flowers H19 - - - - - -

2 M19 - - - - - -

3 C. fistula leaves H18 - - - - - -

4 M18 - - - - - -

5 Micronazole (standard drug) - - - - - - -

6 Amphotericin B (standard drug) - - - - - - -

S. No.

Plants name

Sample

codes

% RSA

(Radical Scavenging Activity)

(µg/mL)

IC50 ± SEM

µg/mL

1 C. fistula flowers M19 64.159 243.670±1.86

2 C. fistula leaves M18 65.770 305.163±8.9

Page 167: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

160

Table 24: Immunomodulatory activity of extracts of C. fistula.

S. No. Plants name (parts) Sample

codes

% Inhibition

/stimulation

IC50 ± SEM

µg/mL

1 C. fistula (flowers) H19 8.7 -

2 C. fistula (flowers) M19 -12.1 -

3 C. fistula (leaves) H18 5.2 -

4 C. fistula (leaves) C18 11.2 -

5 C. fistula (leaves) M18 6.1 -

6 Ibuprofen (drug) - 73.2 -

Concentration of extracts = 25 µg/mL; - = Inactive; H = hexane extract;

C = chloroform extract; M = methanol extract

Page 168: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

161

Outlook

Page 169: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

162

1 The phytochemical and biological studies of medicinally important plants namely, I.

fulgens, I. polyantha, I. chinensis, I. coccinea (yellow, orange color flowers), I. batata

blackie, I. batata pink frost and C. fistula showed that all these plants have tremendous

medicinal importance.

2 The phytochemistry and pharmacology were carried out on flowers, leaves and stalks

of all the above mentioned plants. All these parts were extracted sequentially with

different polarity solvents like non polar solvent, hexane, moderately polar solvent,

chloroform and polar solvent, methanol.

3 Total forty eight (48) extracts of different medicinal plants were studied.

4 The chemistry of hexane and chloroform extracts were determined through mass

spectroscopic technique, GC-FID and GC-MS studies. All the structures of chemical

compounds were determined through GC-MS chromatogram and verified through MS

data base.

5 The identification of 382 chemical compounds from hexane extracts, 323 compounds

from chloroform extract and 26 metabolites from methanol extracts of all the

subjected plant were carried out, including hydrocarbons, fatty acids and their esters,

alcohol, aromatic acids, aromatic esters, terpenes and vitamins.

6 All the extracts were subjected to biological assays including antibacterial, antifungal,

antioxidant, anti-inflammatory, and anti cancer activities.

7 I. fulgens, I. coccinea yellow color flowers and I. batata blackie hexane, chloroform

and methanol extracts were found to be active against HeLa (cervical), MCF-7 and

NCI H-460 (lung) cancer cell lines.

8 All the subjected extracts were found to be inactive against antibacterial and anti-

fungal examinations.

9 Most of the methanol extracts of all subjected plants were found to be active.

10 Only one extract showed activity against ROS, immunomodulatoy assay.

11 Polar extracts of all the subjected medicinal plants will be examined through ESI-MS

studies, for the identification of chemical constituents found in polar solvent extracts.

Page 170: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

163

Chapter 5

Experimental

Page 171: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

164

Material and methods

Plant material

Ixora species:

Five species of Ixora plant namely, Ixora coccinea (yellow color flowers), I. coccinea (orange

flowers), I. fulgens (red flowers), I. chinensis (pink flowers) and I. polyantha (white flowers),

belongs to family Rubiaceae were collected during May, 2015 from HEJRIC (ICCBS) gardens

of Karachi University. They were submitted in the herbarium of the department, with

following voucher specimen number.

Ixora coccinea plant (yellow flowers), the voucher specimen (KUH GH 91566).

I. coccinea plant (orange flowers), voucher specimen (KUH GH 91565).

I. fulgens plant (red flowers), the voucher specimen (KUH GH 91567).

I. chinensis plant (pink flowers), the voucher specimen (KUH GH 91566).

I. polyantha plant (white flowers), the voucher specimen (KUH GH 91562).

Ipomoea batata (blackie) and I. batata pink frost (Tricolor):

Both species of Ipomoea were collected during May, 2015 from HEJRIC (ICCBS) gardens of

University of Karachi, Karachi.

Cassia fistula:

C. fistula plant was collected during May, 2015 from HEJRIC (ICCBS) gardens of Karachi

University, Karachi. All the above mentioned plants were identified by plant taxonomist Miss

Muneeba Khan under the guidance of Dr. Anjum perveen of Botany Department, University

of Karachi, Karachi.

Soxhlet extraction

Different parts of all the subjected plants were soaked with hexane followed by chloroform

and then methanol, for 8 hrs. in a conventional soxhlet apparatus to gave respective extracts.

Page 172: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

165

The liquid extracts were collected, filtred and then evaporated to complete dryness in a

vacuum by using rotary evaporator equipment. At last, the dried extracts were placed at room

temperature for pharmacological and phytochemical studies.

Analysis of plant constituents

The chemical constituents of extracts were identified by mass spectrometric methods. The

identification and quantification of the phytochemicals were evaluated by gas chromatography

mass spectrometry (GC-MS) methods.

GC-MS studies of plant extracts

The non polar extracts were examined by gas chromatographic flame ionization detection

(GC-FID) and (gas chromatography mass spectrometry) GC-MS method. GC-FID spectra

were operated on a Shimadzu GC-17A [FID mode; column, fused silica capillary column OV-

1, DB-1 (30 m x 0.53 mm, 0.5mm film thickness). Carrier gas was nitrogen, at 75 oC and

programmed to 75 oC at 240 oC min-1 and 3-5 min hold. Injector and detector were at 240 and

250 oC correspondingly. 2 mL of each extract sample were triplicate injected and quantities

characterized as relative area % as obtained from integrator.

GC-MS system was functioned on a JSM 600H (Jeol, Japan) with Agilent 6890N USA [EI

mode; ionization potential, 70ev; column DS-6 (0.32 mm x 30 m); column temperature 50-

250 oC (rate of temperature increases 5 oC/min); carrier gas, He; flow rate, 1.8 mL/min; split

ratio, 1:30]. Sample injection was carried out by means of a split ratio of 35:1 at a temperature

of 25oC. Data processing together with peak integration and deconvolution of spectrum were

presented using the Agilent Mass Hunter Qualitative Analysis (version B.04.00).

Antibacterial, antifungal, antioxidant, cytotoxic and anti-inflammatory activities

Antibacterial, antifungal, antioxidant, immunomodulatory and anticancer assays were

performed at ICCBS, HEJRIC, Karachi University, Karachi. The antibacterial, antifungal,

Page 173: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

166

antioxidant, cytotoxic, and antiinflammatory assays were performed by methods as described

in the literature.105-113

Cytotoxic activity samples preparation

The stock solutions of plants extract (hexane, chloroform and methanol), I. fulgens flowers

(H1, C1, M1); I. fulgens leaves (H2, C2, M2); I. polyantha leaves (H5, C5, M5); I. chinensis

leaves (H8,C8,M8); I. coccinea flowers (Y)(H10, C10, M10); I. coccinea leaves (Y)(H11,

C11, M11); I. coccinea stalks (Y)(H12, C12, M12); I. coccinea flowers (O)(H13, C13,M13);

I. coccinea leaves (O)(H14, C14, M14); I. coccinea stalks (O)(H15, C15, M15); I. batata

blackie (H16, C16,M16); I. batata pink frost (H17, C17, M17); C. fistula leaves (H18, C18,

M18) and flowers (H19, C19, M19) (40 mg/mL) were made in DMSO (100%) with a final

concentration of DMSO not increasing 0.5 % (v/v) whereas, doxorubicin (20 mM) in sterile

(D/W). Additional dilutions were made in RPMI-1640 medium.109a

Page 174: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

167

Chapter 6

References

Page 175: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

168

1. a) Jalan Pahang, (2002). Compendium medicinal plant used in Malaysia (paper presented) by

Herbal Medicine Research Centre (HMRC) Institute for Medicinal Research (IMR). 50588,

Kualalumpur, Malaysia, 2, 60. b) Elumalai, A., Chinna, E., Yercharla, V., Burle, S. K., Chava, N.

(2012). Phytochemical and pharmacological profile of Ixora coccinea Linn. Int. J. Pharm. Life

Sci., 3(3), 1563-1567. c) Norliana, G., Nurul, A. A., Asiah, A. B., Noor, K. M. (2003). GC-MS

analysis of some bioactive components in the root extract of Ixora coccinea Linn. Int. J. Pharm.

Biol. Sci., 5(3), 197-203. d) Latha, P. J., Pannikar, K. R., Suja, S. R. E., Abraham Rajesekharan

S. (2001). Chemistry, pharmacognosy, pharmacology and botany of Ixora coccinea. a-review. J.

Med. Arom. Plant Sci., 23, 670-676. e) Vadivu, R., Jayshree, N., Kasthuri, C., Rubhini, K.,

Rukmankathan, G. (2009). Pharmacognostical standardization of leaves of Ixora coccinea Linn.

J. Pharm. Sci. Res., 1(4), 151-157. f) Baliga, M. S., Kurian, P. J. (2012). Ixora coccinea Linn.

Traditional uses, phytochemistry and pharmacology. Chin. J. Integ. Trad. Western Med., 18(1),

72-79. g) The wealth of India (Raw materials). Publication and information directorate, (1959).

Council of scientific and industrial research, New delhi, 5, 275-277. h) Ayyanar, M., Ignacimathu,

S. (2009). Herbal medicines for wound healing among tribal people in Southern Indian,

ethanobotanicals and scientific evidences. Int. J. App. Res. Nat. Prod., 2(3), 29-42. i) Allumithu,

M. (2005). Pharmacological evaluation of jungle frame. (Ixora coccinea of Rubiaceae) 2005

http://openmed.nic.in/1129. j) Joshi, A. B., Surlikar, P. M., Bhobe, M. (2013). Ixora coccinea

Linn.: phytochemical investigations. Int. J. Res. Pharm. Chem., 3(3), 691-696. k) Joshi, A.,

Surlikar, P., Bhobe, M. (2013). Physiocochemical and phytochemical investigation of the Ixora

coccinea Linn. Pharm. Chem., 5(4), 112-115.

l) www.stuartxchange.org/suntane.html.

2. a) Shyamal, S., Latha, P. G., Suja, S. R., Shine, V. J., Anuja, G. I., Sini, S., Paradeep, S., Shikha,

P., Rajashkharan. (2010). Hepatoprotective effect of three herbal extracts on aflatoxin BI-

intoxication in rat liver. Singapore Med. J., 51(4), 326-331. b) Latha, O. G., Suja, S. R., Abraham,

A., Rajasekharan, S., Pannikkar, K. R. (2003). Hepatoprotective effects of Ixora coccinea flower

extract on rats. J. Tropical Med. Plants, 4(1), 33-38.

3. a) Annapurna, J., Amarnath, P. V. S., Kumar, D. A., Rmakrishna, S. V., Raghavan, K. V. (2003).

Antimicrobial activity of Ixora coccinea leaves. Fitoterapia, 74(3), 291-293. b) Sharma, M. S.,

Sharma, S. (2010). Preliminary phytochemical and antimicrobial investigations of the aqueous

extract of Ixora coccinea Linn and Commelina Benghalensis Linn. On Gram +ve and Gram –ve

microorganisms. Middle East J. Sci. Res., 6(5), 436-439. c) Latha, P. G. Abraham, T. K.,

Pannikkar, K. R. (1995). Antimicrobial properties of Ixora coccinea Linn. Anc. Sci. Life, 14(4),

286-291. d) Sadidharan, V. K. (1997). Search for antibacterial and antifungal activity of some

Page 176: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

169

plants of Kerala. Acta pharm., 47(1), 47-51. e) Idowu, T. O., Ogundaini, A. O., Salau, A. O.,

Obutor, E. M., Bezabih, M., Abegaz, B. M. (2010). Doubly linked, a type proanthocyanidin trimer

and other constituents of Ixora coccinea leaves and their antioxidant and antibacterial properties.

Phytochemistry, 71(17-18), 2092-98.

4. a) Latha, P. G., Suja, S. R., Pannikkar, K. R., Rajasekharan, S. (2004). Modulatory effects of Ixora

coccinea flower on cyclophosphoamide in tumor bearing mice. Ancient Sci. Life, 23(4), 23-29. b)

Latha, P. G., Panikkar, K. R. (1999). Modulatory effects of Ixora coccinea flower on

cyclophosphamide induced toxicity in mice. Phytother. Res., 13(p) 517-520. c) Sun, H.-X., Peng,

X.-Y. (2008). Protective effects of triterpenoids fractions from the rhizomes of Astilbe chinensis

on cyclophosphamide induced toxicity in tumor bearin mice. J. Ethanopharmacol., 119, 312-317.

d) Arunachalam, G., Subramanian, N., Pazhani, G. P., Karunanithi, M., Ravichandran, V. (2009).

Phytochemical and antiulcer investigation of the fresh leaf extract of Ixora coccinea Linn. in albino

rat model. Int. J. Pharm. Sci., 1(1), 26-31. e) Latha, P. G., Pannikkar, K. R. (1998). Cytotoxic and

antitumor principles from Ixora coccinea flowers. Cancer Lett., 130, 197-202. f) Panikar, K. R.,

Bhanumathy, P., Raghunath, P. N. (1986). Anti- tumour activity of an ayurvedic oil preparation.

Anc. Sci. Life, Vol (VI), 107 -108. g) Latha, P. G., Nayar, M. N. S., Singh, O. V., George, V.,

Paniker, K. R., Pushangadan, P. (2001). Isolation of antigenotoxic ursolic acid from Ixora coccinea

flower. Actual Biol., 23(74), 21-24. h) Nayak, S., Upada, L. (2003). Altered antioxidant enzyme

profile in wound healing. Indian J. Clin. Biochem., 18(1), 75-79. i) Vetriselvan, S., Felix, A. E.,

Magendran, R., Ponnaiyakannan, S., Prabakaran, T., Jothi, S., Davan, R. (2012). The

phytochemical screening and the antiulcer activity of methanolic extract of Ixora coccinea Linn.

leaf. J. Pharm. Res., 5(6), 3074-77.

5. a) Saha, M. D., Alam, M. A., Akter, R., Jhangir, R. (2008). In vitro antioxidant activity of Ixora

coccinea L. Bangladesh J. Pharmacol., 3, 90-96. b) Torey, A., Sasidharan, S., Latha, L. Y.,

Sudhakaran, S., Ramanathan, S. (2010). Antioxidant activity and total phenolics content of

methanol extract of Ixora coccinea. Pharm. Biol., 48(10), 119-123. c) Banerjee, S., Chandra, A.,

Ghoshal, A., Debnath, R., Chakarborthy, S., Saha, R., Das, A. (2011). Nitric oxide scavenging

activity study of ethanolic extract of Ixora coccinea from two different area of Kolkata. Asian J.

Exp. Biol. Sci. 2(4), 595-599. d) Haridass, S., Sekar, S., Vijayan, R., Jayakumar, S., Thtmizharasu,

S., Krishnamuethy, V., Chidambaram, S. B. (2012). Relative antioxidant and cytotoxic activities

of Ixora coccinea flower extract. J. Pharm. Res., 5(3), 1403-08. e) Bungihan, M. E., Matias, C. A.

(2013). Determination of the antioxidant, phytochemical and antibacterial profiles of flowers from

selected ornamental plants in Nueva Vizcaya, Philippines J. Agric. Technol. B, 3(12), 833-41. f)

Surana, R., Aher, A. N., Pal. S. C. (2013). In vitro and vivo antioxidant activity of Ixora coccinea.

Page 177: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

170

J. Med. Plant Res., 7(41), 3071-75. g) Rajendra, K., Nitin, G., Mahavir, G., Sudhir, V., Mangesh,

K. (2013). Evaluation of anti-inflammatory and antioxidant potential of Ixora coccinea Linn.

ethanolic root extract. Int. J. Drug Develop. Res., (5).

6. a) Reena, Z., Sudhakarn, N., Nair, C. R., Valayudha. P. (1994). Anti-inflammatory and antimitotic

activities of lupeol isolated from leaves of Ixora coccinea. Indian J. Pharm. Sci., 56(4), 129-32. b)

Ratnasooriya, W. D., Deraniyagala, S. A., Galhena, G., Liyanage, S. S. P., Bathige, S. D. N. K.,

Jayakody, J. A. R. C. (2005). Anti-inflammatory activity of the aqueous leaf extract. Pharm. Biol.,

43(2), 147-152. c) Handunnetti, S. M., Kumara, R. R., Deraniyagala, S. A., Ratnasooriya, W. D.

(2009). Anti-inflammatory activity of Ixora coccinea methanolic leaf extract. Pharmacog. Res.,

1(2), 80-90. d) Bhattacharya, A., Kar, D. R., Sengupta, A., Ghosh, G., Mishra, S. K. (2011).

Evaluation of antiinflammatory and analgesic activity of Ixora coccinea flower extract. Asian J.

Chem., 23(10), 4369-4372.

7. Ratnasooriya, W. D., Deraniyagala, S. A., Bathige, S. D. N. K., Goonasekara, C. L., Jayakody, J.

R. A. C. (2005). Antinociceptive action of aqueous extract of the leaves of Ixora coccinea. Acta

Biol. Hung., 56(1-2), 21-34.

8. a) Momin, F., Shaikh, S., Khan, N., Joishi, R., Shikalgar, T., Naikwade, N. (2011).

Cardioprotective effects of Ixora coccinea Linn. flowers extract on doxorubin induced

cardiomyopathy in rats. Pharmacology online, 3, 1145-1158. b) Rahman, A. U., Taqvi, S. I. H.,

Versiani, M. A., Ikram, A., Ahmed, S. K. (2012). Effect of whole flowers and fractions of Ixora

coccinea Linn. on cardiovascular system, A preliminary report. J. Chem. Soc. Pak., 34, 758-66.

9. Missebukpo, A., Metowogo, K., Agbonon, A., Eklu-Gadegbeku, K., Aklikokou, K., Gbeassor, M.

(2011). Evaluation of antiasthamatic activities of Ixora coccinea Linn. (Rubiaceae). J. Pharmacol.

Toxicol., 6(6), 559-570.

10. a) Neelima, N., Sudhakar, M., Patil, M. B., Lakshmi, B. V. S. (2011). Hypolipidemic activity and

HPTLC analysis of Ixora coccinea Linn. leaves. J. App. Pharm. Sci., 10, 172-175. b) Maniyar, Y.,

Bhixavatimath, P. (2011). Evaluation of hypoglycemic and hypolipidemic activities of aqueous

extract of leaves of Ixora coccinea Linn. in diabetic rats. J. App. Pharm. Sci., 5(7), 1381-1384.

11. a) Yasmeen, M., Prabhu, B., Agashikar, N. V. (2010). Evaluation of the antidiarrhoeal activity of

Ixora coccinea Linn. J. Clin. Diag. Res., 4(5), 3298-3303. b) Yasmeen, M., Prabhu, B., Agashikar,

N. V. (2010). Antidiarrhoeal activity of flowers of Ixora coccinea Linn. in rats. J. Ayurveda. Integr.

Med., 4, 287-291.

12. a) Nayak, A. S., Udupa, A. L., Udapa, S. L. (1999). Effect of Ixora coccinea flowers and dead

space wound healing in rats. Fitoterapia, 70, 233-236. b) Selvaraj, N., Lakshmanan, B.,

Mazumder, P. M., Karuppasamy, M., Jena, S. S., Pattnaik, A. K. (2011). Evaluation of wound

Page 178: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

171

healing and antimicrobial potentials of Ixora coccinea root extracts. Asian Pac. J. Trop. Med.,

4(12), 959-963.

13. a) Nagaraj, A., Krishnamurthy, N., Liny, P., Divya, P., Dinesh, R. (2011). Biosynthesis of gold

nano particles of Ixora coccinea flower extract and their antimicrobial activities. Int. J. Pharm.

Biol. Sci., 2(4), 557-565. b) Karuppiah, M., Rajmohan, R., (2013). Green synthesis of silver

nanoparticles using Ixora coccinea leaves extract. Mater. Lett., 97, 141-143.

14. Tikku, S., Sindhu, R. S., Bhartiya, R. K. (1990). The removal of Pb(II), Cd (II) and Hg (II) from

water by Ixora coccinea Linn. Ind. J. For., 13(2), 112-114.

15. Padma, S. V., Shanker, R. (2006). Sonicator dying of cotton and silk with Ixora coccinea flower.

Asian Text J., 77-79.

16. a)Anusha, P., Thangaviji, V., Velmurugan, S., Michaelbabu, M., Citarasu, T., (year). Protection of

ornamental gold fish Carrassius auratus against Aeromonas hydrophila by treating Ixora coccinea

active principles. Fish & shellfish Immunology, 36(2), 485-493. b) Wongwattanasathien, O.,

Kangsadalampai, K., Tongyonk, K. (2010). Antimutagenicity of some flowers grown in Thailand.

Food Chem. Toxicol., 48(4), 1045-1051.

17. Yadava, R. N. (1989). Analysis of the fixed oil from the root of I. coccinea. Asian J. Chem., 1(3),

307-308.

18. Versiani, M. A., Ikram, A., Ahmed, S. K., Faizi, S., Tahiri, I. A. (2012). A new natural terpenoids

from the flower of Ixora coccinea Linn. Nat. Prod. Comm., 7(7), 831-834.

19. Ikram, A., Versiani, M. A., Shamshad, S., Ahmed, S. K., Ali, S. T. Faizi, S. (2013). Ixorene: A

new dammarane triterpene from the leaves of Ixora coccinea Linn. Rec. Nat. Prod., 7(4), 302-306.

20. Chia-lin, L., Yung-Chih, L., Tsong-Long, H., Chin-Chung, W., Fang-Rong. C., Yang-Chang, W.

(2010). Ixopeptide I and II, bioactive peptide isolated from Ixora coccinea. Bioorg. Med. Chem.

Lett., 20(24), 7354-57.

21. Ragasa, B. Y., Tiu, F., Rideout, J. A. (2004). New cycloartenol ester of Ixora coccinea L. Nat.

Prod. Res., 18, 319-323.

22. a) Surana, A. R., Aher, A. N., Pal, S. C., Deore, U. V. (2011). Evaluation of anthelmintic activity

of Ixora coccinea. Int. J. Pharm. Sci., 2(6), 813-814. b) Kartha, A. R. S., Menon, K. N. (1942).

The isolation and constitutions of an acid from the root bark of Ixora coccinea. Proceeding Ind.

Acad. Sci. Set-A, 17, 11-15.

23. Torres, D. V. Cabrera, S. P., Saavedra, C. M. A., Torres, C. G. M. (2009). Phytochemical screening

of alcoholic, ether and aqueous extracts from leaves, stems and flowers of Ixora coccinea L.

Quimica Viva, 8(3), 185-191.

Page 179: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

172

24. Obuzor, G. U., Wakanma, G. U. N. (2011). Chemical composition of essential oil of Ixora

coccinea flowers from port Harcourt, Nigeria. Int. J. Acad. Res., 3(2), 381-384.

25. a)Ghazali, N., Abdullah, N. A., Bakar, A. A., Mohammad, N. K. (2003). GC-MS analysis of some

bioactive components in the root extract of Ixora coccinea Linn. Int. J. Pharm. Biol. Sci., 5(3),

197. b) Deshpande, A., Jadge, D., Dhawale, S., Patrakar, R., Gadgul, A. (2010). Flower extract of

Ixora coccinea Linn. as a natural indicator in acid base titration. J. Pharm. Res., 3(10), 2512-2513.

c) Okoye, N. H., Oforka, N. C. (2009). Use of Ixora coccinea Linn. flowers as acid base and

complexometric titration indicator. J. Chem. Sci. Nigeria, 34(2), 168-173.

26. a) Kharat, A. R., Nambiar, V.V., Tarkasband, Y. S., Pujari, R. R. (2013). Int. J. Res. Pharm.

Chem., 3, 628-635. b) Sunitha, D., Hemalatha, K., Bhagavanraju, M. (2015). Phytochemical and

pharmacological profile of Ixora: a review. Int. J. Pharm. Sci. Res., 6(2), 567-584. c) Khare, C. P.

(2007). Indian Medicinal Plants. Springer private limited, 338-339. d) Chen, L.Y., Chien, Y. C.,

Huang, M. C. (2003). Extraction and isolation of active constituents from Ixora chinensis Lam

leaves. J. Am. Soc. Horticult. Sci., 128(1), 23-28. e) Vadivu, R., Jayshree, N., Kasthuri, C.,

Rubhini, K., Rukmankathan, G. (2009). Pharmacognostical standardization of leaves of Ixora

coccinea. J. Pharm. Res., 1(4), 151–157.

27. a) Dontha, S., Kamurthy, H., Bhagavan, R. M., Nandakishora, C. (2015). Extraction and isolation

of active constituents from Ixora chinensis Lam leaves. Pharma Chemica, 7(10), 434-441. b)

Zhicheng, Z., Fei, D., Jing, W., Xuemei, M. (2014). Chinese medicinal unguent for treating lower

extremity superficial thrombophlebitis. Faming Zhuanli Shenqing CN 103656390 A 20140326. c)

Zhicheng, Z., Fei, D., Jing, W., Xuemei, M. (2014). Chinese medicine for treating superficial

thrombophlebitis of lower limb. Faming Zhuanli Shenqing CN 103690849 A 20140402.

28. a)Sai-sai, R., Wei-gao, P., Yong, L., Xiao-yong, Z., Yi-lin, Z., Peng, L. (2012). GC-MS analysis

of volatile oil from whole plant of Ixora chinensis Lam. Yaowu Fenxi Zazhi, 32(12), 2184-2189.

b) Sai-sai, R., Peng, L., Wei-gao, P., Chen-yan, L., Yao-hua, L., Wei, Z. (2012). Study on chemical

constituents from Ixora chinensis. Zhongcaoyao, 43(11), 2116-2119. c) Minquan, H., Yingsheng,

L. (1999). Variation of fatty acid composition in Ixora chinensis seed at various stages of

development and maturation. Yunnan Zhiwu Yanjiu, 21(2), 249-252. d) Minquan, H. (1990). A

C18 conjugated tetraenoic acid from Ixora chinensis seed oil. Phytochemistry, 29(4), 1317-19. e)

Yoshio, T., Hiroshi, N., Hiroyuki, I. (1975). Studies on monoterpene glucosides and related natural

products. 28. Two new iridoid glucosides from Ixora chinensis. Phytochemistry, 14(12), 2647-50.

f) Wai Haan, H., Che Tim, H. (1968). Rubiaceae of Hong Kong. VII. Occurrence of triterpenoids,

steroids, and triterpenoid saponins. Aust. J. Chem., 21(2), 547-9. g) Jamal, P., Barkat, A. A., Amid,

Page 180: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

173

A. (2010). Distribution of phenolics in various Malaysian medicinal plants. J. Appl. Sci., 10(21),

2658-2662.

29. a) Saleha, A., Tahmina, H., Jahan E. I., Faisal M. K., Shanta, A., Taslima, B. (2015). Comparative

antimicrobial activities of different species of Ixora. J. Pharmacog. Phytochem., 3(6), 103-105. b)

Siye, L. (2015). Antibacterial anti-aging polyester material and its preparation method. Faming

Zhuanli Shenqing CN 105062013 A 20151118. c) Jirayut, E., Arjaree, N., Srisurang, T., Takuya,

N., Yusuhiro, I., Watanalai, P. (2010). Identification and characterization of soil-isolated

Streptomyces SJE177 producing actinomycin. Southeast Asian J. Trop. Med. Pub. Health, 41(5),

1177-1187. d) Moiseevich, K. B., Nikolaevna, Z. A., Ivanovich, I. B., Vasil'evich, V. A., Sun-

Khun, K. (1998). A medicinal composition. Russ. RU 2112524 C1 19980610.

30. a) Rui, C., Wei, S., Li, Lini, H. P., Rumei, L., Chengsheng, L. (2013). Antioxidant activity of Ixora

chinensis. Asian J. Chem., 25(4), 2323-2324. b) Hong, L., Xianjun, H., Wei, W., Weifeng, T., Lin,

W., Xiudan, S., Danwei, Z., Qiongxin, Z. (2007). Studies on the antioxidation of the flower extracts

from tropical plants. Hainan Shifan Xueyuan Xuebao, Ziran Kexueban, 20(4), 339-341, 354. c)

Youwei, Z., Liangxiong, X., Yonghong, P. (2004). Comparative study on free radical scavenging

activities of 45 fresh flowers. Yingyong Yu Huanjing Shengwu Xuebao, 10(6), 699-702. d) Lixin,

L., Yonghong, P., Ling, L. (2002). Antioxidant activities of 35 kinds of fresh flowers. Zhiwu

Ziyuan Yu Huanjing Xuebao, 11(2), 21-24.

31. Hua, L. (2016). A traditional chinese medicine for treatment of kidney stone and its preparation

method. Faming Zhuanli Shenqing, CN 105233058 A 20160113.

32. Zakharov, Y. A. (2000). A method for treating tumor diseases with medicinal composition. Russ.

RU 2161040 C1 20001227.

33. a) Jinfeng, H. (2016). A traditional chinese medicine for treating persistent pigment abnormalities

erythema. Faming Zhuanli Shenqing, CN 105617183 A 20160601. b) Yusu, Z. (2016). Traditional

Chinese medicine for treating blister beetle dermatitis. Faming Zhuanli Shenqing, CN 105521366

A 20160427. c) Youai, S. (2016). Traditional Chinese medicine for treating phlegmy turbidity

headache. Faming Zhuanli Shenqing, CN 105497594 A 20160420. d) Chengsheng, X. (2016).

Traditional chinese medicine for treatment of traumatic headache for anaesthetization department

and its preparation method. Faming Zhuanli Shenqing, CN 105395869 A 20160316. e) Yuechan,

Z. (2014). A green grass medical belt for dizziness and headache. Faming Zhuanli Shenqing CN

103735870 A 20140423. f) Li, Z., Lili, Y. (2016). Traditional chinese medicine preparation for

treating gout and its preparation method. Faming Zhuanli Shenqing, CN 105435018 A 20160330.

g) Shuang, L., Maoxiu, J., Ani, L., Yunxia, Y., Wanqing, X., Kun, L., Xianjin, L. (2016).

Page 181: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

174

Traditional Chinese medicine composition for treatment of children acute suppurative tonsillitis

and its preparation method. Faming Zhuanli Shenqing, CN 105477343 A 20160413.

34. a) Xianlan, Y. (2016). Chinese medicine composition for treating melanosis. Faming Zhuanli

Shenqing, CN 105327030 A 20160217. b) Bairong, L., Fengmei, W., Qingfeng, X. (2012).

Medicine of traditional chinese medicines for treating primary dysmenorrheal. Faming Zhuanli

Shenqing CN 1026 88458 A 20120926. c) Lisha, J. (2016). Traditional chinese medicine

composition for treating dysmenorrhea. Faming Zhuanli Shenqing, CN 105287949 A 20160203.

35. a) Shulan, Q. (2016). Chinese medicine powder for treating jaundice and its preparation method.

Faming Zhuanli Shenqing CN 105232742 A 20160113. b) Qiumei, C., Changrong, W., Yufeng,

M. (2015). Traditional chinese medicine for the treatment of tuberculosis. Faming Zhuanli

Shenqing CN 104274707 A 20150114. c) Guojin, Z., Chenggong, L. (2014). A kind of chinese

medicine composition for the treatment of tuberculosis of intestine with syndrome of qistagnation

and blood stasis. Faming Zhuanli Shenqing CN 103845579 A 20140611. d) Zhixian, L., Bin, Z.,

Shuiliang, H. (2012). Orally taken drug containing traditional chinese medicines for treating

chronic bronchitis. Faming Zhuanli Shenqing CN 102743572 A 20121024. e) Boxue, B. (2015).

A chinese materia medica preparation for treating traumatic brain injury mental disorder. Faming

Zhuanli Shenqing, CN 104623225 A 20150520.

36. a) Xinyi, S., Linwu, P. (2015). A kind of traditional chinese medicine composition for treating

facial paralysis. Faming Zhuanli Shenqing CN 104825856 A 20150812. b) Jinglin, Z., Ying, W.

(1994). A Chinese medicinal composition for lowering blood pressure and protecting health, and

its preparation method. Faming Zhuanli Shenqing CN 1092328 A 19940921. c) Raaj, K. P., Uma,

S., John, W. L. (2014). Method of improving aging appearance of skin by modulation of WIPI-1.

U.S. Pat. Appl. Publ. US 20140161916 A1 20140612. d) Chen, S. W., Zheng, Q., Parimoo, S.

(2013). Modulation of thymosin β4 in skin. PCT Int. Appl. WO 2013089832 A1 20130620. e)

Siming, C., Qian, Z., Satish, P. (2013). Modulation of thymosin β4in skin. U.S. Pat. Appl. Publ.

US 20130149397 A1 20130613. f) Qian, Z., Siming, W. C., Uma, S., John, W. L. (2012).

Compositions and methods for stimulation of MAGP-1 to improve the appearance of the skin. U.S.

Pat. Appl. Publ. US 20120003332 A1 20120105. g) Qiuping, L. (2009). Compositions of herbal

flower bubble bath and skin care capsule. Faming Zhuanli Shenqing CN 101559033 A 20091021.

h) Hui, L. (2016). A kind of traditional chinese medicine composition for treating skin keratosis.

Faming Zhuanli Shenqing, CN 105596785 A 20160525.

37. a) Xiaoqiong, L. (2016). A traditional chinese medicine composition for treating hemorrhoids and

its preparation method. Faming Zhuanli Shenqing CN 105412286 A 20160323. b) Ming L., Feng,

Page 182: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

175

Z., Chuanmin, X. (2014). A kind of chinese medicine for treating trigeminal neuralgia. Faming

Zhuanli Shenqing, CN 103861046 A 2014 0618.

38. a) Shaohua, L. (2015). A mixed traditional chinese medicine for nourishing the stomach. Faming

Zhuanli Shenqing CN 104740091 A 20150701. b) Jia, W., Jian-xin, X., Xu-rong, L., Jian-feng, X.,

Ling-ling, W., Xiu-dong, L., Yao-liang, D., Shi-gang, L. (2013). Effects of light-emitting diodes

(LED) supplemental lighting on photosynthetic response and growth of five kinds of green plants.

Anhui Nongye Kexue, 41(25), 10221-10223. c) Shanshan, L. (2016). Shampoo containing Ixora

chinensis bud extract. Faming Zhuanli Shenqing, CN 105534774 A 20160504. d) Bin, C. (2016).

Traditional chinese medicine for treating blood stasis type infective endocarditis and its

preparation method. Faming Zhuanli Shenqing CN 105616826 A 20160601. e) Hailin, C., (2014).

Chinese medicinal composition for treating bladder cancer. Faming Zhuanli Shenqing CN

103768543 A 20140507. f) Qing, F. (2015). A chinese medicine for treating gastric ulcer and its

preparation method. Faming Zhuanli Shenqing, CN 104971199 A 20151014. g) Gensen, M.

(2015). Chinese medicinal composition for treating viral gastritis. Faming Zhuanli Shenqing, CN

104958661 A 20151007.

39. a) Shaomin, L. (2016). Traditional chinese medicine for treating acute tonsillitis and its preparation

method. Faming Zhuanli Shenqing CN 105267687 A 20160127. b) Jia-yi, Z., Gui-he, Z., Cheng,

C. (2014). Extractive technique and nature on flower pigment of Ixora chinensis Lam. Shipin

Gongye (Shanghai, China) 35(6), 117-120. c) Padma, S. V., Jyoti, S. (2010). Evaluation of

anthocyanin content in red and blue flowers. Int. J. Food Eng., 6(4), No pp. given. d) Hai-feng, L.,

Zheng-ling, P., Ting-ting, S., Hai-hua, L., Li-fang, J., Suo-yi, H. (2009). Stability of red pigment

from Ixora chinensis Lam. Weiliang Yuansu Yu Jiankang Yanjiu, 26(4), 26-28. e) Jadhav, R. L.,

Mahajan, N. S., Pimpodkar, N. V., Garje, S. B., Karande, P. P. (2009). Use of Ixora chinensis

flower extract as a natural indicator in acid base titration. Int. J. Chem. Sci., 7(1), 219-224.

40. a)Marilena M., Eliezer P. S., Jorge M. D., Juceni P. D. (2012). Review of the genus Ipomoea:

traditional uses, chemistry and biological activities. Brazilian J. Pharmacog., 22(3), 682-713. b)

Haizhen, L., (2013). Method for planting Ipomoea batatas with high disease resistance. Faming

Zhuanli Shenqing, 6pp., Patent, CODEN: CNXXEV. 2013:1901268, CAN 160:86253. c)

Tokusoglu, O., Yildirim, Z., (2012). Effects of cooking methods on the anthocyanin levels and

antioxidant activity of a local Turkish sweet potato [Ipomoea batatas (L.) Lam] cultivar hatay

kirmizi: boiling, steaming and frying effects. Turkish J. Field Crops, 17(1), 87-90. d) Olaitan, O.

O. (2012). Bio-deterioration of sweet potato (Ipomoea batatas Lam) in storage, inoculation-

induced quality changes, and control by modified atmosphere. J. Appl. Sci. Environ. Manag., 16

(2), 189-193. e) Ekpo, I. A., Agbor, R. B., Ekaluo, U. B., Ikpeme, E. V., Kalu, S. E., Osang, J. E.

Page 183: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

176

(2013). Hepatotoxicity of Ipomoea batatas leaf extract on male wistar rats. Am. Int. J. Biol., 1(1),

21-28. f) Senanayake, S. A., Ranaweera, K. K. D. S., Gunaratne, A., Bamunuarachchi, A., (2013).

Comparative analysis of nutritional quality of five different cultivars of sweet potatoes (Ipomoea

batatas (L) Lam) in Sri lanka. Food Sci. Nut., 1(4), 284-291. g) Olabiyi, T. I. (2007). Susceptibility

of sweet potato (Ipomoea batatas) varieties to root knot nematode, Meloidogyne incognita. Amer.

Eurasian J. Agric. Environ. Sci., 2(3), 318-320.

41. a) Lingmin, M., Huigen, F., Guizhou, M., Xiaoxiao, Y., Hongyun, G., Junna, J., Feng, Z., Jinna,

L., Weiwei, S., Jianhui, G. (2013). A Chinese medicinal composition for preventing and treating

osteoporosis. Faming Zhuanli Shenqing, 8pp., Patent, Coden: CNXXEV. 2013:997874, CAN

159:203718. b) Kano, M., Takayanagi, T., Harada, K., Makino, K., Ishikawa, F. (2005).

Antioxidative activity of anthocyanins from purple sweet potato, Ipomoea batatas cultivar

Ayamurasaki. Biosci. Biotechnol. Biochem., 69 (5), 979-988. c) Oladebeye, A. O., Oshodi, A. A.,

Oladebeye, A. A. (2009). Physicochemical properties of starches of sweet potato (Ipomoea batata)

and red cocoyam (Colocasia esculenta) Cormels. Pak. J. Nut., 8 (4), 313-315. d) Egbe, O. M.,

Afuape, S. O., Idoko, J. A. (2012). Performance of improved sweet potato (Ipomoea batatas L.)

varieties in Makurdi, southern guinea savanna of Nigeria. Am. J. Exp. Agr., 2(4), 573-586.

42 a) https://content.ces.ncsu.edu/ornamental-sweetpotatoes-for-the-home-landscape.

b) http://tropical.theferns.info/viewtropical.php?id=Ipomoea+batatas.

c)http://www.finegardening.com/pink-frost-sweet-potato-vine-ipomoea-batatas-pink-

frost#ixzz4PyJVK8rd. d) https://ag.umass.edu/greenhouse-floriculture/fact-sheets/production-

guidelines-for-four-crops-osteospermum-angelonia Production guidelines for four crops-

Osteospermum, Angelonia, Calibrachoa & ornamental sweet potatoes (Ipomoea batatas). The

centre of agriculture, food and the environment. e) Xiaozhi, Q., (2012). Manufacture of traditional

chinese medicine for treating scald. Faming Zhuanli Shenqing, Patent, Coden: CNXXEV.

2012:1421680. f) Amnon, K., Arie, M., Pnina, S., Charles, L. (2009). Applications of

microencapsulated essential oils. U.S. Pat. Appl. Publ., 29 pp., Cont.-in-part of Appl. No.

PCT/IL2007/000213., Patent, Coden: USXXCO.

43 a) Adefegha, S. A., Oboh, G. (2011). Enhancement of total phenolics and antioxidant properties

of some tropical green leafy vegetables by steam cooking. J. Food Process. Preserv., 35(5), 615-

622. b) Adefegha, S. A., Oboh, G. (2011). Cooking enhances the antioxidant properties of some

tropical green leafy vegetables. Afr. J. Biotechnol., 10(4), 632-639.

44 a) Oladebeye, A. O., Oshodi, A. A., Oladebeye, A. A. (2009). Physicochemical properties of

starches of sweet potato (Ipomoea batata) and red cocoyam (Colocasia esculenta) Cormels. Pak.

Page 184: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

177

J. Nut., 8(4), 313-315. b) Roy, F., Hegde, M. V. (1985). Rapid procedure for purification of fi-

amylase from Ipomoea batata. J. Chrom., 324, 489-494.

45 a) Ogunmoye, A. R. O., Adebayo, M. A., Inikpi, E., Ogunwande, I. A. (2015), Chemical

constituents of essential oil from the leaves of Ipomoea batatas L. (Lam.). Int. Res. J. Pure App.

Chem., 7(1), 42-48. b) Mei, W., Yunhai, X., Maomao, Z., Hongdong, L., Taiming, Z., Yizeng, L.

(2010). GC-MS combined with chemometrics for analysis of the components of the essential oils

of sweet potato leaves. Chromatogr., 71(9/10), 891-897.

46 a) Aywa, A. K., Nawiri, M. P. Nyambaka, H. N. (2013). Nutrient variation in colored varieties of

Ipomoea batatas grown in Vihiga County, Western Kenya. Int. Food Res. J., 20(2), 819-825. b)

Aurelie, B., Keith, T., Claudie, D.M., Richard, D., Andrew, W. (2010). On-farm evaluation of the

impact of drying and storage on the carotenoid content of orange-fleshed sweet potato (Ipomoea

batata Lam.). Int. J. Food Sci. Technol., 46(1), 52-60. c) Singh, P., Verma, V., Pandey, K. N.,

Mishra, R. M., Kumar, V., Palsule, S. (2011). Studies on Ipomoea batata fiber reinforced

compatibilzed PP Composite. Int. J. Sci.Technol., 1(2), 65-75.

47 a) Weixiong, T., Qiying, L., Hancheng, T. (2014). A chinese medicine health glutinous rice biscuit.

Faming Zhuanli Shenqing, Patent, Coden: CNXXEV. 2014:404242, CAPLUS. b) Ji, X. (2011).

Health powder prepared from stems and leaves of Ipomoea batatas and natural cacao powder, and

its preparation method. Faming Zhuanli Shenqing, 5pp., Patent, Coden: CNXXEV. 2011: 239796,

CAN 154:309384. c) Babalola, O. O. K., Adubiaro, H. O., Ikusika, O. (2010). The effect of some

processing methods on the vitamin C content of sweet and Irish potato. Elec. J. Env. Agr. Food

Chem., 9(4), 679-681.

48 a) Salau, B. A., Ketiku, A. O., Ajani, E. O., Ezima, E. N., Idowu, G. O., Soladoye, M. O. (2008).

Iodine contents of some selected roots/tubers, cereals and legumes consumed in Nigeria. Afr. J.

Biotechnol., 7(23), 4328-4330. b) Evelina, G., Gabriela, L. (2007). Phitohormons effectives

instruments in modifying the plant's metabolism with the aim of obtaining products with superior

nutritional qualities. Roum. Biotech. Lett., 12(2), 3195-3201. c) Cardenas, H., Kalinowski, J.,

Huaman, Z., Scott, G. (1993). Nutritional evaluation of sweet potato cultivars Ipomoea batata (L.)

Lam used in bread as partial substitute of wheat flour. Arch. Latinoam. Nut., 43(4), 304-9.

49 a) Josef, S., Junning, L., Kazuo, Y., Kousei, M., Koji, N. (1984). Biosynthetic studies of

ipomeamarone. J. Chem. Soc. Chem. Comm., 6, 372-4. b) Rashad, M. M., El-Sayed, S. T., Hashem,

A. M. (1993). Purification and properties of Ipomoea batata β-amylase. Bull. Fac. Pharm., 31(2),

165-9. c) Francis, R., Hegde, M. V. (1985). Rapid procedure for purification of β-amylase from

Ipomoea batata. J. Chromatogr., 324(2), 489-94.

Page 185: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

178

50 Aziz, M. A. Mohsin, M. (1954). Starch from Ipomoea batata. J. Ind. Chem. Soc., Industrial News

Edition, 17, 123-6.

51 a) Kamala, S., Honawar, P. M. (1956). Trypsin inhibitors of sweet potato (Ipomoea batata). Sci.

Cult., 21, 538. b) Hwan-Goo, K., Sang-Hee, J., Joon-Hyoung, C. (2010). Antimutagenic and

anticarcinogenic effect of methanol extracts of sweet potato (Ipomoea batata) leaves. Toxicol.

Res., 26(1), 29-35.

52 a) Bahorun, T., Neergheen, V. S., Aruoma, O. I. (2006). Phytochemical constituents of Cassia

fistula. Afr. J. Biotech., 49(130), 1530-1540. b) Rajagopal, P. L., Premaletha, K., Kiron, S. S.,

Sreejith, K. R. (2013). Phytochemical and pharmacological review on Cassia fistula Linn. the

golden shower. Int. J. Pharm. Chem. Biol. Sci., 3(3), 672-679. c) Bhalerao, S. A., Kelkar, T. S.

(2012). Traditional medicinal uses, phytochemical and profile and pharmacological activites of

Cassia fistula Linn. Int. Res. J. Biol. Sci., 1(5), 79-84. d) Rajesh, W. T., Ramrao, B. P., Nitin, G.

A., Sadashiv, A. J. A review article of Cassia fistula Linn. Int. Ayur. Med. J. e) Ali, M. A. (2014).

Cassia fistula Linn: a review of phytochemical and pharmacological studies. Int. J. Pharm. Sci.

Res., 5(6), 2125-2130. f) Chaudhari, M. V., (2013). Aragvadha (Cassia fistula Linn): A phyto-

pharmacological review, J. Ayur. Holistic Med., 1(7), 22-29.

53 a) Verma, S. C., Vashishth, E., Subhani, S., Singh, R., Pant, P., Padhi, M. M., Kumar, A. (2015).

Comparative phytochemical study of stem bark versus small branches of Cassia fistula Linn. using

high performance thin layer chromatographic ultra violet detection method. World J. Pharm. Res.,

4(3), 1910-1920. b) Nidhi, S., Shrivastava, P. N., Saxena, R. C. (2011). Preliminary physico-

phytochemical study of the fruit of a medicinal plant Cassia fistula L. Int. J. Chem. Sci., 9(1), 223-

228. c) Manisha, A. N., Navneet, N., Sandeep, R., Gagan, S., Gaurav, S., Reni, K. (2011).

Phytochemical investigation of methanolic extract of Cassia fistula leaves. Pharmacog. J., 3(26),

61-69.

54 a) Mohammad, I., Aijaz, A., Mohammad, Z., Farah, A., Nikhat, M., Man, S., Rizvi, M., Moshahid,

A. (2013). Composition of Cassia fistula oil and its antifungal activity by disrupting ergosterol

biosynthesis. Nat. Prod. Comm., 8(2), 261-264. b) Pratap, S. M., Sarika, S. (2011). Phytochemical

analysis and antimicrobial efficacy of methanolic extract of some medicinal plants at Gwalior

region. J. Pharm. Res., 4(10), 3603-3605. c) Tuhina, D., Padma, C. (2006). Identification of

antifungal activity in different species of Cassia. Ind. J. Env. Ecoplanning, 12(3), 661-663. d)

Sawangkan, K., Sittikityothin, W., Satirapipathkul, C. (2012). Natural polysaccharide based films

and their antibacterial activities. Adv. Mat. Res., 506, 397-400. e) Vasudevan, D. T., Dinesh, K.

R., Gopalakrishnan, S., Sreekanth, S. K., Shekar, S. (2009). The potential of aqueous and isolated

fraction from leaves of Cassia fistula Linn as antibacterial agent. Int. J. Chem. Sci., 7(4), 2363-

Page 186: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

179

2367. f) Chutimon, S., Tanakan, C. (2014). Polysaccharide based film of Cassia fistula and it's

antibacterial activity. Adv. Mat. Res., 875-877, 87-90. g) Maya, C., Thippanna, M. (2015). In vitro

antifungal evaluation of various botanical extracts against early blight disease (Alternaria solani)

of tomato. Int. J. Sci. Nat., 6(2), 264-267. h) Vijay, L., Bhatia, A. K., Anjana, G., Nitin, W.,

Anubhuti, S. (2015). Phytochemicals screening and analysis using HPLC to determine the

antimicrobial efficacy of Cassia fistula extract. Adv. Bio Res., 6(3), 1-7. i) Nosheen, A., Ihsan-ul-

Haq; Bushra, M. (2015). Phytochemical analysis and comprehensive evaluation of antimicrobial

and antioxidant properties of 61medicinal plant species. Arabian J. Chem.. j) Kinnari, A. P.,

Prateek, S., Arvind, D. (2015). Alkaline protease production from Sorghum vulgare by

Staphylococcus sciuri. J. Pure Appl. Microbiol., 9(1), 441-447. k) Maya, C., Thippanna, M.,

(2015). In vitro antifungal evaluation of various botanical extracts against early blight disease

(Alternaria solani) of tomato. Int. J. Sci. Nat., 6(2), 264-267.

55 a) Sunetra, P., Ghansham, S., Kumar, S. A., Kishor, J., Rahul, S. (2009). Evaluation of analgesic

activity of Cassia fistula on albino mice. Pharmacol., (2), 887-893. b) Gacche, R. N., Dhole, N.

A. (2011). Aldose reductase inhibitory, anti-cataract and antioxidant potential of selected

medicinal plants from the Marathwada region, India. Nat. Prod. Res., 25(7), 760-763. c) Umesh,

K., Meenakshi, M., Veeru, P. (2012). Assessment of antioxidant enzymes and free radical

scavenging activity of selected medicinal plants. Free Rad. Antioxidants, 2(3), 58-63. d) Murali,

M., Puneetha, G. K., Thriveni, M. C., Niranjan, M. H., Shivamurthy, G. R., Niranjana, S. R.,

Prakash, H. S., Amruthesh, K. N. (2011). Phytochemical screening and antioxidant activity of

hemi-parasitic Indian mistletoe Viscum nepalense Sprengel. J. Pharm. Res., 4(10), 3348-3350. e)

Umesh, K., Veeru, P. (2012). Comparative analysis of antioxidant activity and phytochemical

screening of some Indian medicinal plants. Int. J. Pharm. Pharmaceut. Sci., 4(3), 291-295. f)

Moussa, A. M., Emam, A. M., Diab, Y. M., Mahmoud, M. E., Mahmoud, A. S. (2011). Evaluation

of antioxidant potential of 124 Egyptian plants with emphasis on the action of Punica granatum

leaf extract on rats. Int. Food Res. J., 18(2), 535-542. g) Bhalodia, N. R., Acharya, R. N., Shukla,

V. J. (2011). Evaluation of in vitro antioxidant activity of hydroalcoholic seed extracts of Cassia

fistula Linn. Free Radicals Antioxidants, 1(1), 68-76. h) Choudhary, R. K., Eesha, S. A., Swarnkar,

P. L. (2011), Screening of endogenous antioxidants in some medicinal plants. Toxicol. Environ.

Chem., 93(4), 656-664. i) Madhurima, Ansari, S. H., Ahmad, S., Akhtar, M. S., Alam, P. (2010).

Antioxidant potential of aqueous extract of Cassia fistula L. leaves. J. Nat. Remed., 10(2), 181-

183. j) Mahmoud, E-H., Abdel-Gawad, M., Mohamed, M., Mohamed, E-S., Ahmed, M. S., Saleh,

E-S., (2010). Antioxidant properties of methanolic extracts of the leaves of seven Egyptian Cassia

species. Acta Pharm., 60(3), 361-367. k) Maheep, B., Sunil, V., Yogesh, V., Durgesh, S., Kanika,

Page 187: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

180

S. (2010). Antioxidant activity of fruit pulp powder of Cassia fistula. Pharmacog. J., 2(8), 219-

228. l) Laizuman, N., Alam, R. F. (2009). Investigation on antioxidant activities of six indigenous

plants of Bangladesh. J. Appl. Sci. Res., 5(12), 2285-2288. m) Lai, T., Chiang, L. K. (2013). Total

phenolics, total tannins and antioxidant activity of Cassia fistula L. extracts of bark, stem, leaf and

root under different age classes. J. Pharmaceut. Res. Health Care, 5(2), 52-57. n) Bunleu, S.,

Methin, P. (2015). Anti-tyrosinase and DPPH radical scavenging activities of selected thai herbal

extracts traditionally used as skin toner. Pharmacog. J., 7(2), 97-101. o) Jayarama, R.,

Ranganathan, T. V., Jeldi, H. (2014). A study on phytochemical analysis and antioxidant potentials

of plants used in the treatment of Vitiligo. Eur. J. Biomed. Pharm. Sci., 1(3), 471-479.

56 a) Rajalakshmi, M., Daisy, P. (2014). Catechin loaded chitosan nanoparticles as a novel drug

delivery system for cancer-synthesis and in vitro and in vivo characterization. World J. Pharm.

Pharmaceut. Sci., 3(2), 1553-1577. b) Md, I., Jafar, M. S., Asgar, A., Irfan, A., Man, S., Rizvi, M.

A. (2014). Phytochemical composition of Cassia fistula fruit extracts and its anticancer activity

against human cancer cell lines. J.Biol. Act. Prod. Nat., 4(3), 158-170. c) Juanxia, Y., Huan, W.,

Guiyou, L., Jie, L., Limei, L., Qiufen, H., Yanqing, Y. (2014). A new anthraquinone from the fruit

of Cassia fistula and its cytotoxicity. Asian J. Chem., 26(14), 4519-4520. d) Xue-Mei, G., Yan-

Qiong, S., Xiang-Zhong, H., Li-Ying, Y., Li-Dan, S., Qiu-Fen, H., Gan-Peng, L. (2013). 2''-Ethyl-

furanoflavone derivatives from the stems of Cassia fistula and their cytotoxicity. J. Braz. Chem.

Soc., 24(4), 685-689. e) Linu, M., Shankar, S. (2012). In vitro cytotoxic activity of methanolic

extract of stem bark of Cassia fistula L. Res. J. Biotech., 7(4), 141-148. f) Qiufen, H., Min, Z.,

Haiyan, W., Yinke, L., Xuemei, G., et. al. (2016). Extraction of isoindole alkaloid compound from

Cassia fistula dried bark useful as anticancer agent. Faming Zhuanli Shenqing CN 105481754 A

20160413. g) Lan, L., Wen-Xiu, X., Chun-Bo, L., Cheng-Ming, Z., et. al.(2015). A new

anthraquinones from Cassia fistula and its cytotoxicity. Asian J. Chem., 27(9), 3527-3528. h) Min,

Z., Huichun, G., Xuemei, G., et, al. (2016). Preparation of dimeric chromone alkaloid compound

and its application as anticancer agent. Faming Zhuanli Shenqing CN 105294720 A 20160203. i)

Dakun, P., (2016). Pharmaceutical composition for the treatment of stomach cancer. Faming

Zhuanli Shenqing CN 105287804 A 20160203. j) Peicai, S., (2016). Pharmaceutical composition

composed of chemical drugs and Chinese medicine for treating functional dyspepsia and

preparation method thereof. Faming Zhuanli Shenqing CN 105267289 A 20160127. k)

Duraipandiyan, V., Albert, B. A., Ignacimuthu, S., Muthukumar, C., Al-Harbi, N. (2012).

Anticancer activity of rhein isolated from Cassia fistula L. flower. Asian Pac. J. Trop. Disease,

2(1), S517-S523.

Page 188: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

181

57 a) Grace, M. H., Carmen, L., Rocky, G., Peter, J. S., Ilya, R., Ann, L. M. (2012). Antiplasmodial

activity of the ethnobotanical plant Cassia fistula. Nat. Prod. Comm., 7(10), 1263-1266. b) Abdul,

Q., Rakesh, A., Andrew M. L. (2016). Ethnobotanical perspective of antimalarial plants: traditional

knowledge based study. BMC Res. Notes, 9, 67/1-67/20.

58 a) Vijayalakshmi, D. N., Jayakumari, S. (2009). Hypoglycemic and antidiabetic screening of

Cassia fistula Linn. Bark. Nat. Prod.: An Indian J., 5(4), 157-161. b) Pitcahi, D., Manikkam, R.

(2012). A process for isolation of a novel cyclopenta[a]phenanthren-3-one compound from Cassia

fistula stem bark having antidiabetic property. Indian Pat. Appl. IN 2012CH02881 A 20121130.

c) Manikkam, R., Pitcahi, D. (2012). 17-[(E)-4-Ethyl-1',5'-dimethyl-2'-hexenyl]-11-hydroxy-5-

(hydroxymethyl)-13,14-dimethyl-5,6,7,11,12,13,14,15,16,17-decahydro-3H-cyclopenta [a]phen

anthren-3-one from Cassia fistula stem bark with antidiabetic activity. Indian Pat. Appl. IN

2012CH02879 A 20121130. d) Wilking, E. J., Mustafa, M. R., Ali, M. M. (2013). Comparative

evaluation of the antidiabetic effects of different parts of Cassia fistula Linn, a Southeast asian

plant. J. Chem.,714063, 10 pp. e) Singh, P. K., Baxi, D. B., Mukherjee, R., Ramachandran, A. V.

(2010). Evaluation on the efficacy of a poly herbal supplement along with exercise in alleviating

dyslipidemia, oxidative stress and hepatic and renal toxicity associated with type -1 diabetes. J.

Herbal Med. Toxicol., 4(2), 35-43. f) Daisy, P., Balasubramanian, K., Rajalakshmi, M., Eliza, J.,

Selvaraj, J. (2010). Insulin mimetic impact of catechin isolated from Cassia fistula on the glucose

oxidation and molecular mechanisms of glucose uptake on Streptozotocin-induced diabetic wistar

rats. Phytomedicine, 17(1), 28-36. g) Daisy, P., Saipriya, K. (2012). Biochemical analysis of

Cassia fistula aqueous extraxct and phytochemically synthesized gold nanoparticles as

hypoglycemic treatment for diabetes mellitus. Int. J. Nanomed., 7, 1189-1202. h) Dangwal, L. R.

(2015). Ethnomedicinal plants used for the treatment of diabetes among the villagers of Narendra

Nagar block, district Tehri Garhwal, Uttarakhand, India. World J. Pharm. Pharmaceut. Sci., 4(9),

1178-1184. i) Kumar, Y. R., Kumar, S. S. (2014). Monitoring in vitro phytochemical analysis of

some diabetic plants and its utilization. Annals Phytomed., 3(2), 35-39.

59 Duraipandiyan, V., Ignacimuthu, S., Paulraj, M. Gabriel. (2014). Antifeedant and larvicidal

activities of rhein isolated from the flowers of Cassia fistula L. J. Saudi Chem. Soc., 18(2), 129-

133.

60 a) Chand, G. U., Jain, G. C. (2009). Study on hypolipidemic activity of Cassia fistula. legume in

rats. Asian J. Exp. Sci., 23(1), 241-248. b) Reddy N. V. L. V. S., Raj G. B. P., Ganga, R. M. (2015).

Antihyperlipidemic activity of Cassia fistula bark using high fat diet induced hyperlipidemia. Int.

J. Pharm. Pharmaceut. Sci., 7(10), 61-64.

Page 189: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

182

61 Patricia, S., Samanta, P. A., Prado, F. O., Tempone, A. G. (2007). Isolation of antileishmanial

sterol from the fruits of Cassia fistula using bioguided fractionation. Phytother. Res., 21(7), 644-

647.

62 Manikkam, R., Daisy, P. (2014). Three tetracyclic triterpenoids isolated and identified from the

ethyl acetate extract of Cassia fistula stem bark with hypoglycemic potential. World J. Pharm.

Pharmaceut. Sci., 3(3), 861-875.

63 a) Sheela, K., Agnihotri, V. K., Sunita, T., Anita, V., Saxena, R. C., Soni, Kapil K. (2012). Some

important medicinal plants used in the treatment of asthma-a review. Int. J. Pharm. Sci. Res.,

3(10), 500-502. b) Peicai, S., (2016). Pharmaceutical composition for treatment of children asthma

caused by phlegm-heat obstructing in the lung. Faming Zhuanli Shenqing CN 105326888 A

20160217.

64 a) Sweta, P., Sujata; G., Ashok, K. J. (2011). Phytochemical screening of selected medicinal plants

used in skin diseases. Int. J. Pharm. Sci., 3(2), 1402-1406. b) Pingshun, Y., Zeqi, Z., Haiying, J.

(2011). Skin-caring cosmetic cream containing extracts from dioscorea and its preparation method.

Faming Zhuanli Shenqing CN 102085172 A 20110608. c) Ranjit, S., Sankar, C. (2012). Screening

of the Cassia fistula flowers extract for the antiacne activity. Res. J. Rec. Sci., 1(11), 53-55. d)

Manisha, T., Kumar, M. S. (2015). A clinical study of eczema by topical application of leaves of

Cassia fistula linn. World J. Pharm. Pharmaceut. Sci., 4(8), 1308-1315.

65 Madhusudan, R. Y., Shayeda, R. P. (2012). Herbal cream for the treatment of leucoderma. Indian

Pat. Appl. IN 2012CH02450 A 20120713.

66 a) Ahirwar, D. K., Jain, R., Chourasia, S., Saxena, R. C., Jain, D. K. (2010). Hepatoprotective

activity of Cassia fistula alcoholic extract against CCl4, induced liver damage in albino rats.

Biomed. Pharm. J., 3(1), 251-255. b) Preeti, C., Shamim, A., Najam, A. K. (2016). Herbal plants

a boon for hepatotoxicity. Asian J. Pharm. Clin. Res., 9(1), 37-40.

67 Thanh, T. N., Le, S. H. (2015). Assessment of anti-psoriatic activity of Cassia fistula L. extract

incorporated cream. British J. Pharm. Res., 5(6), 370-378.

68 Peicai, S. (2016). Pharmaceutical composition composed of chemical drugs and Chinese medicine

for treating vitiligo due to deficiency of both the liver and kidney and preparation method thereof.

Faming Zhuanli Shenqing CN 105267297 A 20160127.

69 Chinnasamy, K., Kalivaradhan, K., Govindharaj, R., (2015). Anticonvulsant and anxiolyic

activities of ethyl acetate fraction of Cassia fistula Linn. pods in mice. Pharmacog. Comm., 5(1),

76-82.

70 a)[Name not translated]. (2016). Liver-soothing and stomach-harmonizing preparation for treating

inappetence and preparation method. Faming Zhuanli Shenqing CN 105435000 A 20160330.

Page 190: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

183

71 Peicai, S. (2016). Pharmaceutical composition composed of chemical drugs and Chinese medicine

for treating infantile constipation and preparation method thereof. Faming Zhuanli Shenqing CN

105267290 A 20160127.

72 Yan, H. (2015). A kind of Chinese medicine for insomnia treatment. Faming Zhuanli Shenqing

CN 105079259 A 20151125.

73 a) Kumar, R. P., Chozhavendhan, S., Sathendra, E. R., Joseph, X. V.et. al. (2014). Phytochemical

analysis of Indian folklore medicinal plants Cassia fistula and Luffa acutangula. Int. J. Chem.

Technol. Res., 6(12), 5071-5080. b) Prabodh, S., Noura, S. D., Ambika, P., William, N. S. (2012).

Essential oil constituents and their biological activities from the leaves of Cassia fistula growing

in Nepal. J. Med. Arom. Plants, 3(2), 1-4.

74 Hui, O. (2015). Chinese medicine composition preparation for treating constipation and

preparation method thereof. Faming Zhuanli Shenqing CN 104857314 A 20150826.

75 Anitha, J., Miruthula, S. (2014). Anti-inflammatory and phytochemicals analysis of Cassia fistula

Linn. fruit pulp extracts. Int. J. Pharmacog., 1(3), 207-215.

76 Jayakumari, I., Ammal, M. S. (2010). Anti-cholesterol agents derived from Cassia fistula and

formulations containing such agents for treating cholesterol-related diseases. Indian Pat. Appl. IN

2008CH01718 A 20100122.

77 Anita, S., Manjul, P.S., Gulzar, A., Roshan, P., Neelam, D. (2012).Antipyretic activity of Cassia

fistula Linn. Pods. J. Nat. Prod. Plant Res., 2(3), 385-388.

78 a) Zeinab, G., Mihir, M., Priti, D., Aishwarya, Y., Asmita, P., Suvidya, R. (2015). Tunable

synthesis of gelatin nanoparticles employing sophorolipid and plant extract, a promising drug

carrier. World J. Pharm. Pharmaceut. Sci., 4(7), 1365-1381. b) Zygmunt, S. (2013). Green

synthesis of silver and gold nanoparticles using plant extracts. Edited By: Rai, Mahendra; Posten,

Clemens. Green Biosynthesis of Nanoparticles, 79-91. c) Suresh, D., et. al. (2015). Green synthesis

of multifunctional zinc oxide (ZnO) nanoparticles using Cassia fistula plant extract and their

photodegradative, antioxidant and antibacterial activities. Materials Sci. Semiconductor Process.,

31, 446-454. d) Indhumathy, J., Gurupavithra, S., Ravishankar, K., Jayachitra, A. (2014). Green

synthesis of silver nanoparticles using Cassia fistula leaf extract and its applications. Mintage J.

Pharm. Med. Sci., 3(3), 20-25. e) Balashanmugam, P., et. al. (2014). Extracellular biosynthesis of

silver nanoparticles using Cassia fistula extract and in-vitro antimicrobial studies. J. Pharm. Res.,

8(2), 187-191. f) Raja, N. S. K., Pranay, K., Arvind, B. R. S., Nishanth, A. N., Kiran, N. S. (2014).

Cyclodextrin nanoparticles incorporated fluconazole and medicianal plant extracts preparation for

the improved anti fungal activity against human pathogenic fungi. Int. J. Pharm. Tech. Res., 6(6),

1756-1761.

Page 191: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

184

79 a)Raji, P., Abila, M. G., Renugadevi, K., Samrot, A. V. (2014). Phytochemical screening and

bioactivity studies of Cassia fistula leaves. Int. J. Chem. Technol. Res., 6(12), 5096-5100. b) Amia,

E. (2015). Plants used in ethno-veterinary medicine by oraon tribals of north-east Chhattisgarh,

India. World J. Pharm. Res., 4(9), 1038-1044. c) Preeti, C., Renu, P., Brijesh, K., Mukesh, S., et.

al. (2015). Quantification of multianalyte by UPLC-QqQLIT-MS/MS and in vitro anti-

proliferative screening in Cassia species. Ind. Crops Prod., 76, 1133-1141. d) Alok, P., Dev, K.

S., Neha, A., Rajesh, P. S., Vikas, P., Parul, A. P. (2015). Biodiesel production from non-edible

lignocellulosic biomass of Cassia fistula L. fruit pulp using oleaginous yeast Rhodosporidium

kratochvilovae HIMPA1. Biores. Technol., 197, 91-98. e) Deepa, M., Rajendran, N. (2015).

Assessment of antibiofilm activity of extracts from selected biological sources. J. Pure Appl.

Microbiol., 9(1), 845-856.

80 a) Pooja, B., Sunita, D. (2014). Phytochemical evaluation and HPTLC fingerprint profile of Cassia

fistula. Int. J. Adv. Pharm. Biol. Chem., 3(3), 604-611. b) Kumar, J. N., Chandra, J. S., Renuka, J.

(2013). Two new compounds and other constituents from Cassia fistula root bark. Chem. Nat.

Comp., 49(2), 232-234. c) Ching-Kuo, L., Ping-Hung, L., Yueh-Hsiung, K. (2001). The chemical

constituents from the arial of Cassia fistula L. J. Chinese Chem, Soc., 48(6A), 1053-1058. d)

Neetu, B., Arun, K., (2014). Bioassay-guided phytochemical analysis of active fraction of Cuscuta

reflexa grown on Cassia fistula by LCMS. Int. J. Pharm. Bio. Sci., 5(3), 585-592.

81 a) Jared, N., Gary, S., Berk, K. W., Jonathan, H., Brad, G., Syed, R.-U.-H., James, K. H. Domenic,

V., Yuemin, W., (2014). Functionalized para-substituted benzenes as 1, 8-cineole production

modulators in an endophytic Nodulisporium species. Microbiol., 160(8), 1772-1782. b) Meena,

R., Kalidhar, S. B. (1998). A new anthraquinone derivative from Cassia fistula Linn. pods. Ind. J.

Chem., Section B: Org. Chem. Includ. Med. Chem., 37B (12), 1314-1315.

82 a) Wanjari, A. K., Shende, G. M. (2015). Green synthesis of ZnO nanoparticles using leaves extract

Cassia fistula and doped with copper (Cu: ZnONPs) to enhance the activity of antibiotics against

staphylococcus aureus. Eur. J. Biomed. Pharm. Sci., 2(5), 573-579. b) Qiufen, H., Min, Z., Haiyan,

W., Yanqing, Y., Xiangzhong, H. et. al. (2016). Isoquinoline alkaloid compound and its

preparation method and application. Faming Zhuanli Shenqing, CN 105348193 A 20160224. c)

Srinivasan, P. A., Arokiaraj, A., Vijayarajan, D. (2011). Isolation, spectral and optical analysis of

fistulic acid a phytochemical constituent of Cassia fistula linn. Indian J. Sci. Technol., 4(4), 422-

424. d) Anoop, A., Vijender, S. (2014). Phytoconstituents isolated from stem bark of Cassia fistula

Linn. World J. Pharm. Pharmaceut. Sci., 3(7), 1849-1858. e) Peicai, S., (2016). Pharmaceutical

composition composed of chemical drugs and Chinese medicine for treating infantile constipation

and preparation method thereof. Faming Zhuanli Shenqing, CN 105267290 A 20160127.

Page 192: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

185

83 a) Praveen, P., Sameer, S., Narendra, M., Kamlesh, D. (2012). HPTLC estimation of aspartic acid

and vitexin in polyherbal tablet formulation. J. Pharm. Res., 5(7), 3800-3803. b) Vasi, I. G.,

Kalintha, V. P. (1980). Chemical examination of the fruit pulp of Cassia fistula Linn. J. Inst.

Chem., 52(2), 85-6. c) Rajwant, K., Kaur, N. A., Kaur, K. J. (2015). Amino acids composition of

pollen grains of some medicinally important plant species. J. Chem. Pharm. Res., 7(10), 122-127.

84 Rahul, J., Sangeeta, C., Saxena, R. C., Jain, D. K. (2011). Identification of flavonoids in the fruit

of Cassia fistula by high performance liquid chromatography electrospray mass spectrometry.

Asian J. Chem., 23(5), 2109-2111.

85 Praveen, P., Sameer, S., Darshan, D., Kamlesh, D. (2012). Quantification of (-) epicatechin by

HPTLC method in developed polyherbal commercial extracts tablet formulation. Res. J. Pharm.

Biol. Chem. Sci., 3(4), 733-739.

86 a) Yinke, L., Yanlin, M., Yuchun, Y., Ying, Q., Congfang, X., Yanqing, Y., Xuemei, G., Qiufen,

H. (2014). Chromones from the stems of Cassia fistula and their anti-tobacco mosaic virus

activities. Phytochem. Lett., 10, 46-49. b) Yinke, L., Yuchun, Y., Ying, Q., Yanlin, M., Yanqing,

Y., Haiyin, Y., Xuemei, G., Qiufen, H. (2014). Anthraquinones from Cassia fistula and their anti-

tobacco mosaic virus activity. Heterocycles, 89(2), 481-486. c) Xiaoying, Z., Wei, Z., Tao, Z.,

Lan, W., Guangyu, Y., Yong-Kuan, C., Qiufen, H., Mingming, M. (2013). A new flavonoid from

the roots of Cassia fistula and its antitobacco mosaic virus activity. Asian J. Chem., 25(12), 6622-

6624. d) Savita, C., Pongtip, S., Wandee, G. (2014). Rhein content in Cassia fistula pod pulp

extract determined by HPLC and TLC-densitometry in comparison. J. Health Res., 28(6), 409-

411. e) Jignasu, P. M., (2012). Separation and characterization of anthraquinone derivatives from

Cassia fistula using chromatographic and spectral techniques. Int. J. Chem. Sci., 10(1), 306-316.

f) Duraipandiyan, V., Ignacimuthu, S., Paulraj, M. G. (2011). Antifeedant and larvicidal activities

of rhein isolated from the flowers of Cassia fistula L. Saudi J. Biol. Sci., 18(2), 129-133. g)

Chinmoyee, D., Tripathi, A. K. (2000). 1,3-Dihydroxy-6,8-dimethoxy-2-isoprenyl anthraquinone

from Cassia fistula. Oriental J. Chem., 16(3), 579-580. h) Patil, A. D., Deshpande, V. H. (1982).

A new dimeric proanthocyanidin from Cassia fistula sapwood. Ind. J. Chem., Section B: Org.

Chem. Include. Med. Chem., 21B (7), 626-8. i) Qiu-Fen, H., Li-Mei, L., Dong-Lai, Z., Zhen-Hua,

Y., Jian-Bo, Z., Jie, L., Ye-De, W., Kun, Z., Min, Z., Yin-Ke, L. (2015). Chromones from the twigs

of Cassia fistula and their anti-tobacco mosaic virus activities. Heterocycles, 91(10), 1980-1985.

j) Ashok, A., Parshad, R., Kaushik, J. P. (1988). Anthraquinones from callus cultures of Cassia

fistula. Fitoterapia, 59(6), 496-7. k) Hai-Yan, W., Qiang, L., Zhen-Hua, Y., Wei-Yao, H., Ke-

Liang, Y., Ye-De, W., Kun, Z., Wei, D., Min, Z., Qiu-Fen, H. (2016). Isoquinoline alkaloids from

the twigs of Cassia fistula and their anti-tobacco mosaic virus activity. Heterocycles, 92(1), 114-

Page 193: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

186

119. l) Kapoor, B. B. B. S., Kumar, D. (2015). Evaluation of mineral contents from some plant

species of Sirohi district of Rajasthan. Int. J. Univ. Pharm. Bio Sci., 4(1), 129-132. m) Qin, W.,

(2016). Chinese medicine composition for treating psoriatic arthritis and its formulation. Faming

Zhuanli Shenqing CN 105687965 A 20160622, language: Chinese, database: Caplus. n) Xuexiang,

W. (2015). One kind of Cassia fistula herbal mouthwash and its preparation method. Faming

Zhuanli Shenqing CN 105030594 A 20151111. o) Ashok, A., Parshad, R., Kaushik, J. P. (1988).

Anthraquinones from callus cultures of Cassia fistula. Fitoterapia, 59(6), 496-7. p) Aurapa, S.,

Wandee, G. (2008). Extraction method for high content of anthraquinones from Cassia fistula

pods. J. Health Res., 22(4), 167-172. q) Hai-Ying, Y., Guang-Jian, S., Yin-Ke, L., Xian-Xue, W.,

Yun-Dong, S., Gang, D., Qiu-Fen, H., Xue-Mei, G., (2013). A new anthraquinone from the root

of Cassia fistula and their antitobacco mosaic virus activity. Asian J. Chem., 25(16), 9419-9420.

r) Kumar, J. N., Chandra, J. S., Renuka, J. (2013). Two new compounds and other constituents

from Cassia fistula root bark. Chem. Nat. Comp., 49(2), 232-234. s) Vasudevan, K., Manoharan,

S., Alias, L. M., Balakrishnan, S., Vellaichamy, L., Gitanjali, M. (2008). Evaluation of

chemopreventive efficacy of Cassia fistula in 7, 12-dimethyl benzanthracene (DMBA) induced

oral carcinogenesis. Int. J. Chem. Sci., 6(3), 1341-1354. t) Lalita, L., Mukhtar, S. (2006). Isolation

and characterization of anthraquinones from the stem bark of Cassia species. J. Ind. Chem. Soc.,

83(4), 383-385. u) Yueh-Hsiung, K., Ping-Hung, L., Yung-Shun, W. (2002). Four new compounds

from the seeds of Cassia fistula. J. Nat. Prod., 65(8), 1165-1167.

87 a)Jawahar, L., Gupta, P. C. (1976). Partial hydrolysis and the structure of the galactomannan from

Cassia fistula seeds. Planta Med., 30(4), 378-83. b) Li-Qin, W., Zheng-Rong, T., Wei-Hua, Jun-

Feng, M., Dong-Yang, K., H. (2013). A new natural naphtha [1,2-b]furan from the leaves of Cassia

fistula. J. Asian Nat. Prod. Res., 15(11), 1210-1213.

88 a) Amia, E., (2015). Plants used in ethno-veterinary medicine by oraon tribals of north-east

Chhattisgarh, India. World J. Pharm. Res., 4(9), 1038-1044. b) Pallavi, S., Chandra, K. U. (2016).

The impact of gasoline emission on plants-a review. Chem. Ecol., 32(4), 378-405. c) Dakun, P.,

(2016). Pharmaceutical composition for the treatment of stomach cancer. Faming Zhuanli

Shenqing CN 105287804 A 20160203. d) Peicai, S., (2016). Pharmaceutical composition

composed of chemical drugs and Chinese medicine for treating vitiligo due to deficiency of both

the liver and kidney and preparation method thereof. Faming Zhuanli Shenqing, CN 105267297 A

20160127. e) Peicai, S., (2016). Pharmaceutical composition composed of chemical drugs and

Chinese medicine for treating functional dyspepsia and preparation method thereof. Faming

Zhuanli Shenqing, CN 105267289 A 20160127. f) Misra, T. N., Singh, R. S., Pandey, H. S.,

Page 194: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

187

Pandey, R. P. (1996). Chemical constituents of hexane fraction of Cassia fistula pods. Fitoterapia,

67(2), 173-174.

89 Chinmoyee, D., Tripathi, A. K. (2000). 1,3-Dihydroxy-6,8-dimethoxy-2-isoprenyl anthraquinone

from Cassia fistula. Oriental J. Chem., 16(3), 579-580.

90 a) Qiu-Fen, H., Li-Mei, L., Dong-Lai, Z., et. al. (2015). Chromones from the twigs of Cassia fistula

and their anti-tobacco mosaic virus activities. Heterocycles, 91(10), 1980-1985. b) Liang, D., Lan,

L., Wenxiu, X., Qiufen, H., Xuemei, G., Yadong, G. (2014). A new chromone from the stems of

Cassia fistula and its anti-tobacco mosaic virus activity. Asian J. Chem., 26(15), 4927-4928. c)

Lin, Y., Wenzhong, H., Yan, G., Xuemei, G., Qiufen, H., Ma, Yinhai. (2014). A new chromone

from the stems of Cassia fistula and its anti-tobacco mosaic virus activity. Asian J. Chem., 26(23),

8253-8254. d) Congfang, X., Yuchun, Y., Yanlin, M., Ying, Q., Qiufen, H., Yanqing, Y. (2014).

A new chromone from stems of Cassia fistula and its anti-tobacco mosaic virus activities. Asian

J. Chem., 26(14), 4515-4516.

92 a) Prabodh, S., Noura, S. D., Ambika, P., William, N. S. (2012). Essential oil constituents and their

biological activities from the leaves of Cassia fistula growing in Nepal. J. Med. Arom. Plants, 3(2),

1-4. b) Tzakou, O., Loukis, A., Said, A. (2007). Essential oil from the flowers and leaves of Cassia

fistula L. J. Ess. Oil Res., 19(4), 360-361.

93 a) Abu, S. M., Abbas, A. M., et. al. (1999). Studies on the characterization and glyceride

composition of Cassia fistula seed oil. Bangladesh J. Sci. Ind. Res., 34(1), 144-148. b) Arun, A.,

Rajendra, S. (2010). Determination of fatty acids in plant seeds of leguminosae family from arid

zone of Rajasthan. Asian J. Chem., 22(3), 2474-2476. c) Bhakare, H. A., Khotpal, R. R., Saha, S.

K., Kulkarni, A. S. (1992). GLC studies in some seed oils. J. Indian Chem. Soc., 69(10), 696-7.

d) Alok, P., Dev, K. S., Neha, A., Rajesh, P. S., Vikas, P., Pruthi, P. (2015). A Biodiesel production

from non-edible lignocellulosic biomass of Cassia fistula L. fruit pulp using oleaginous yeast

Rhodosporidium kratochvilovae HIMPA1. Bioresour. Technol., 197, 91-98. e) Phattara, B. P. T.

(2015). Removal of trimethylamine (fishy odor) by C3 and CAM plants. Environ. Sci. Pollut. Res.,

22(15), 11543-11557.

94 a) Bhope, S. G., Kuber, V. V., Nagore, D. H. (2010). Validated HPTLC method for simultaneous

quantification of sennoside A, sennoside B, and kaempferol in Cassia fistula Linn. Acta

Chromatogr., 22(3), 481-489. b) Rahul, J., Sangeeta, C., Saxena, R. C., Jain, D. K. (2011).

Identification of flavonoids in the fruit of Cassia fistula by high performance liquid

chromatography electrospray mass spectrometry. Asian J. Chem., 23(5), 2109-2111. c) Praveen,

P., Sameer, S., Darshan, D., Kamlesh, D. (2012). Quantification of (-) epicatechin by HPTLC

method in developed polyherbal commercial extracts tablet formulation. Res. J. Pharm. Biol.

Page 195: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

188

Chem. Sci., 3(4), 733-739. d) Nagore, D. H., Ghosh, V. K., Patil, M. J., Wahile, A. M. (2010).

Validated HPTLC method for quantification of epicatechin in extracts of leaves of Cassia fistula

Linn. Acta Chromatogr., 22(2), 259-265. e) Praveen, P., Darshan, D., Dashora, K. (2012).

Quantification of (-)-epicatechin by HPTLC method in Cassia fistula crude drug, lab extract and

commercial extract. Asian J. Pharm. Clin. Res., 5(4), 140-142. f) Nallathambi, G. V. (2016).

Biochemical methane potential, biodegradability, alkali treatment and influence of chemical

composition on methane yield of yard wastes.Waste Manag. Res., 34(3), 195-204. g) Ching-Kuo,

L., Yu-Yen, C., Feng-Lin, H., Yueh-Hsiung, K. (2003). Chemical constituents from the roots of

Cassia fistula L. Chinese Pharm. J., 55(4), 231-237. h) Chamar, N. G. b. (2016). Herbal

formulation for the treatment of bloat. Indian Pat. Appl. IN 2014MU03738 A 20160527. i) Abdul,

Q., Rakesh, A., Andrew, M. L. (2016). Ethnobotanical perspective of antimalarial plants:

traditional knowledge based study. BMC Research Notes 9, 67/1-67/20. j) Wenping, T. (2016).

Traditional chinese medicinal composition for treatment of acute cellulitis. Faming Zhuanli

Shenqing CN 105582267 A 20160518. k) Patil, A. D., Deshpande, V. H. (1982). A new dimeric

proanthocyanidin from Cassia fistula sapwood. Ind. J. Chem., Section B: Org. Chem. Includ. Med.

Chem., 21B (7), 626-8.

95 Weisong, K., Jingmei, H., Yuanxing, D., Tao, Z., Guangyu, Y., Yongkuan, C., Mingming, M.

(2013). 5,6-Dihydroxyisoaurone-4'-O-β-D-glucoside compound with anti-TMV activity and

manufacture and application thereof. Faming Zhuanli Shenqing CN 103012517 A 20130403.

96 Anita, S., Manjul, P. S., Gulzar, A., Roshan, P., Neelam, D. (2012). Antipyretic activity of Cassia

fistula Linn. Pods. J. Nat. Prod. Plant Res., 2(3), 385-388.

97 a) Guiyou, L., Juanxia, Y., Huan, W., Jie, L., Limei, L., Xuemei, G., Qiufen, H., Yanqing, Y.

(2014). A new phenolic amide from stems of Cassia fistula and their anti-tobacco mosaic virus

activities. Asian J. Chem., 26(18), 6301-6302. b) Trinh, B. T. D., Staerk, D., Jager, A. K. (2016).

Screening for potential β-glucosidase and α-amylase inhibitory constituents from selected

Vietnamese plants used to treat type 2 diabetes. J. Ethnopharmacol., 186, 189-195. c) Neetu, B.,

Arun, K., (2014). Phytochemical analysis of methanolic extract of Cuscuta reflexa grown on

Cassia fistula and Ficus benghalensis by GC-MS. Int. J. Pharm. Sci. Rev. Res., 25(2), 33-36. d)

Patricia, S., Lago, J. H. G., Cunha, R. L. O. R., Kitamura, R. O. S., Young, M. C. M. (2012). A

new minor dimeric ester from seeds of Cassia fistula L. (Leguminosae). Nat. Prod. Res., 26(1),

36-41.

98 a)Vaishnava, M. M., Tripathi, A. K., Gupta, K. R. (1993). Constituents of Cassia fistula roots.

Fitoterapia, 64(1), 93. b) Biswas, K. M., Mallik, H. (1986). Chemical investigation of Holoptelea

integrifolia Planch. and Cassia fistula Linn. J. Indian Chem. Soc., 63(4), 448-9. c) Ghosh, P.,

Page 196: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

189

Thakur, S., Itoh, T., Matsumoto, T. (1982). Sterols from flowers of Cassia siamea Lam., Cassia

sophera Linn. and Cassia fistula Linn. Ind. J. Chem., Sec. B: Org. Chem. Includ. Med. Chem., 21B

(8), 796-7. d) Tejendra, B., Kr., D. P., Nath, B. K., Joydip, S. (2014). Pharmacognostic

investigation, acute toxicity studies and isolation of steroidal compound from the leaves of Cassia

fistula Linn. Int. J. Pham. Sci. Rev. Res., 25(1), 210-214. e) Shailajan, S., Yeragi, M., Matani, A.,

Gurjar, D. (2013). Variation in β-sitosterol content from Cassia fistula L. fruit pulp collected from

different geographical regions. Int. J. Pharm. Sci. Res., 4(11), 4392-4396.

99 a) Vaishnav, M. M., Sahu, D., Jain, J. K. (2006). Phytochemical and pharmacological investigation

of Cassia fistula root. J. Inst. Chem., 78(6), 173-175. b) Misra, T. N., Singh, R. S., Pandey, H. S.,

Singh, B. K. (1997). A new diterpene from Cassia fistula pods. Fitoterapia, 68(4), 375-376. c)

Yong, X., (2016). A kind of chemical fertilizer and the production method thereof. Faming Zhuanli

Shenqing, CN 105481594 A 20160413.

100 a) Shing, P. Y., Ha, B. M. (2015). The feasibility of Cassia fistula gum with polyaluminum

chloride for the decolorization of reactive dyeing waste water. J. Serbian Chem. Soc., 80(1), 115-

125. b) Shahid, A., Fazal-ur-Rehman; Tahsin, G., Ahmad, B. I., Summia, Q., Anam, A. (2013).

Dying behaviour of -irradiated cotton using Amaltas (Cassia fistula) bark extracts. Asian J.

Chem., 25(5), 2739-2741. c) Vastrad, J. V., Byadgi, S. A., Goudar, G., Kotur, R. (2014).

Characterization of phytoconstituents in leaf extracts of forest species for textile applications.

Forest Prod. J., 64(7-8), 259-264/1-259-264/6, 6 pp.

101 a) Fernando, W., Rupasinghe, H. P. V. Using old solutions to new problems - natural drug

discovery in the 21st century, chapter 6, anticancer properties of phytochemicals present in

medicinal plants of north America. pg. 159-180. b) Srivastava, V., Negi, A. S., Kumar, J. K.,

Gupta, M. M., Khanuja, S. P. S. (2005). Plant-based anticancer molecules: A chemical and

biological profile of some important leads. Bioorg. Med. Chem., 13, 5892–5908. c) Mass library

search, Agilent Mass Hunter Qualitative Analysis (version B.04.00).

102 a) Krishnan, K., Mani, A., Jasmine, S. (2014). Cytotoxic activity of bioactive compound 1, 2-

benzene dicarboxylic acid, mono 2-ethylhexyl ester extracted from a marine derived streptomyces

sp. Int. J. Mol. Cell. Med. Autumn, 3(4), 246-254. b) Luo, H., Cai, Y., Peng, Z., Liu, T., Yang, S.

(2014). Chemical composition and in vitro evaluation of the cytotoxic and antioxidant activities of

supercritical carbon dioxide extracts of pitaya (dragon fruit) peel. Chem. Central J., 8, 1-7. c) Wu,

J-T., Chiang, Y-R., Huang, W-Y., Jane, W-N. (2006). Cytotoxic effects of free fatty acids on

phytoplankton algae and cyanobacteria. Aquatic Toxicol., 80, 338–345.

103 a)Kansoh, A. L., Afifi, M. S., Elgindi, O. D., Bakr, R. O. (2009). Chemical composition,

antimicrobial and cytotoxic activities of essential oil and lipoidal matter of the flowers and pods

Page 197: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

190

of Tipuana Tipu growing in Egypt. Canadian J. Pure Appl. Sci., 3(1), 661-668. b) Autore, G.,

Marzocco, S., Formisano, C., Bruno, M., Rosselli, S., Jemia, M. B., Senatore, F. (2015). Cytotoxic

activity and composition of petroleum ether extract from Magydaris tomentosa (Desf.) W. D. J.

Koch (Apiaceae). Molecules, 20, 1571-1578. c) Qamar, K. A., Dar, A., Siddiqui, B. S., (2010).

Anticancer activity of Ocimum basilicum and the effect of ursolic acid on the cytoskeleton of MCF-

7 human breast cancer cells. Lett. Drug Desing Discov., 7, 726-36. d) Stone, W. L., Papas, A. M.,

(1997). Tocopherols and the Etiology of Colon Cancer. J. Nat. Cancer Inst., 89(14), 1006-1014.

e) Cebovi, T., Spasi, S., Popovi, M. (2008). Cytotoxic effects of the Viscum album L. extract on

ehrlich tumour cells in vivo. Phytother. Res., 22, 1097-1103.

104 a) Newman, D. J., Cragg, G. M. (2012). Natural products as sources of new drugs over the 30 years

from 1981 to 2010. J. Nat. Prod., 75, 311-335. b) Cordell, G. A., Colvard, M. D. (2012). Natural

products and traditional medicine: turning on a paradigm. J. Nat. Prod., 75, 514-525. c) Camp,

D., Davis, R. A., Campitelli, M., Ebdon, J., Quinn, R. J. (2012). Drug-like properties: guiding

principles for the design of natural product libraries. J. Nat. Prod., 75, 72-81. d) Miller, J. S. (2011).

The discovery of medicines from plants: a current biological perspective. Econ. Bot., 65(4), 396-

407.

105 Shibata, H., Kondo, K., Katsuyama, R., Kawazoe, K., Sato, Y., Murakami, K., Takaishi, Y.,

Arakaki, N., Higuti, T. (2005). Alkyl gallates, intensifiers of β-lactam susceptibility in methicillin-

resistant Staphylococcus aureus. Antimicrob. Agents Chemother., 49(2), 549–555.

106 Roginsky, V., Lissi, E. A. (2005). Review of methods to determine chain-breaking antioxidant

activity in food. Food Chem., 92, 235–254.

107 Vinothapooshan, G., Sundar, K. (2011). Immunomodulatory activity of various extracts of

Adhatoda vasica Linn. in experimental rats. African J. Pharm. Pharmacol., 5(3), 306-310.

108 Kumar, S. V., Kumar, S. P., Rupesh, D., Nitin, K. (2011). Immunomodulatory effects of some

traditional medicinal plants. J. Chem. Pharm. Res., 3(1), 675-684.

109 a) M. Kashif, S. Bano, S. Naqvi, S. Faizi, Lubna, M. A. Mesaik,K. S. Azeemi, A. Dar. (2015).

Cytotoxic and antioxidant properties of phenolic compounds from Tagetes patula flower. Pharm.

Biol., 53(5), 672-681. b) Qamar, K. A., Dar, A., Siddiqui, B. S., et al. (2010). Anticancer activity

of Ocimum basilicum and the effect of ursolic acid on the cytoskeleton of MCF-7 human breast

cancer cells. Lett. Drug Desing Discov., 7, 726-36. c) Skehan, P., Storeng, R., Scudiero, D., et al.

(1990). New calorimetric cytotoxicity assay for anti cancer drug screening. J. Nat. Cancer Inst.,

82, 1107-12.

110 a)Pettit, R. K., Weber, C. A., Kean, M. J., Hoffmann, H., Pettit, G. R., Tan, R., Franks K. S.,

Horton, M. L. (2005). Microplate alamar blue assay for Staphylococcus epidermidis Biofilm

Page 198: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

191

susceptibility testing. Antimicrob. Agents Chemother., 49(7), 2612–2617.b) Sarkar, S. D., Nahar,

L. and Kumarasamy, Y. (2007). Microtitre plate-based antibacterial assay incorporating resazurin

as an indicator of cell growth, and its application in the in vitro antibacterial screening of

phytochemicals. Methods, 42(4), 321–324.

111 a)Choudhary, M. I., Dur-e-Shahwar, Parveen, Z., Jabbar, A., Ali, I., and Atta-ur-Rahman. (1995).

Antifungal steroidal lactones from Withania coagulance. Phytochemistry, 40(4), 1243-6. b) Janaki,

S., Vijayasekaram, V. (1998). Antifungal activities of aglaia roxburghiana (W&A), MIQ, Var,

Beddome. i. Biomedicine, 18 (2), 86-9.

112 Uddin, N., Siddiqui, B. S., Begum, S., Bhatti, H. A., Khan, A., Parveen, S., Choudhary, M. I.,

(2011). Bioactive flavonoids from the leaves of Lawsonia alba (Henna)” Phytochem. Lett., 4, 454-

458.

113 Helfand, S., Werkmeister, J., Roader, J. (1982). Chemiluminescence response of human natural

killer cells. I. The relationship between target cell binding, chemiluminescence, and cytolysis. J.

Exp. Med., 156, 492-505.

Page 199: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

192

Chemical studies on Opuntia dillenii

Page 200: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

193

Opuntia dillenii cladode

Opuntia dillenii flower Opuntia dillenii fruit

Page 201: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

194

Introduction

Page 202: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

195

Opuntia, a large genus belongs to family Cactaceae, comprising 300 species, it is native of

Mexico, however generally found in the warmer regions of all over the world and has been

naturalized all over Indo-Pakistan subcontinent. They are usually identified as prickly pears.1-

3 It has rapid growth, having good adaptation to poor soils and low requirement for water, it

multiply naturally by just sinking its pads on the ground. This specie have been reported to

have many phytochemical and pharmacological significance, a number of chemical

constituents have been reported to have medicinal properties such as antioxidant, anti-

inflammatory, antimicrobial, anti-viral, anti-ulcer, anti-rush, anti-dysentery and anticancer.

The plant have been used in several diseases like ulcers, sores, diabetes, gout, rheumatism,

skin problem, hemorrhoids, earaches, asthmatic, anthelmintic, purgative, refrigerant, laxative,

hemostatics, gastrointestinal, and diuretic.1-7

Opuntia dillenii (Ker Gawl.) Haw. a cactus plant, generally called as Nagphani and Prickly

Pear. The plant is cultivated all over the World and also found in abundance in the Himalayas

up to 1500 meters. The leaves of the plant are modified into spines by glochids. Flowers of

the cactus are yellow in color, due to the presence of the flavonoids. The fruits are pear shaped,

purple in color and edible, sugars contents are present in the fruits, while the seeds of the fruit

are rounded in shape. O. dillenii have great pharmacological significance; it is used as folk

medicine in all over the world.1,8-10

Chemistry of O. dillenii

Chemical constituents (Table 1) isolated from the entitled plant have been described in the

following text.

Alcohols:

Methanol (1) and heptadecanol (2) have been isolated from O. dillenii.1,11b-e

Aldehydes:

Hexanal (3), nonanal (4), and 2-decenal (5) were identified from cladode of O. dillenii.1,11e,12

Page 203: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

196

Alkaloid:

Auraniamide acetate (6), was identified from cladode of O. dillenii.10b

Amino acids:

Amino acids including glycine (7), alanine (8), valine (9), leucine (10), isoleucine (11),

serine (12), threonine (13), glutamate (14), asparagine (15), lysine (16), arginine (17),

methionine (18), phenylalanine (19), tyrosine (20), histidine (21), tryptophan (22), and proline

(23), have been isolated from the entitled plant.1,13a

Aromatic acids and esters:

Different parts of fruits (peel, pulp and seeds) of O. dillenii have been extracted and

chemically studied, they have large amounts of aromatic acids. Benzoic acid (24), 4-hydroxy

benzoic acid (25) vanillic acid (26), 3, 4-dihydroxy benzoic acid (27), gallic acid (28), methyl

4-hydroxy benzoate (29), ethyl 3,4-dihydroxy benzoate (30), 4-hydroxy acetophenone (31),

piceine (32), p-coumaric acid (33), ferulic acid (34), sinapic acid (35), methyl 4-hydroxy-

cinnamate (36), 3, 5-dimethoxy-4-O-β-D-glucopyranosyl cinnamic acid (37), octadecyl

caffeate (38), isobutyl phthalate (39), and butyl phthalate (40), have been isolated and

identified as plant chemical constituents from different parts of O. dillenii cladode.1,10b,11b-e,13d-

g,19h

Betanins:

Betanin (41), betanidin (42), isobetanin (43), and betalamic acid (44), have been identified

from the cactus.1,19h,21a-d

Carbohydrates:

Different saccharides including polysaccharides, tetrasaccharides, trisaccharides, D-glucose

(45), L-galactose (46), fructose (47), rhamnose (48), xylose (49), L-arabinose (50), and ethyl

α-L-rhamnopyranoside (51) have been identified from the entitled plant.1,13a,h,14d,15,16,20

Fatty acids and their ester:

Palmitic (52), stearic (53), heptadecenoic (54), dodecanoic (55), palmitoleic (56),

Page 204: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

197

heptadecanoic (57), linolenic (58), linoleic (59), and eucomic (60) acids and esters namely,

methyl eucomate (61), methyl linoleate (62) have been identified from the different parts of

the plant by GC-MS analysis.1,17,18b

Flavonoids:

Flavonoids have been isolated from different parts of the entitled plant named as:

aromadendrin, isorhamnetin (63), isorhamnetin-3-O-glucoside (64), isorhamnetin-3-O-

rutinoside (65), isorhamnetin-3-O-glactoside (66), 3-O-methyl isorhamnetin (67), quercetin

(68), quercetin-3-O-β-glucopyranoside (69), 3-O-methyl quercetin (70), 3, 3-dimethyl

quercetin (71), 3-O-methyl quercetin-7-O-β-D-glucopyranoside (72), quercetin-3-O-

rhamnoside (73), quercetin-3-O-β-galactoside (74), rutin (75), morin (76), kaempferol (77),

kaempferide (78), kaempferol 7-O-β-D-glucopyranosyl-(14)-β-D-glucopyranoside (79),

kaempferol-7-O-β-D-glucopyranoside (80), kaempferol-3-O-β-arabinoside (81), catechin

(82), epicatechin (83), orientin (84), vitexin (85), and manghaslin (86) have been identified

from the cactus, O. dillenii.1,11a-e,13a,c,d,h,14c,18b,19b-h,l, 29a

Glycerols:

Isolation of 9, 12, 13 trihydroxyl-octadeca 10,15-dienoic acid (87), and 9, 12, 13, trihydroxy-

10-octadecenoic acid (88) have been reported from the cladodes.1,20

Heterocyclic compounds:

Heterocyclic components have been isolated from the plants named as flavin (89), opuntiol

(90), opuntioside I (91), opuntioside II (92), opuntioside III (93), 4-ethoxyl-6-hydroxymethyl-

α-pyrone (94), opuntiaester (95), guaiacylglycerol-β-ferulate (96), friedlin (97), 5-(hydroxyl

methyl)-2-furaldehyde (98), 3-hydroxy-3-methyl glutarate (99), ethyl tetrahydro-5-oxo-2-

furan, carboxylate (100), androsine (101), equisetin (102), neoechinulin A (103), and

echinulin (104), are listed in Table 1. Several derivatives of opuntiol have been synthesize and

reported in literature.1,6b,10b,11b-e,13c,e-g,18b,19f,20, 57-59

Hydrocarbons:

Tricosane (105), tetracosane (106), pentacosane (107), hexacosane (108), heptacosane (109),

Page 205: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

198

octacosane (110), nonacosane (111), triacontane (112), hentriacontane (113), dotriacontane

(114), tritriacontane (115), tatratriacontane (116), pentatriacontane (117) and hexatriacontane

(118) were identified from stem and cladode of O. dillenii cladode.1,23

Lignans:

Secoisolarici resinol (119) and liriodendrin (120) were identified from cactus of the

plant.10b

Mineral elements:

Mineral elements including K, Ca, Na, Mg, P, Fe, Cu, Zn, B, Mn, Se, Pb, As, Hg have been

identified in wild cactus.1,11a,24

Organic acids:

Malic acid (121), succinic acid (122), cyclodopaglucoside hexaacetate (123), and butyl malate

(124) have been isolated from the stems and fruit of O. dillenii cladode.1,11b-d,13g,21a, 25

Steroids:

β-Sitosterol (125), β-sitosterol-3-O-β-D-glucoside (126), 7-oxo-sitosterol (127), 6β-

hydroxylstigmast-4-ene-3-one (128), daucosterol (129), opuntisterol I (130), and

opuntisteroide II (131) have been isolated from different parts of O. dillenii.1, 13f,18b,19c,e

Terpenes:

Taxerol (132), and 2-hydroxy diplopterol (133), have been identified from stem and cladode

of the plant.1,10b,18b

Vitamins:

Ascorbic acid (134) has been isolated from fruit of the plant.1,19h

Pharmacological significance:

O. dillenii cladodes have been reported for pharmacological purpose. It has been used for the

treatment of antibacterial, antifungal, antimicrobial, antidiabetic, antioxidant, antidepressant,

Page 206: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

199

hypotensive, liver problems, immunomodulatory, antituberculosis, anticancer, anti-

inflammatory, antiviral, anti-aging, analgesic, anti-obesity diseases. Cladode of the plant has

been reported for wound healing, skin problems, baldness, local hyperthermia, entrokinesia,

stomach diseases, ulcer, expectorant, cholagogue, spleen-strengthening, and diarrhea. Cladde

of the plant has been used in the treatment of blood and heart diseases, angiogenesis,

hypoglycemic, hypolipidemic, chronic, paralysis, and antispermatogenic. Cladode was also

reported to treat in bartholinitis, synovitis, respiratory infection, hepatitis B, cough, asthama,

whooping, endometritis, rhinitis, antiaging, urinary tract infection, breast hyperplasia and

dyspepsia disease. Extract of the cladode have several medicinal properties like stomatocace,

tonsillitis, pneumonia, tinea favosa, neurasthenia, women diseases. The plant has also been

used for the treatment of skin diseases, mosquito bite, parotitis, anti-hyperlipidemic,

thrombocythemia, bartholinitis, rheumatoid, arthritis, gout, eye diseases, and obesity.1, 6i,8-

10,13a,e,h,19d,m,n,29,30c,40-53

Nutraceutical Importance

Opuntia plant has great nutritional importance. The prickly pears and the cladodes have been

used as food, like vegetables, salads and nutrients food supplements, such as nutraceutical

milk products, yoghurts, soft candies, steamed bread premix flour, noodles, glutinous rice

cake, vinegar beverages, mixed grain, juices, nectars, marmalades, jellies, jams and natural

sweetners etc. A herbal tea is composed of O. dillenii, can effectively remove fat, reduce

weight and improved the human immune system. 54-71

Other Properties

O. dillenii is a multipurpose plant many compositions have been used in preparation of

toothpastes, cosmetics, detergents, soap, bath powder, natural colorants, natural emulsion.1,72-

83 The chemical constituents of the plant have already been described elaborately in the Ph.D.

dissertations of Dr. Lubna Abidi and various M.Sc theses including Ms Safina and Ms

Javeria.1

Page 207: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

200

Table 1: Chemical constituents isolated from various parts of O. dillenii.

S.

No. Class of compounds and names of compounds

Molecular

Formula/

Molecular

weight

Parts References

Alcohols

1 Methanol (1) CH4O (32) Cladode 11e

2 Heptadecanol (2) C17H36O (256) Stem/cladode 11b-e

Aldehydes

3 Hexanal (3) C6H12O (100) Cladode 11e, 12

4 Nonanal (4) C9H18O (142) Cladode 11e, 12

5 2-Decenal(5) C10H18O (154) Cladode 12

Alkaloid

6 Aurantiamide acetate (6) C28H30N2O4 (458) Cladode 10b

Amino Acids

7 Glycine (7) C2H5 NO2 (75) Stem/cladode 13a

8 Alanine (8) C3H7 NO2 (89) Stem/cladode 13a

9 Valine (9) C5H11 NO2 (117) Stem/cladode 13a

10 Leucine (10) C6H13NO2 (131) Stem/cladode 13a

11 Isoleucine (11) C6H13NO2 (131) Stem/cladode 13a

12 Serine (12) C3H7NO3(117) Stem/cladode 13a

13 Threonine (13) C4H9NO3 (119) Stem/cladode 13a

14 Glutamate (14) C5H9NO4 (147) Stem/cladode 13a

15 Asparagine (15) C4H8N2O3 (132) Stem/cladode 13a

16 Lysine (16) C6H14N2O2 (146) Stem/cladode 13a

17 Arginine (17) C6H14N2O2 (174) Stem/cladode 13a

18 Methionine (18) C5H5NO2 (149) Stem/cladode 13a

19 Phenyl alanine (19) C9H11NO2 (165) Stem/cladode 13a

20 Tyrosine (20) C9H11NO3 (181) Stem/cladode 13a

21 Histidine (21) C6H9N3O2 (155) Stem/cladode 13a

22 Tryptophan (22) C11H12 N2O2

(204)

Stem/cladode 13a

23 Proline (23) C5H9NO2 (115) Stem/cladode 13a

Aromatic compounds

24 Benzoic acid (24) C7H6O2 (122) Stem/cladode 13e

25 4-Hydroxy benzoic acid (25) C7H6O3 (138) Stem/cladode 10b,11b-e

26 Vanillic acid (26) C8H8O4 (168) Stem/cladode 11b-e

27 3,4-Dihydroxy benzoic acid (27) C7H6O4 (154) Stem/cladode 11b-d,13d

28 Gallic acid (28) C6H7O5 (170) Seeds 19h

29 Methyl 4-hydroxy benzoate (29) C8H8O3 (152) Stem/cladode 10b, 13e

30 Ethyl 3,4-dihydroxybenzoate (30) C9H10O4 (182) Stem/cladode 11b-d

31 4-Hydroxy acetophenone (31) C8H8O2 (136) Stem/cladode 13g

32 Piceine (32) C14H18O7 (298) Stem/cladode 13g

33 p-Coumaric acid (33) C9H8O3 (164) Seeds 19h

34 Ferulic acid (34) C10H10O4 (194) Stem/cladode 11b-d,13f, 19h

Page 208: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

201

35 Sinapic acid (35) C11H12O5 (224) Seeds 19h

36 Methyl 4-hydroxy cinnamate (36) C10H10O3 (178) Stem/cladode 13e

37 3,5-Dimethoxy-4-O- β-D-glucopyranosyl cinnamic

acid (37) C17H22O4 (370) Stem/cladode 13g

38 Octadecyl caffeate (38) C27H44O4 (432) Cactus 10b

39 Iso-butyl phthalate (39) C12H14O4 (222) Cladode 11e

40 Butyl phthalate (40) C12H14O4 (222) Cladode 11e

Betanin

41 Betanin (41) C24H26N2O13

(550) Fruit 19h, 21a,b,d

42 Betanidin (42) C18H16N2O8 (468) Fruit 21a

43 Isobetanin (43) C24H26 N2 O13

(550) Fruit 19h, 21b,d

44 Betalamic acid (44) C9H9NO5 (211) Fruit 21a

Carbohydrates

45 D-Glucose (45) C8H16O6 (208) Stem/cladode 13a,h,14d-16

46 L-Galactose (46) C6H12O6 (180) Pods 14a, 14d-16

47 Fructose (47) C6H12O6(180) Stem/cladode 13a,h

48 Rhamnose (48) C6H13O5 (165) Stem/cladode 14d,15

49 Xylose (49) C5H10O5 (150) Pods 16

50 L-Arabinose (50) C5H10O5 (150) Pods 14a, 16

51 Ethyl α-L-rhamno pyranoside (51) C8H16O5 (192) Stem/cladode 20

Fatty acids and their methyl esters

52 Palmitic acid (52) C16H32O2 (256) Seeds 17

53 Stearic acid (53) C18H36O2 (284) Seeds 17

54 Heptadecenoic acid (54) C19H38O2 (270) Seeds 17

55 Dodecanoic acid (55) C18H40O2 (216) Seeds 17

56 Palmitoleic acid (56) C16H30O2 (254) Seeds 17

57 Heptadecanoic acid (57) C19H36O2 (282) Seeds 17

58 Linolenic acid (58) C18H30O2(278) Seeds 17

59 Linoleic acid (59) C18H32O2 (280) Seeds 17

60 Eucomic acid (60) C11H12O6 (240) Stem/cladode 18b

61 Methyl eucomate (61) C12H15O6 (255) Stem/cladode 18b

62 Methyl linoleate (62) C19H34O2 (294) Stem/cladode 18b

Flavonoids

63 Isorhamnetin (63) C16H12O7 (316) Stem/cladode 14, 11a, 19c

64 Isorhamnetin-3-O-glucoside (64) C22H22O12 (478) Flowers 14c, 11a, 19d,g,

29a

65 Isorhamnetin-3-O-rutinoside (65) C28H34O16 (626) Stem/cladode 11,19f,g

66 Isorhamnetin-3-O-galactoside (66) C22H22O12 (478) Stem/cladode 19d, 29a

67 3-O-Methyl isorhamnetin (67) C17H14O7 (330) Stem/cladode 11e, 18b, 19f

68 Quercetin (68) C15H10O7 (302) Flowers/seeds 14c,11a, 19c,e,h

69 Quercetin-3-O-β-D-glucopyranoside (69) C21H20O12 (465) Stem/cladode

/flowers 11a, 14c,19b,e

70 3-O-Methyl quercetin (70) C16H12O7 (316) Stem/cladode 19c,e,f

71 3,3'-Dimethyl quercetin (71) C17H14O7 (330) Stem/cladode 11b-d

72 3-O-Methyl quercetin 7-O-β-D-glucopyranoside (72) C22H22O12 (462) Stem/cladode 11b-d, 13d, 19f

73 Quercetin-3-O-rhamnoside (73) C21H20O11(448) Stem/cladode 11a, 14c, 19d,

29a

Page 209: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

202

74 Quercetin-3-O-β-galactoside (74) C21H20O12 (464) Stem/cladode 19c,e

75 Rutin (75) C27H30O16 (610) Stem/cladode 13a,h, 11b-e,

19h

76 Morin (76) C15H10O7 (302) Stem/cladode 13a,h

77 Kaempferol (77) C15H10O6(286) Stem/cladode 19c,f

78 Kaempferide (78) C16H12O6(300) Stem/cladode 19c,f

79 Kaempferol-7-O-β-D-glucopyranosyl-(1→4)-β-D-

glucopyranoside (79) C27H28O16 (639) Stem/cladode

11b-d, 13c,d,

19l

80 Kaempferol-7-O-β-D-glucopyranoside (80) C21H20O11 (448) Stem/cladode 11b-d, 13d, 19f

81 Kaempferol-3-O-α-arabinoside (81) C20H19O10 (419) Stem/cladode 19g

82 Catechin (82) C15H14O6 (290) Seeds 19h

83 Epicatechin (83) C15H14O6 (290) Seeds 19h

84 Orientin(84) C21H20O11 (448) Stem/cladode 19d,29a

85 Vitexin (85) C21H20O10 (432) Stem/cladode 19d,29a

86 Manghaslin (86) C33H40O20 (756) Stem/cladode 11b-d, 13d

Glycerols

87 9,12,13-Trihydroxy octadeca-10, 15-dienoic

acid (87) C18H32O5(328) Stem/cladode 20

88 9, 12,13-Trihydroxy 10-octadecenoic acid (88) C18H34O5(330) Stem/cladode 20

Heterocyclic Compounds

89 Flavin (89) - Stem/cladode 57-59

90 Opuntiol (90) C7H8O4(156) Stem/cladode 11b-d, 13c, 19f

91 Opuntioside I (91) C13H18O9(318) Stem/cladode 11b-d, 13c,f

92 Opuntioside II (92) C13H18O9(319) Stem/cladode 20

93 Opuntioside III (93) C11H14O7(258) Stem/cladode 20

94 4-Ethoxy-6-hydroxy methyl-α-pyrone (94) C8H10O4 (170) Stem/cladode 11b-e, 13c

95 Opuntio ester (95) C12H18O6 (258) Stem/cladode 13e

96 Guiacylglycerol-β-ferulic acid ester (96) C20H24O8 (392) Stem/cladode 13e

97 Friedlin (97) C30H50O (426) Stem/cladode 18b

98 5-(Hydroxymethyl)-2-furaldehyde (98) C6H6O3 (126) Stem/cladode 20

99 3-Hydroxy-3- methyl glutarate (99) C6H10O4 (162) Stem/cladode 20

100 Ethyl tetrahydro-5-oxo-2-furan carboxylate (100) C7H10O4 (158) Stem/cladode 20

101 Androsine (101) C15H20O8 (328) Stem/cladode 13g

102 Equisetin (102) C22H31NO4(373) Fungus 6b

103 Neoechinulin A (103) C19H21N3O2 (323) Cactus 10b

104 Echinulin (104) C29H39N3O2 (461) Cactus 10b

Hydrocarbons

105 Tricosane (105) C23H48(324) Stem/cladode 23

106 Tetracosane (106) C24H50(338) Stem/cladode 23

107 Pentacosane (107) C25H52(352) Stem/cladode 23

108 Hexacosane (108) C26H54(366) Stem/cladode 23

109 Heptacosane (109) C27H56(380) Stem/cladode 23

110 Octacosane (110) C28H58(394) Stem/cladode 23

111 Nonacosane (111) C29H63(408) Stem/cladode 23

Page 210: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

203

112 Triacontane (112) C30H62(422) Stem/cladode 23

113 Hentriacontane (113) C31H64(436) Stem/cladode 23

114 Dotriacontane (114) C32H66(450) Stem/cladode 23

115 Tritriacontane (115) C33H68(464) Stem/cladode 23

116 Tetratriacontane (116) C34H70(478) Stem/cladode 23

117 Pentatriacontane(117) C35H72(492) Stem/cladode 23

118 Hexatriacontane (118) C36H74(506) Stem/cladode 23

Lignans

119 Secoisolarici resinol (119) C20H26O6 (362) Cactus 10b

120 Liriodendrin (120) C34H46O18 (742) Cactus 10b

Organic Acids

121 Malic acid (121) C4H6O5 (134) Stem/cladode 25, 11b-d, 13g

122 Succinic acid (122) C4H6O4 (118) Stem/cladode 25

123 Hexaacetate of cyclodopaglucoside (123) C27H32O12 (548) Fruit 21a

124 Butyl (L) malate (124) C8H14O5(190) Stem/cladode 13g

Steroids

125 β-Sitosterol (125) C29H50O(414) Stem/cladode 18b,19c

126 β-Sitosterol-3-O-β-galactoside (126) C35H63O6(576) Stem/cladode 13f, 19e

127 7-Oxositosterol (127) C29H48O2(428) Stem/cladode 18b

128 6-β-Hydroxy stigmast-4-ene-3-one (128) C29H48O2(428) Stem/cladode 18b

129 Daucosterol (129) C35H60O6(576) Stem/cladode 18b

130 Opuntisterol I (130) C29H75O2 (430) Stem/cladode 18b

131 Opuntisteroside II (131) C35H63O7 (592) Stem/cladode 18b

Terpenes

132 Taxerol (132) C30H50O(426) Stem/cladode 18b

133 2-Hydroxydiplopterol (133) C30H50O2(442) Cactus 10b

Vitamin

134 Ascorbic acid (134) C6H8O6(176) Fruits 19h

Page 211: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

204

R3

R2

R1

O R

R R1 R2 R3

Benzoic acid (24) OH H H H

4-Hydroxy benzoic acid (25) OH H OH H

Vanillic acid (26) OH OCH3 OH H

3,4-Dihydroxy benzoic acid (27) OH OH OH H

Gallic acid (28) OH OH OH OH

Methyl 4-hydroxy benzoate (29) OCH3 H OH H

Ethyl 3,4 dihydroxy benzoate (30) OC2H5 OH OH H

4-Hydroxyacetophenone (31) CH3 H OH H

Piceine (32) OCH3 H O-Glu H

R3

R2

R1

O OR

(E)

Figure 1:Compounds isolated from Opuntia dillenii

R R1 R2 R3

p-Coumaric acid (33) H H OH H

Ferulic acid (34) H H OH OCH3

Sinapic acid (35) H OCH3 OH OCH3

Methyl 4-hydroxy cinnamate (36) OCH3 H OH H

3,5-Dimethoxy-4-O-β-D-glucopyranosyl cinnamic acid (37) H OCH3 O-D-glu OCH3

Page 212: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

205

(S)

OHO HO

OH

O

OR

O

OH

O

O

O

O

O

O

NH

N

N

NH

O

O

(E)

(E)

OH

O

HO

O-

O

HO

OH

OH

OH

NHO

OO

N

H

O

(E)

(Z)

(E)

NOHHO

OO

N

HO

HOOH

O

H

(Z)

(E)

(E)

OH

NOHHO

OO

N

O

HO

O

H

O

HO

OH

OH

OH

(Z)

(E)

(E)

O OR

OR1

(Z)

(E)

R

(60) H Eucomic acid

(61) CH3 Methyl eucomate

(39) Isobutyl phthalate (40) Butyl phthalate

(89) Flavin

(41) Betanin (42) Betanidin

(43) Isobetanin

R R1

(90) Opuntiol OH CH3

(91) Opuntioside I O-D-glu CH3

(94) 4-Ethoxy-6- hydroxy- methyl OH C2H5

-a-pyrone

NOHHO

OO

O

(Z)

(E)

(44) Betalamic acid

(S)(R)

O

(R)

(S)

O

HO

HO

O

OH

OH

OH

OH

HO

OH

(Z)

(S)

(R)

O

(R)O

(S)

O

OH

OH

HO

HO

OH

HO

OH

(Z)

OH

O

OO

O

O

O

CH3

OHOH

OH

HO

OH

CH3OHOH

HO

O

O

OH

OH

HO(E)

(84) Orientin

(86) Manghaslin(85) Vitexin

O

OO

OO OH

HO

HO

O

OCH3

(E)

O

H3C

HO O

O

HO

HOO

(E)

(Z)

(92) Opuntioside II (93) Opuntioside III

Page 213: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

206

O

O

A

B

C

R1

R2

R3

R4

R5

R6

R7

1

3

4 5

7

Flavonoids R1 R2 R3 R4 R5 R6 R7

Isorhamnetin (63) O-Glu OH OH H OH OCH3 H

Isorhamnetin-3-O-glucoside (64) OH OH OH H H OCH3 H

Isorhamnetin 3-O-rutinoside (65)

O-rutinoside H OH H OH OCH3 H

Isorhamnetin-3-O-galactoside (66) O-Gal H OH H OH OCH3 H

3-O-Methyl isorhamnetin (67) OCH3 H OH H OH OCH3 H

Quercetin (68) OH OH OH H OH OH H

Quercetin-3-O-β-D- glucopyranoside (69) O-Galp H OH H OH OH H

3-O-methyl quercetin (70) OCH3 OH OH H OH OH H

3,3’-Di methyl quercetin (71) OCH3 H OH H OH OCH3 H

3-O-Methyl quercetin-7-O-β-D-

glucopyranoside (72)

OCH3 H O-β-D-Glcp H OH OH H

Quercetin-3-O-rhamnoside (73) O-Rha H OH H OH OH H

Quercetin-3-galactoside (74) O-Gal OH OH H OH OH H

Rutin (75) O-rutinoside OH OH H OH OH H

Morin (76) OH H OH H OH H OH

Kaempferol (77) OH OH OH H OH H H

Kaempferide (78) OH OH OH H OCH3 H H

Kaempferol-7-O-β-D-

glucopyranosyl(1→4) β-D-

glucopyranoside (79)

OH H H O-β-D-Glcp

(1→4) β-D-

Glcp

OH H H

Kaempferol-7-O-β-D- glucopyranoside

(80)

OH H O-β-D-Glcp H OH H H

Kaempferol 3-O-α- arabinoside (81) O-Ara H OH H OH H H

Page 214: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

207

(97) Friedlin

n

(105) 21

(106) 22

(107) 23

(108) 24

(109) 25

(110) 26

(111) 27

(112) 28

(113) 29

(114) 30

(115) 31

(116) 32

(117) 33

(118) 34

( ) n

(S)

(R)

(R)

OHO

(R)

(Z)

RO (Z)

(R)

(R) Pr-i

O

OH

H

(R)(S)

(S)

(E)

O

OCOCH3OCOCH3

H3COCO

O

H3COCO N

OCH3

O

H3COCO

(128) 6-b-Hydroxy stigmast-4-ene-3-one

(123) Hexaacetate of cyclodopaglucoside

(127) 7-Oxositosterol R

(125) H beta-Sitosterol

(126) O-glu beta-Sitosterol-3-O-galactoside

(R)(S)

(R)

(S)

(R)(S)

HOR

H

OH(R) (R)

(E)

R

(130) Opuntiosterol I OH

(131) Opuntiosteroside II beta-D-Glc

(R) (R)

(S) (R)

OH3C

O (E)

(132) Taxerol

(R)(S)

(R)(R) (R)(S)

(R)(R)

(R)

O

Page 215: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

208

Results and discussion

Page 216: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

209

Present studies

Earlier phytochemical research on O. dillenii, cladodes showed that it has remarkable

medicinal significance in folk and traditional medicines. In the current studies isolation and

identification of chemical constituents on butanol phase of cladode, and its vaccum liquid

chromatography (VLC) fractions were carried out.

Cladodes were extracted with different solvents sequentially to understand its chemistry more

elaborately. Different extracts, fractions, phases were obtained through solvent solvent

separation technique. Butanol phase was subjected to vaccum liquid chromatography (VLC)

to obtain (1-43) fractions. These VLC fractions were studied through GC and GC-MS

analysis, with the identification of chemical constituents (1-409) including long chain

acetophenone, acetylenic compound, alcohols and phenols, aromatic aldehyde, alkyl benzene,

amide, alkaloids, benzoic acid and its derivatives, derivatives of benzyl groups, carbohydrates,

cinnamic acid and their derivatives, cyano group containing compounds, cyclic compounds,

flavonoid, heterocyclic compounds, hydrocarbons, long chain fatty acids, long chain

aldehyde, long chain amide, sesquiterpenes, sulphur containing compounds, terpenes and

miscellaneous compounds (Table 2)(Figure 2).

Page 217: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

210

CH3

O

R2

R3

H

R1

R4

R3

CH3

O

R1

R2

R1 R2 R3 R4

(1) H H H H

(2) H H OH H

(3) H OCH3 OH H

(4) H OCH3 OCH3 H

(5) OCH3 H OCH3 H

(6) H OCH3 H OCH3

R1 R2 R3

(7) CH3 H OH

(8) H CH3 OH

O

OCH3

O

(9)

H3C

O

CH3

CH3

(10)

O

H3CO CH3

(12)

HO

HO

(15) (14)

HO

(13)

HO

(16)

( )15

( )10

( )13

OH

(17)

9 ( )7( )7

Figure 2: Compounds identified through GC and GC-MS analysis on butanol phase of O. dillenii

cladode

Page 218: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

211

HOOH

(E)

HO

OH

(19)

( )12

OH(E) (E)

3

(18)

OH(E)(E)

(20)

OH

OH

(E)

(E) (E)

(21)

NH

NH

O

O

NH

OCH3

O

O

O

NH

O

O

NH

O

O

O

O

(40) (41)

N

O

O

OH

(43)

NH

NH

O

NH

O

(48)

N

NH

O

O

(45)

N O

( )16

(47)

OH

CH3

OH3C

O

(30)

(22)

(42) (44)

(50)

Page 219: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

212

R1

H

R3

R2

R4

R5

R1 R2 R3 R4 R5

(23) OH OH H H H

(24) OH OH H H C(CH3)3

(25) OH OCH3 H OH H

(26) OCH3 OH OCH3 H H

HO

R1

NH2

R2

R1 R2

(27) CH3 H

(28) OCH3 H

(29) H OH

R2

R1

R4

R3

HO

R1 R2 R3 R4

(33) H OH H H

(34) OCH3 OH H H

(35) OH OCH3 H H

(36) OCH2CH3 OH H H

(37) OCH3 OH OCH3 H

(38) H H H CH3

(39) OCH3 CH3 H OCH3

Page 220: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

213

HN

NH

O

O

(52)

O

O

HN

N

(53)

NH

CN

O

O(Z)

O NH

HN O

(55)

(54)

NH

H

H3CO

OOH3COOC

NH

(56)

N

HN

O OCH3

OCH3

OCH3

(51)

HN O

(63)

HN

O

(E) (E)

(66)

R3

H

R2

R1R5

R4

R3

R4 R2

R1R5

RO

R1 R2 R3 R4 R5

(57) CH3 H H H H

(58) H H CH(CH3)2 H H

(59) CH3 H CH2CH3 H H

(60) H H CH3 CH3 CH3

(61) CH3 CH3 H H CH3

(62) CH3 H CH3 H CH3

R R1 R2 R3 R4 R5

(68) OH H H H H H

(69) OH H OH H H H

(70) OCH3 OH H H H H

(71) OCH3 H H OH H H

(72) OCH3 H H OCOCH3 H H

(73) OH H H OH OCH3 H

(74) OCH3 OH H H H OH

(75) OH H OCH3 OH OCH3 H

(76) OCH3 H OCH3 OH OCH3 H

Page 221: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

214

H2N

O

(E)( )n1

( )n2

n1 n2

(64) 7 7

(65) 11 7

OH

OO

H

(78) (77)

OCH3

HOO

HO OH

OO

OH

O

O

OH

OCH3H3CO

OCH3

H3CO

OCH3

H3CO

H3CO

H3CO OCH3

OH

O

CH3

OHO

O (E)

O

O

OH

OH

OH

HO

HO

O

(82)

(83)

(84)

(81)

(80) (79)

O

OH

OH

HO

HOHO

HO

O

OH

OH

HO

OH

O

OH

OH

OH

HO

HO

(86)

(87)

(85)

( )2

( )5

OHO

OH

OH

OCH3

HO

(88)

OHO

OH

OH

OCH3

HO

O

OCH3

OHOH

OH

(90) (89)

(91) (92) (93)

(94)

Page 222: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

215

(S)

(S)HO

OH

OH

O(S)

O

OHO

HO

O

OH

OHOH

HOO

HO

HO

HO

OCH3

(R)

(S)

(S)

(S)O

HO

HO

OH

OH

O

OH

OH

OH

OH

O

OH

OH

OH

OH

O

OHO

OH

HOOH

OOH

(98) (95) (96) (97)

(99)

O

OH

OH

OH

OH

S

(101)

O

OH

OH

OH

OH

S

(100)

OCH3

OH

OH

O

O

O

(102)

O O

OHHO

O

OH

OHOH

OH

OH

OH

(103)

HO

H3CO

OH(E)

(113)

OOCH3

O

(E)

O

OH(E)

(114)

(115)

( )10

( )11 ( )11

N CO

(116)

NCS

(117)

( )7

CN

(118)

OH

O

(E)

O

(Z)

(120) (122)(121)

O

O

(123)

OH

O

(124)

O (E)H

O

Page 223: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

216

O

RO

R3

R2

R4

(E)

R1

R R1 R2 R3 R4

(105) H H H H H

(106) CH3 H H OH H

(107) CH3 H H OH OCH3

(108) CH3 H H OCOCH3 OCH3

(109) H H OCH3 OH OCH3

(110) H H OCH3 OCH3 OCH3

(111) H OCH3 H OCH3 OCH3

(112) H H OCH3 OCH3 OCH3

(125)

(Z)

H

O

O

OOH

(Z)

(E)

(126)

O OCH3

O

(127)

(E)

(E)

(128)

O

OCH3

O

O

O OH

(129) (130)

O

HO

(Z)

(131)

OH3C

O

O CH3

O

(132)

O

O

O

O

O

NO2

OCH3

O

(133) (135)(134)

H3CO

O

H3CO

O

(136)

Page 224: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

217

O

(E)

HO

OH

OCH3

O

OOH

OH

(E)

O

HN

O

HN

NC

O

O

(Z)

NH

OON NH2

OCH3

NH2N

N

NNH

NH2

NH2

OO

O

N

N

S

CH3

HN

NH2

O

NH

O S

CH3

N

HO

CH3

H3CO

N

(146)

(151)

(144)

(148) (147)

(142)

(139)

(141) (143)

(145)

(137) (138)

( )17

O

O

O

O

CH3CH3

Cl

H3C

OH

O

CH3

NOH

(E)

(E)

(E)

(Z)

(E)

(150)

O

OH

(Z)

OHO

HO

(153)

(152)

( )4

( )4O

O

(154) (156)

OOHO

(155)

O

(E)

OO

( )14 ( )4

Page 225: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

218

O

O

(158) (149)

O

(E)

(160) (161)

O

OH

(E)

(E)

OOO

O

O

(162)

OO

(163)

( )6

( )8

( )11

OOO

( )15 O

(164)

O

O

(Z)

(E)

(165)

N

N

S

NS

NH

O (E)

(Z)

(166)

( )5

NH

N

H3CO

OO

CH3(Z) (E)

(167)

NH

H3C CH3

O

S

O

H3C

(Z)

(168)

(169)

S

NH2N (Z)

OO

OCH3H3CO

(Z) (Z)

(170) (171)

NH

S

CH3

OO OHOH2C

OCH3

(Z)

(E)

OH3C

HO OH

O

(E)

H3C

OCH3

OO

(Z)

(E)

O

O

CH3

H3C

H3C (Z)

O CH3

O

(E)

(173) (176) (178)

(172)

(157)

(174)

Page 226: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

219

OH3CO CH3

CH3

(Z)

O

OO

O

O

OH

O O

OCH3

O

(E)

OH3CO CH3

CH3

H3CO(Z)

(179) (180) (181)

( )12

(182)N

N

SHN

NH

N

O

(E) (E)

(183) (184)

NH

O

O

ON

OH

O

O H3C

HO OH

(185)

7

4

(186) (187)

( )16

O

H3CO(E)

S

O

O

O

H3CO

OH

N N(E)

O

CN

(189)(188) (190)

(194) (193)

( )7

O

H3C

OO

O

NH

Si

(192)

(191)

( )13

(Z)(E)

O

OH

O

(195)

Page 227: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

220

Cl( )n

n

8 = (197)

9 = (198)

10 = (199)

11 = (200)

12 = (201)

13 = (202)

14 = (203)

34 = (204)

(207) (205)(208)

(206)

(209)

( )17

( )17

HO

O(Z)

(217)

( )4

( )6

( )13

( )5

HO

O

( )n

n

07 = (210)

09 = (211)

10 = (212)

12 = (213)

13 = (214)

14 = (215)

16 = (216)

(218)

HO

O

HO

O

(E)

(219)

HOOH

O

O

(224)

(222)

OH

OH

O

OHO

OHO

(225)

OH

O

(223)

(221)

HO

O

(E) HO

O

(E)

(220)

HO (E) (E)

O

( )7

O

O

O

(E)

(227)

( )4

( )11

( )3( )3

( )14

OCH3

O

O

10

(226)

O

O

O

(E)

(228)

OO

(229)

( )8

Page 228: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

221

OCH3

OOH

OH

OCH3

O

H3C OH

H3COOCH3

O H3C OH

O

10

(230) (232)

(233)

(231)

( )7

( )10

O

O OH

(E)

(236)

OCH3

O

O

OH

(E) (234)

(235)

( )8 ( )5 ( )8

OH

O

O

O

O(E)

H3COO

O

O

H3CO

O

O

O O O

OO

O O

O O

OO

O

O

OO

O

O

(E)

(237)

(243)

(244)

(242)

(238)

(241)

(240)

( )7

( )5

H3C O

O

O CH3

O

(245)

OO

O

O

OO

O

O

(246)

(247)

H3CO

O

O

O

(248)

Page 229: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

222

CH3

O

O

OO

(E) (E)

(249)

OCH3

O

O

O

(250)

O

O

OO(E) O

O

O

O

(E)

(251)

(252)

( )16

( ) 12 O

O

(253)

( )9

H3CO

O

O

O

H3CO

O

(256) (254) (255)

10

11

O CH3

O

(E)

(257)

( )14 ( )6( )10

H3CO

O

(258)

O

O

O

(E)

(262)

(259)

O

OO

O

O

O

O

O

(264) (263)

(261) (260)

O

( )6

( )11

( )9

( )9( )6

OCH3

O

O

O

O

O

(E)

(267)(265)

( )8( )7 ( )18

(266)

Page 230: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

223

OCH3

O

(269)

371115

O

O

(E)

O

O

(E) (E)

(270)

(268)

O

HOOH

O

(271)

O

(E)H3CO CH3

O O(272) (273)

O

O

(274)

74

H3COCN

O

CN

(276)

(277)

OO

O

O

(E) (E)

(275)

9

1410

15

O

O

O

O

O

O

5

(278)

5

(279) (280)

( )6 O

O

O

O

(281)

(282)

O

O

(283)

( )9 ( )13 O

O11

12

(285)

( )8

O CH3

O

O

O

(E)

(284)

136

14

15

(286)

11

12

Page 231: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

224

H3COOH

O

O

HOO

OHO

(288)

(287)

O

H3C O

H3C

O

O

O CH3

( )17

(289)

H3CO OCH3

OCH3

OCH3

OCH3

(290)

O

H

(E)

(295)

HN

O

O2N

O

O P OCH3H2C

OCH3

O

(300)

(301) (302)

OH

OCH3

OHOCH3H3CO

HN

NH2

O

O2NO

O

O OH

O

O

H3CO

OCH3

NH2

(303)

(306) (308)

(304)

(305) (307)

( )6

Cl

Cl Cl O O

O

(297) (298) (299)

O

H(E)

(296)

NH

OCH3

O

OCH3

O

HN

O

(309)(311)

OH

O

NH

O

(312) (310)

OHN O

O O

Page 232: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

225

S

NH

OO

(313)

HO N

OH

(314)

OHN

O

O

O

(315)

(S)O

OH

OCH3

OOH

O

O

O

HOHO

OH

OHOHO

OH

(316)

OH

O

(E)

O

O

O (E)O

HOOH

HO

HO

S

(318)

(319) (320)

OH

(321)

OH

OH

OHHO

O

(323)

(324)

(327)

HO COOH

OCH3H3CO

OCH3 OCH3

(325)

(Z)

(E)

(E) (E) (E) O

O

( )14

(317)

Page 233: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

226

(Z)

(331) (332) (333)

OH

(Z)

OH

O

OH

(Z)

(334)

O

(335)

(330)

OOH

(E)

O

(Z)

(E)

(337) (336)

OH

O

(Z)

(338)

O

(Z)(E)

(339)

O(Z)

(Z)

(340)

O

O CH3

O(Z)

O

OH

O CH3

CH2 O

(342)(341)

(343)

OH

O

OCH3

O

(Z)(E) (E)

(344)

(Z)

(345)

OH

OH

HO

(346)

OO

(347)

(Z)

(Z)

(349)

(Z)

(348)

Page 234: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

227

O

(350)

O

O

(352)

OO

O

(Z)

(353) (351)

O

OH

(Z)

(356)

O

(354)

O

(Z)

(355)

H3C CH2

CH3

H3C

SO O

(372)

S CH3

CH3 CH3O

(E)

(371)

S

OCH3

O

S S

H

O

O

H

(373)

(375)

H3CS

CH3

OS

OCH3

O

S

O

(377)(374) (376)

(Z)

(Z)O

OCOCH3

H3CO

O

HOO

O

OHOH

O

(379) (380)(378)

Page 235: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

228

O

OO

(Z)

O

O

O

O

O

(382) (381)

(383)

(Z) (Z)

(Z)

(384)

O

HO H3CO

HO

O

N

HO

O

O

O

O

Cl

(E)

(385) (386) (387)

OH

HO

HO

O

O

NH

CN

O

(389)(388)

Page 236: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

229

O

O

O

(Z)(Z)

(390) (391)

O

O

HOO

(Z) (E)O

O

O O

(393) (392)

O

O

OH

O

HO OH

OH

O

OH

O

HOO

OO

OH

(Z)

(Z)

(394) (395)

(396) (397)

Page 237: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

230

Fresh and undried O. dillenii cladodes (45 kg) were cut into small cubes and extracted three

times with methanol at room temperature to give methanol extracts. The extract was

partitioned with ethyl acetate and water. The aqueous phase was then shaken five times with

butanol to give butanol and aqueous phases. The butanol phase was evaporated under vacuum

affording a gummy residue OM-But (18 g) (Schemes 1). The TLC of OM-But showed number

of spots, but the two major spots were purified through VLC, which were identified as known

chemical constituents opuntiol (172) and opuntioside (172a).77a,b

The butanol fraction was analyzed by antidepressant potential, through two behavioral assays

viz a) forced swimming and b) tail suspension tests in mice and rats, respectively.84 It

considerably less the period of immobility interval of rodents in a dose dependant mode in

both behavioral stress models, showing antidepressant analysis. The result was equivalent to

standard drug fluoxetine. Butanol fraction was not produced great change in the locomotor

assay recommending that it was not significant. Yohimbine treated mice showed four times

better activity in the presence of butanol fraction as contrast to control animals implies that

butanol fraction was same interfering with the alpha-2 feedback mechanism of

norepinephrine. Therefore the fraction of O. dillenii possessed antidepressant potential.84a

Therefore the aim of current studies was to identified the chemical constituents present in

butanol phase of O. dillenii cladode. Fractionation was performed for determination of

phytochemicals present in butanol phase. For this purpose the butanol phase was subjected to

vacuum liquid chromaography (VLC)84b and eluated with petroleum ether, ethyl acetate,

methanol, acetone and water with increasing polarity, yielding 45 fractions.

Out of 45 fractions initial thirteen fractions encoded (09, 10, 11, 12, 13, 14, 15, 16-17, 20, 21,

24, 25, 26) were subjected to GC-FID and GC-MS analysis for the identification of chemical

constituents present in the above mentioned VLC fractions (Scheme 1).These studies on the

13 non polar to moderately polar VLC fractions of O. dillenii cladode was performed through

GC-MS analysis resulted in the detection of 409 metabolites (Table 2)(Figure 2). To the best

of our knowledge 382 of these chemical compounds were identified for the first time from O.

dillenii cladode. These phytochemicals belongs to different classes of compounds including

acetophenone, acetylene, aromatic aldehydes, alcohols and phenols, amides, alkaloids, alkyl

Page 238: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

231

benzene, benzoic acid and its derivatives, benzyl derivatives, carbohydrates, cinnamic acid

and their derivatives, cyano group including compounds, cyclic compounds, flavonoid,

hydrocarbons, heterocyclic compounds, long chain fatty acids, long chain aldehydes, long

chain amides, sulphur containing compounds, sesquiterpenes, terpenes and miscellaneous

compounds (Table 2). Besides identification of chemical constituents from the VLC fractions

of butanol phase through GC-MS analysis, two pure compounds were also obtained from VLC

fractions 16-22, and 27, which were identified as opuntiol (172), and opuntioside (172a)

through spectroscopic studies. 77a,b

Isolation of opuntiol (172):

Fraction No: 16-22 eluting with P.E: EtOAc (50:150) to EtOAc: MeOH (180:20) yielded

needle like crystals, which were washed with P.E, CHCl3 and EtOAc. TLC chromatogram of

the crystals showed a single spot (Rf = 0.42, CHCl3:MeOH (9.5:0.5), silica gel 60 GF254, the

spectral studies EI-MS, 1H-NMR of which revealed its structure as a known compound

opuntiol (172).77a,b

Isolation of opuntioside (172a):

Fraction No: 27-33 eluting with EtOAc:MeOH (150:50) to EtOAc:MeOH (190:10), showed

a single spot on TLC (Rf = 0.428, CHCl3:MeOH (8:2), silica gel 60 GF254), the spectral studies

EI-MS, 1H-NMR of this pure fraction revealed its structure as a known compound opuntioside

(172a).77a,b

Fraction number 9 furnished promising results in GC-MS analysis, with the identification of

18 chemical constituents. These metabolites include an alkaloid, 7-isobutyl-1H-indole-2,3-

dione (41)(0.47%), a carbohydrate, 1-O-hexyl-D-mannitol (88)(0.53%), two heterocyclic

compounds, tert-butyl (5-cyano-4,4,5-trimethyl-2-pyrrolidinylidene)-,1,1-dimethylethyl ester

(142)(1.45%), and 3-benzylidene-5-phenyl-2(3H)-furanone (165)(2.68%); six long chain

fatty acids and their methyl esters, n-dodecanoic acid (212) (0.83%), n-tetradecanoic acid

(213)(1.59%), n-pentadecanoic acid (214)(5.79%), palmitic acid (215)(40.0%), stearic acid

(216)(1.57%), and oleic acid (217)(2.0%); seven miscellaneous compounds, N-butyl benzene

sulfonamide (313)(6.87%), methyl bis (3,5-dimethoxyphenyl)-hydroxyacetate (325)(0.68%),

Page 239: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

232

trans-α-lonone (336)(0.6%), 1,2-dihydrothujopsene (348)(0.08%), and bisabolol oxide A

(356)(0.33%), and one steroid, β-sitosterol (381)(1.39 %). Eighteen of these compounds 41,

88, 136, 165, 213, 214, 313, 336, 348, 356, 381 and 399 have been identified for the first time

from O. dillenii.

Fraction number 10 provided the most promising results. Out of 54, 53 phytochemicals have

been identified. These included one benzoyl derivative, methyl 4-benzoyl butyrate (9), four

alcohols, 2-hexadecanol (15), 2-methyl hexadecanol (16), 12-methyl-2,13-octadecadien-1-ol

(18) and 2-methyl-3,13-octadecadien-1-ol (21)(0.61%); one aromatic aldehyde, 4-hydroxy-3-

ethyl vanillin (36), one alkyl benzene, 1,2,4-trimethyl benzene (61)(0.09%); three benzoic

acid derivatives, 3-hydroxy benzoic acid (69) (0.3%), methyl 4-hydroxy benzoate (71), methyl

4-acetoxy benzoate (72) and 2-napthyl benzoate (87)(1.59%) three derivatives of benzoyl

group, methyl 4-hydroxy phenyl acetate (79), 4-butoxyphenyl acetic acid (80); five cinnamic

acid derivatives, trans-cinnamic acid (105), methyl 4-hydroxy cinnamate (106)(0.22%),

methyl ferulate (107)(0.15%), methyl, 4-hydroxy-3-methoxy, cinnamate (108) and sinapic

acid (109) (4.96%); three heterocyclic compounds, 4-methoxy octahydro-1(2H)-

naphthalenone (129)(0.26%), 5-acetyl-2,2-dimethyl-7-(2-oxopropyl) cycloheptanone (133),

7-isobutyl-1H-indole-2,3-dione (143), N-butyl benzene sulfonamide (147), and p-

octyloxybenzonitrile (194)(0.08%); nine hydrocarbons, decane (179)(0.15%), undecane (198)

(0.24%), dodecane (199)(0.22%), tridecane (200)(0.22%), tetradecane (201)(0.01%),

pentadecane (202)(0.05%), hexadecane (203)(0.24%), 2,6-dimethyl undecane (205)(0.02%),

and 3,4-dimethyl undecane (206)(0.04%), fourteen long chain fatty acids and their derivatives,

n-nonanoic acid (0.03%), n-dodecanoic acid (212), n-tetradecanoic acid (213)(0.73%), n-

pentadecanoic acid (214)(1.72%), palmitic acid (215), stearic acid (216), 11-hexadecenoic

acid (219), 9,12-octadecadienoic acid (220), methyl 3-hydroxy undecanoate (230), butyl

fumarate (237), adipic acid, decyl methyl ester (240)(0.3%), 8-dodecenyl acetate (257), nonyl

2-ethyl hexanoate (260), and isopropyl palmitate (263)(0.31%), one long chain aldehyde, 4-

undecenal (295)(0.07%) one sesquiterpene, and three steroids, 5α-pregnan-20-

one,5,6α:16α,17-diepoxy-3β-hydroxy, acetate (383)(0.59%), 4,6,8(14)-cholestatriene

(384)(0.16%). Out of fifty four compounds, 42 metabolites are being reported for the first time

from O. dillenii.

Page 240: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

233

GC-MS studies on fraction 11, 12, 13, 14, 15, 16-17 resulted in identification of 34, 72, 38,

48, 27, 32 phytochemicals of VLC fractions respectively. These included seven acetophenone

derivatives, one acetylenic compound, six alcohols, four phenols, six aromatic aldehydes, six

alkaloids, seven alkyl benzene, five amides, two aromatic compounds, six derivatives of

benzyl group, four cinnamic acid derivatives, three cyano group containing compounds.

Fourteen cyclic compounds, twenty three heterocyclic compounds, three hydrocarbons, about

fifty compounds of fatty acids and their methyl esters, one long chain aldehyde, about fifty

miscellaneous compounds, two sulphur containing compounds, two terpenes, seven steroids,

have been identified from the cladode of O. dillenii through GC-MS studies. Less than ten

metabolites were previously reported from the O. dillenii cactus, while rest of the

phytochemicals are being identified for the first time from the subjected fractions.

GC-MS analysis on VLC fractions numbers 20, 21, 24, 25 and 26 resulted in the identification

of 21, 19, 37, 31, and 51 metabolites from which the total chemical constituents were 21, 24,

38, 34 and 51 of VLC fractions respectively. These fractions resulted in the identifications of

three acetophenone, six alcohols, and phenols, eight alkaloids, four benzoic acid derivatives,

two derivatives of benzyl group, sixteen derivatives of carbohydrates, three cinnamic acid

derivatives, six cyclic compounds, one flavonoid, about twenty miscellaneous compounds,

three hydrocarbons, more than twenty five fatty acids and their methyl esters, four

miscellaneous compounds, nine sesquiterpenes, five sulphur containing compounds, and eight

steroids (Table 2). Out of more than one hundred and fifty compounds only eight compounds

have been reported earlier in literature. While rest of the compounds have been identified for

the first time from O. dillenii.

Acetophenone (1), 4-hydroxy acetophenone (2), 4-hydroxy-3-methoxy acetophenone (3), and

acetosyringone (76), have been isolated and identified from different plants namely Phellinus

sp., Tanacetum sinaicum, Cynanchum paniculatum, Haloxylon griffithii, Apocynin

cannabinum, Formoson ficus septica, Penicillium baarnense, having several medicinal

properties.85a-d,86a,b,87a Moreover, 8-hydroxylinalool (20), 1, 2-benzenediol (23), 4-hydroxy

benzaldehyde (33), vanillin (34), isovanillin (35), syringaldehyde (37) and 9, 10-

Page 241: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

234

octadecenoamide (67), have been identified in the present studies. All these compounds have

previously isolated from other medicinal plants namely Ilex kudingcha, Lannea

coromandelica, Pyrola calliantha H. Andres II, Daphne genkwa, Opuntia milpa,

Dendropanax proteus, and Gynostemma pentaphyllum, reported to have a number of

pharmacological properties.88a-i Benzoic acid (68), methyl 4-hydroxy benzoate (71), 3-

methoxy-4-hydroxy benzoic acid (vanillic acid)(73), syringic acid (75) have been reported in

Cynanchum paniculatum, Annona cherimola, Smilax riparia, and O. dillenii.10b,85c,89a-b

Furthermore, galacto heptulose (89), methyl β-D-glucopyranoside (92) and methyl β-D-

galactopyranoside (93) have been reported in fed L-sorbose, Coriaria japonica and O. dillenii

to have many medicinal properties.89c,90a-c Additionally, trans-cinnamic acid (105), methyl 4-

hydroxy cinnamate (106), methyl ferulate (107), methyl 4-hydroxy-3-methoxy cinnamate

(108) and sinapic acid (109) have been reported in Cynanchum paniculatum, O. dillenii,

Smilax riparia, and Haloxylon griffithii. 85c,89b,91a-d

Cyclic compounds including 1,2-cyclohexadione (122), opuntiol (172), and hydrocarbons

namely, decane (197), undecane (198), dodecane (199), tridecane (200), tetradecane (201),

pentadecane (202), and hexadecane (203) have been identified by GC-MS analysis from the

current studies. These phytochemicals have also been isolated and showed several therapeutic

importance. 92a-i In addition, long chain fatty acids and their methyl esters have also been

identified through the spectral studies namely, nonanoic acid (210), dodecanoic acid (212),

tetradecanoic acid (213), palmitic acid (215), stearic acid (216), oleic acid (217), methyl

pentadecanoate (258) and diethylene glycol (322) have been identified through GC-MS

studies. All these chemical compounds have many therapeutic properties.93a-i Only a

flavonoid, isorhamnetin (141) has been identified in the current study. 141 has been previously

isolated and reported in the literature from the O. dillenii cactus, O. monacantha, exhibited

antiradical activity, antidepressant, antioxidant and inhibitory activity on Farnesyl Protein

Transferase (FPTase). Total eighteen steroids have been identified in the current studies. β-

Sitosterol (381) has been isolated previously from flowers of O. ficus indica and O.

dillenii.88b,g,93d,94a-d

Page 242: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

235

To summarize, 403 compounds were isolated from the VLC fractions, most of these

compounds were recognized first time from the cladode. Only 22 of these were known and

have been previously reported from the plant cladode, whereas, 382 phytochemicals are

reported as a new phytochemicals from the plant. Most of the compounds reappeared in

different VLC fractions. Structures of all chemical compounds were determined through mass

library search.95 Strong antidepressant potential of the butanol extracts may be due to the

synergistic effect of the phytochemicals present in the plant.

Page 243: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

236

Table 2: Identification of compounds through GC and GC-MS studies of VLC fractions of butanol phase of O.

dillenii cladodes and their confirmation through mass spectral library search.

S.

No.

Compound Name

Molecular

formula

(Molecular

Weight)

%

Fra

ctio

n n

um

ber

Ret

enti

on

Tim

e

1 Acetophenone (1) C8H8O (120) 0.05 12 0.091

2 4-Hydroxy acetophenone (2) C8H8O2 (136) 0.40 12 17.572

3 4-Hydroxy 3-methoxy acetophenone (3) C9H10O3 (166) 0.27 11 28.078

0.05 12 18.288

4 3,4-Dimethoxyacetophenone (4) C10H12O3 (180) 0.10 21 29.676

1.99 26 29.687

5 2,4-Dimethoxy acetophenone (5) C10H12O3 (180) 0.65 12 19.634

0.51 20 18.184

6 3,5-Dimethoxy acetophenone (6) C10H12O3 (180) 1.13 11 29.659

1.22 24 29.666

4.91 26 29.727

7 4-Hydroxy 2-methyl acetophenone (7) C9H10O2 (150) 0.02 21 24.271

8 4-Hydroxy 3-methyl acetophenone (8) C9H10O2(150) 0.87 15 24.234

9 Methyl 4-benzoyl butyrate (9) C12H14O3(206) - 10 45.975

10 2,2,4,6-Trimethylphenyl isobutyl ketone (10) C14H20O (204) 1.12 11 30.610

11 1-(4-Methoxyphenyl)-1-heptanone (11) C14H20O2 (220) 6.0 26 24.302

12 Methyl 2,5-octadecadiynoate (12) C19H30O2 (290) - 14 26.668

13 Hexadecanol (13) C16H34O (242) 0.99 12 21.661

14 2-Ethyl 4-methyl pentanol (14) C8H18O (130) 0.11 12 7.063

15 2-Hexadecanol (15) C16H34O (242) 0.99 12 21.661

- 10 20.237

16 2-Methyl hexadecanol (16) C17H36O (256) 0.09 10 27.481

17 9-Heptadecanol (17) C17H36O (256) 8.15 14 21.075

18 12-Methyl-2,13-octadecadien-1-ol (18) C19H36O (280) - 10 45.489

19

13-Methyl pentadec-14-ene-1,13-diol (19) C16H32O2 (256) 2.09 12 20.710

0.19 14 15.381

20 8-Hydroxylinalool (20) C10H18O2 (170) 0.76 14 15.509

Page 244: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

237

21 2-Methyl-3,13-octadecadien-1-ol (21) C19H36O (280) 0.61 10 34.050

22 2,6,10,15,19,23-Hexamethyl-tetracosa-2,10,14,18,22-pentaene-

6,7-diol (22)

C30H52O2 (444) 1.34 25 56.991

23 1,2-Benzenediol (23) C6H6O2(110)

C8H10O3(154)

0.46/

0.12

20 11.523/

14.272 24 2,6-Dimethoxy phenol (26)

25 1,2-Dihydroxy 4-tert-butylbenzene (24) C10H14O2(166) 0.55 26 28.153

26 2-Methoxyhydroquinone (25) C7H8O3(140) 0.34 26 26.452

27 2-Hydroxy 5-methyl aniline (27) C7H9ON(123) 0.56 26 27.242

28 2-Amino 4-methoxy phenol (28) C7H9NO2(139) 0.03 12 15.512

29 2-Methoxy 4-vinyl phenol (31) C9H10O2(150) 0.31 13 24.230

0.84 14 14.946

4.62 16,17 24.264

0.07 20 13.576

1.17 24 24.251

30 4-Aminoresorcinol (29) C6H7 NO2(125) 0.62 16,17 28.393

31

2-Methyl resorcinol, acetate (30) C9H10O3(166) 3.13 13 34.438-

34.478

32 2,4-Diethyl 1-methyl cyclohexane (32) C11H22(154) 0.03 16,17 31.163

33

4-Hydroxy benzaldehyde (33) C7H6O2(122) 0.13 11 25.523-

25.546

1.39 12 16.078

34 Vanillin (34) C8H8O3(152) 0.78 12 16.654

35 Isovanillin (35) C8H8O3(152) 0.28 11 26.209

0.35 14 16.647

36 4-Hydroxy 3-ethyl vanillin (36) C9H10O3(166) - 10 26.389

37 Syringaldehyde (37) C9H10O4(182) 4.4 12 21.302

15.5 13 31.548

13.1 14 21.322

38 2-Methyl benzaldehyde (38) C8H8O (120) 0.55/

0.03

16,17 21.967/

29.683 39 2,5-Dimethoxy 4-methyl benzaldehyde (39) C10H12O3(180)

40 Octahydro-3-methyl-1H-indole (40) C9H17N (139) 0.39 12 15.474

41 7-Isobutyl-1H-indole-2,3-dione (41) C12H13NO2

(203)

0.47 09 20.482

42 Methyl 3-(3-methyl-2,4-dioxo pyrrolidin-3-yl) propionate (42) C9H13NO4(199) 3.33 13 31.246

43 3-Methyl 3-propyl-2,5-pyrrolidineone (43) C8H13NO2(155) 0.63 14 14.675

0.76 15 23.936

44 1-(Butyryloxy)-2,5-pyrrolidinedione (44) C8H11NO4(185) 0.68 15 26.317

Page 245: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

238

45 Hydroxy succinimide (45) C4H5NO3(115) 3.16 15 27.284-

27.325

46 2-Ethyl 4-methyl succinimide (46) C7H11ON2(141) 0.18 12 13.663

47 5-Ethyl 6-imino-5-(1-methyl-butyl)-dihydro-pyrimidine-2,4-

dione (47)

C11H19N3O2

(255)

4.01 15 39.796

48 3-Isobutyl hexa hydro pyrrolo [1,2]pyrazine-1,4-dione (48) C11H18O2N2

(210)

0.2/

0.54

21 38.370/

39.140

3.90 24 34.997

49 3-Benzyl 6-isopropyl-2,5-piperazinedione (49) C14H18O2 N2

(246)

0.96 24 52.056

50 1-Stearoylpyrrolidine (50) C22H43ON (337) 2.31 24 35.915

51 1,2-Dihydro-3-benzyl-2-(2,4,5-trimethoxy phenyl) quinazolin-

4(3H)-one (51)

C24H24O4N2

(404)

- 25 67.531

52 3-Isobutyl-2,5-piperazinedione (52) C14H18N2O2

(170)

0.32 20 15.759

53 3-Benzyl hexa hydro pyrrolo[1,2] pyrazine-1,4-dione (53) C14H16O2N2

(244)

3.57 25 53.963

0.47 26 54.176

- 24 53.845

54

3-Benzyl-6-isobutyl-2,5-piperazinedione (54) C15H20O2N2

(263)

2.62 25 53.702

3.45 25 53.833

1.26 24 53.590

55

Tert-butyl-(5-cyano-4,4,5-trimethyl-2-pyrrolidinylidene)

ethanoate (55)

C14H22O2N2

(250)

0.26 26 49.280

56 Malonic acid,2-formamido-2-[4-(4-hydroxy-3-methyl-2-

butenyl) indol-3-yl] methyl, dimethyl ester (56)

C20H24O6N2

(388)

3.33 13, 14 31.246/

55.946

57 Toulene (57) C7H8(93) 0.7 11 3.747

58 Isopropyl benzene (58) C9H12(120) 0.21 14 7.893

59 1-Ethyl-3-methyl-benzene (59) C9H12(120) 0.15 14 6.681

60 1,2,3-Trimethyl benzene (60) C9H12(120) 0.33 13 14.147

61 1,2,4-Trimethyl benzene (61) C9H12 (120) 0.03 16,17 29.683

0.09 10 7.648

0.61 11 14.137

0.25 15 14.131

62 1,3,5-Trimethyl benzene (62)

C9H12(120) 0.12 11 12.942-

12.965

1.19 14 7.069

63 N-(1-methylpropyl) acetamide (63) C6H13ON(115) 1.00 14 16.369

Page 246: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

239

64 Oleic acid amide (64) C18H35NO(281) 0.82 13 53.682

65 13-Docosenamide (65) C22H43NO(337) 4.37 11 57.991

0.05 12 54.958

2.94 13 58.012

- 14 54.948

1.43 15 58.008

66 N-Isopentyl-2,4-undecadiene-8,10-diynamide (66) C16H21NO(243) 2.22 12 23.007

67 9,10-Octadecenoamide (67) C18H35NO (281) 1.00 14 16.369

68 Benzoic acid (68) C7H6O2(122) 0.78 24 58.018

69 3-Hydroxy benzoic acid (69) C7H6O3(138) 0.3 10 29.485

70 Methyl 2-hydroxy benzoate (70) C8H8O3(152) 1.35 25 21.164

71 Methyl 4-hydroxy benzoate (71) C8H8O3(152) - 10 17.795

72 Methyl 4-acetoxybenzoate (72) C10H10O4(194) - 10 16.647

73 3-Methoxy-4-hydroxy benzoic acid (vanillic acid) (73) C8H8O4(168) 0.08 16,17 29.941

74 Methyl 2,6-dihydroxybenzoate (74) C8H8O4(168) 0.42 26 29.051-

29.084

75 Syringic acid (75) C7H6O5(170) 0.95 20 26.191

76 Acetosyringone (76) C10H12O4(196) 4.72 13 33.018

22.3 14 22.746

77 Benzene acetaldehyde (77) C8H8O(120) - 12 8.455

78 Benzene acetic acid (78) C8H8O2(136) - 14 44.478

12.62 15 57.590

0.14 16,17 22.891

79 Methyl 4-hydroxy phenyl acetate (79) C9H10O3(166) - 10 18.311

80 4-Butoxyphenyl acetic acid (80) C12H16O3(208) - 10 22.899

81 3-Phenylpentanedioic acid (81) C11H12O4(208) 3.01 12 32.455

82 2,4-Dimethoxybenzyl alcohol (82) C9H12O3(168) 0.43 25 67.531

83 3,4,5-Trimethoxybenzyl methyl ether (83) C11H16O4(212) 2.11 11 33.851

84

Methyl (3,4-dimethoxy phenyl)(hydroxyl) acetate (84) C11H14O5(226) 0.07 20 13.576

1.71 24 45.014

85 2-(3-Isopropylphenyl)-1-propanol (85) C12H18O(178) 0.17 12 18.663

86 2-Hexenyl benzoate (86) C13H16O2(204) 1.25 11 51.858-

51.808

87 2-Napthyl benzoate (87) C17H12O2(248) 1.59 11 51.925

- 10 46.216

88 1-O-Hexyl-D-mannitol (88) C12H26O6(266) 0.53 09 18.174

89 Galacto heptulose (89) C7H14O7(210) 8.16 26 26.851

Page 247: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

240

90 1,5-Anhydrohexitol (90) C6H12O5(164) 2.93 24 25.684

91 β-D-Glucopyranose (91) C6H12O6(180) 2.12 25 36.127

92 Methyl β-D-glucopyranoside (92)

C7H14O6(194) 6.06 26 32.413

15.06 26 37.651

93 Methyl β-D-galactopyranoside (93) C7H14O6(194) 23.21 26 40.636

94 Methyl 6-deoxy hexopyranoside (94) C7H14O5(178) 1.89 24 25.141

95 Methyl d-lyxofuranoside (95) C6H12O5(164) 4.02 25 26.556

96 1-Gala-1-ido-octonic lactone (96) C8H14O8(238) 3.06 25 47.188-

47.403

97 1-O-Dodecyl-α-D-riboside (97) C17H34O5(318) 1.33 26 33.221

98 4-O-Hexapyranosyl hexose (98) C12H22O11(342) 1.4 24 37.556

99 6-O-Hexopyranosyl hexose (99) C12H22O11(342) 10.06 26 32.256-

32.330

100 1-Deoxy-1-dodecylthio-α, β-D-glucopyranoside (100) C18H36SO5(364) 5.33 24 57.499

101 1-Dodecyl thio-1-deoxy-galactopyranoside (101) C18H36O5S(364) 0.5 25 53.270

102 4,6-O-(undec-10-enylidene)-methyl-α-D-glucopyranoside

(102)

C18H32O6(344) - 24 53.717

103 4-O-β-D-Galactopyranosyl-β-D-glucopyranose (103) C12H22O11 (342) 3.45 26 48.540-

48.727

104 1-Octylthio-1-deoxy- galacto pyranoside (104) C14H28O5S

(308)

0.20 26 53.610

105 Trans-Cinnamic acid (105) C9H8O2(148) - 10 17.390

0.87 12 17.252

0.74 13 29.662

106 Methyl 4-hydroxy cinnamate (106) C10H10O3(178) 0.22 10 29.997

107 Methyl ferulate (107)

C11H12O4(208)

0.15 10 22.189

8.29 11 35.663

- 10 25.451

108 Methyl 4-hydroxy-3-methoxy cinnamate (108) C13H14O5(250) - 10 40.944

109 Sinapic acid (109) C11H12O5(224) 4.96 10 49.294

110 3,4,5-Trimethoxy cinnamic acid (110) C12H14O5(238) 0.56 26 35.853

5.0 11 47.394

111 2,4,5-Trimethoxy cinnamic acid (111)

C12H14O5(238) 0.03 16,17 28.765

0.78 26 47.652

0.05 12 29.926

112 2,3,4-Trimethoxycinnamic acid (112) C12H14O5(238) 31.9 12 37.727

113 4-(3-Hydroxy-1-propenyl)-2-methoxyphenol (113) C10H12O3(180) 0.29 24 33.098

Page 248: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

241

114 4-Phenyl-3-butenoic acid (114) C10H10O2(162) 0.03 16,17 28.765

115 3-Phenyl-2-propenyl methoxy acetate (115) C12H14O3(206) 0.06 16,17 28.805

116 Cyclohexyl isocyanate (116) C7H11ON(125) 0.08 12 7.173

117 1-Isothiocyanato-3-methyl butane (117) C6H11NS(129) 0.93 13 28.410

118 1-Hydroxy-4,4-dimethyl cyclohexane carbonitrile (118) C9H15ON(153) 0.12 14 12.974

119 1,3,5-Trimethyl-2-octadecyl cyclohexane (119) C27H54(378) - 14 44.478

120 2-Methyl-2-cyclopentenone (120) C6H8O(96) 0.04 21 24.897-

24.917

121 Methyl cyclopentenolone (121) C6H8O2(112) 0.13 16,17 19.321

0.03 - 19.455

122 1,2-Cyclohexadione (122) C6H8O2(112) 0.03 16,17 13.592

0.02 20 6.262-

6.299

123 1-Ethylcyclohexane carboxylic acid (123) C9H16O2(156) 0.05 16,17 27.757

124 5,5-Dimethyl-3-oxo-1-cyclohexene-1-carbaldehyde (124) C9H12O2(152) 0.02 12 11.074

125 1,3,4-Trimethyl-3-cyclo hexen-1-carboxaldehyde (125) C10H16O(152) 0.03 12 12.932

126 4-Hydroxy-3,5,5-trimethyl-4-[3-oxo-1-butenyl]-2-cyclohexen-

1-one (126)

C13H18O3(222) - 14 24.246

0.1 16,17 34.686

127 Methyl 3-(1,4,4-trimethyl-2-olcyclohexyl) propanoate (127) C13H24O3(228) 4.31 26 46.093

128 Cyclododeca-4,8-diene-1-one (128)

C12H18O(178) 0.03 21, 25 28.738-

28.762

129 4-Methoxyoctahydro-1(2H)-naphthalenone (129) C11H18O2(182) 0.26 10 25.262

130 3-Oxooctahydro-4-(2H)-naphthalene carboxylic acid (130) C11H16O3(196) 3.25 13 32.104

131 3-Hydroxymethylene-1,7,7-trimethyl bicyclo[2.2.1] heptan-2-

one (131)

C11H16O2(180) 0.8 13 29.659

132 Bicyclo[2.2.2]octane-1,4-diacetate (132) C12H18O4(226) 0.13 13 34.458

133 5-Acetyl-2,2-dimethyl-7-(2-oxopropyl) cycloheptanone (133) C14H22O3(238) - 10 23.629

134 Methyl 1-methyl cyclooctane carboxylate (134) C11H20O2(184) 0.03 16,17 26.207

135 2-(4-Nitrobutanoyl) cyclo octane (135) C12H19O4N

(241)

0.42 26 52.887

136 2-Carboxy-3-dimethyl-, dimethyl cyclopentane acetate (136) C12H20O4(228) 0.42 13 29.468

137 2,4-Diethyl-1-methylcyclohexane (137) C11H22(154) 0.03 16,17 31.163

138 1,3,5-Trimethyl-2-octadecyl cyclohexane (138) C27H54(378) 0.1 16,17 26.980

139 17-(1,5-Dimethylhexyl)-10,13-dimethyl-3-styrylhexadeca

hydrocyclo pentaphenanthren-2-one (139)

C35H52O(488) 0.10 26 53.985

140 1,2-Dimethyl-1-cyclooctene (140) C10H18(138) - 12 12.283

141 Isorhamnetin (141) C16H12O7(316) 1.06 25 53.408

Page 249: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

242

142 Tert-butyl-(5-cyano-4,4,5-trimethyl-2-pyrrolidinylidene)-1,1-

dimethyl ethyl ester (142)

C14H22O2N2

(250)

1.45 09 40.945

143 7-Isobutyl-1H-indole-2,3-dione (143) C12H13NO2(203

)

- 10 20.508

144 6-Methoxy-4,5-pyrimidinediamine (144) C5H8ON4(140) 17.55 14 22.073

145 3-Methyl-4-propyl- 2,5-pyrrolidinedione (145) C8H13O2N (155) 0.63 14 14.675

146 4-Amino-1H-1,2,3-triazole-5-carboxamide (146) C3H5ON5(127) 0.13 11 25.385

147 N-Butyl benzene sulfonamide (147) C10H15NO2S

(213)

- 10 20.588

148 4-Hydrazino-6,6-dimethyl-2-(methyl sulfanyl)-5,8-dihydro-

6H-pyrano [4',3':4,5] furano [2,3] pyrimidine (148)

C12H16 N4O2 S

(280)

0.20 12 49.248

149 4,5-Dipropenyldihydro-furan-2-one (149) C10H14O2(166) 0.15 24 22.586-

22.630

150 Milbemycin b. 13-chloro-5-demethoxy-28-deoxy-6,28-epoxy-

5-(hydroxyl imino-25-(1-methyl ethyl) (150)

C33H46NO7Cl

(633)

- 12 3048.25

151 1,6-Dimethyl-10-methoxy ergoline-8β-methanol (151) C18H124N2O2

(300)

- 12 3018.75

152 6,6-Dimethyl-9-methylene-3-pentyl-6,7,8, 9,10,10-hexa hydro-

6H-benzo chromene-1,8-diol (152)

C21H30O3(330) - 12 3103.8

153 Tetrahydrocannabinol (153) C21H30O2(314) - 12 3106.95

154 4-Ethyl-4-methyl-2-pentadecyl-1,3-dioxolane (154) C21H42O2(326) 1.42 14 17.612

155 5-Hydroxy methyl furfurole (155) C6H6O3(126) 0.26 14 13.097

156 n- Nonenyl succinic anhydride (156) C13H20O3(224) 2.44 14 21.225

157 4,5-Dihydro-2-thiazolamine (157) C3H6N2S(102) 0.03 16,17 21.357

158 4-Hydroxyundecanoic acid lactone (158) C11H20O2(184) 0.04 20 10.994

159 Trans-Linalool oxide (159) C10H18O2(170) 1.96 26 17.464

160 Cis-Linalool oxide (160) C10H18O2(170) 0.95 26 18.006

161 n-Dodecenyl succinic anhydride (161) C16H24O3(264) 0.99 13 33.798

162 Dodecenyl succinic anhydride (162) C16H26O3(266) 0.5 26 33.090

163 3-(16-Methtylheptadecyl) dihydro-2,5-furandione (163) C22H40O3352 0.10 25 56.506

164 2,3-Dihydro benzofuran (164) C8H8O(120) 0.81 26 22.122

165 3-Benzylidene-5-phenyl-2(3H)-furanone (165) C17H12O2(248) 2.68 9 51.053

166 2-Heptyl-5-imino-6-thiophen-2-ylmethylene-5,6-dihydro-

[1,3,4]thiadiazolo [3,2]pyrimidin-7-one (166)

C17H20ON4S2

(363)

0.09 16,17 54.555

167 2-(4-Methylphenyl)-6-methyl-7,7-tetramethylene-6,7-dihydro-

1H-pyrrolo[3,4]pyridine-4,5-dione (167)

C19H20O3N2

(324)

0.09 16,17 57.633

168 1-(6-Methyl-2-piperidinyl) acetone (168) C9H17NO(155) 0.34 20 14.121

Page 250: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

243

169 5-Methyl-2(5H)-thiophenone (169) C5H6OS (114) 0.23 20 15.036

170

2-Acetyl-2,3,5,6-tetrahydro-1,4-thiazine (170) C6H11ONS

(145)

0.03 16,17 21.347-

21.401

171

8,8-Dimethoxy-1,4-dioxaspiro[4,5]deca-6,9-diene (171) C10H14O4 (198) 0.25 16,17 34.281-

34.338

172 Opuntiol (172) C7H8O4 (156) 87.45 16,17 33.484

90.17 20 19.409-

21.941

0.29 21 27.713

95.61 21 34.314

14.47 25 31.090

32.82 24 31.012

173 Methyl triacetolactone (173) C7H8O3(140) 0.75 21 19.271

174 3,5-Dihydroxy-6-methyl-2,3-dihydro-4H-pyran-4-one (174) C6H8O4(144) 0.37 26 20.153

175 2-Diethyl amino methyl-3-hydroxy-6-hydroxy methyl pyran-4-

one (175)

C11H17O4N

(227)

0.33 20 26.965-

27.092

176 2,6,6-Trimethyl-2-cyclohexene-1,4-dione (176) C9H12O2(152) 0.2 14 11.091

177 2-Hydroxy-3,5,5-trimethyl-2-cyclohexen-1-one (177) C9H14O2(154) 6.37 25 35.269

178 3-Ethoxy-2-cyclohexenone (178) C8H12O2(140) 0.43 14 16.453

179 7-Methoxy-2,2-dimethyl chromene (179) C12H14O2(190) 7.4 25 27.634

180 6,7-Dimethoxy-2,2-dimethyl-2H-chromene (180) C13H16O3(220) 2.83 25 31.502

181 2-Phenyl-1,3-dioxan-5-yl palmitate (181) C26H42O4(418) 3.1 25 51.271

182 Methyl 4-(7-Allyl-7-hydroxy-2,2-dimethyl tetra hydro [1,3]

dioxolo[4,5]pyran-4-yl)-3-methylbut-2-enoate (182)

C17H26O6(326) 2.84 25 59.698

183 4,5,6-Trimethyl-2-pyrimidinethiol (183) C7H10N2S (154) 1.53 26 25.159-

25.186

184 Crotonaldehyde isonicotinic acid hydrazone (184) C10H11ON3(189

)

1.00 26 27.293

185 Benzyl N-(1-hydroxy-4-oxo-1-phenylper hydroquinolizin-3-yl)

carbamate (185)

C23H26O4N2

(394)

0.2 26 54.076

186 Ethyl 2-(2-methyl nona decyl) acrylate (186) - 0.87 26 33.659

187 5-[1-(Hydroxymethyl) vinyl]-2-methyl cyclohexanol (187) C10H18O2(170) 0.15 14 11.554

188 2-Ethyl-3-methoxy-2-cyclo pentenone (188) C8H12O2(140) 0.43 14 13.744

189 2-Ethyl-cyclohexanethiol, acetate (189) C10H18OS(186) 0.51 14 14.303

190 1-(4-Methylphenyl) anthrax-9,10-quinone (190) C21H14O2(298) - 14 54.322

191 1-Ethyl-1-tetradecyloxy-1-silacyclopentane (191) C20H42OSi(326) 0.93 13 58.766

192 Bencarbate (192) C11H13O4N 4.8 14 21.872

Page 251: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

244

(223)

193 2-(4-Diethyl amino phenyl imino methyl)-6- methoxy phenol

(193)

C18H22O2N2

(298)

12.62 15 57.590

194

p- Octyloxybenzonitrile (194) C15H21NO(231) 0.08 10 9.168

195

15-Hydroxy-4-methylpicrasa-1,13-diene-3, 16-dione (195) C21H28O4(344) 0.46 26 59.827

196 3-Methyl-5-phenyl-1,2,4-oxadiazole (196) C9H8N2O(163) - 12 14.302

197 Decane (197) C10H22(142) 0.15 10 7.892

198 Undecane (198) C11H24 (156) 0.24 10 13.431

199 Dodecane (199) C12H26(170) 0.22 10 17.218

200 Tridecane (200)

C13H28(184) 0.22 10 20.148

0.01 21 23.855-

23.872

201 Tetradecane (201) C14H30(198) 0.3 10 22.637

0.03 21 26.163-

26.190

202 Pentadecane (202) C15H32(212) 0.05 10 18.442

203 Hexadecane (203) C16H34(226) 0.24 10 26.883

0.05 21 30.282

4.44 24 41.363

204 Hexatriacontane (204) C36H74(506) 0.06 21 28.286

205 2,6-Dimethyl undecane (205) C13H28(184) 0.02 10 17.667

206 3,4-Dimethyl undecane (206) C13H28(184) 0.04 10 15.662

207 1-Chloro tetradecane (207)

C14H29Cl(232) 0.02 12 13.053

0.19 14 15.438

208 1,4-Dimethyl-3-n-octadecylcyclohexane (208) C26H52(364) 1.72 13 53.859

209 1,3,5-Trimethyl-4-octadecylcyclohexane (209) C27H54(378) 1.4 15 51.049

210 Nonanoic acid (210) C9H18O2(158) 0.03 10 19.515

211 Undecanoic acid (211) C11H22O2(186) 3.5 26 32.511

212 Dodecanoic acid (212) C12H24O2(200) - 10 19.634

1.52 11 29.578

0.83 09 19.718

213 Tetradecanoic acid (213) C14H28O2(228) 1.59 09 23.422

0.73 10 23.505

1.84 11 33.513

214 Pentadecanoic acid (214) C15H30O2(242) 5.79 09 26.215

Page 252: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

245

0.29 10 32.131

1.43 10 33.065

215 Palmitic acid (215) C16H32O2(256) 40.0 09 30.275

- 10 31.707

15.22 11 40.278

5.07 13 40.272

- 14 29.910

1.97 20 29.956

216 Stearic acid (216)

C18H36O2(284) 1.57 09 43.585

10 44.036

217 Oleic acid (217)

C18H34O2(282) 2.0 09 42.124

0.31 13 29.632

218

Decenoic acid (218) C10H18O2(170) - - -

219 11-Hexadecenoic acid (219) C16H30O2(254) - 10 18.187

220 9,12-Octadecadienoic acid (220) C18H32O2(280) - 10 42.766

3.47 11 49.494

221 13-Octadecanoic acid (221) C18H34O2(282) 2.34 20 38.680

222 Myristoleic acid (222) C14H26O2(226) 3.33 13 31.246

223 2,2-Diethyl-3-methyl-3-butenoic acid (223) C9H16O2(156) 0.61 21 26.635

224 2,4-Dimethyl hexanedioic acid (224)

C8H14O4(174) 0.49 13 28.537

0.85 15 28.115-

28.145

225 Agaricic acid (225) C22H40O7(416) - 12 -

226 Methyl 10-ketostearate (226) C19H36O(312) 1.95 13 55.192

227 Ethyl 4-oxo-2-hexenoate (227) C8H12O3(156) 6.42 12 14.179

228 Fumaric acid, cyclo butyl ethyl ester (228) C10H14O4(198) 0.79 11 29.823

229 3,4-Anhydro-1,5-dideoxy-4-(4-methyl-3-pentenyl) pent-2-

ulose (229)

C11H18O2(182) 0.10 16,17 30.172

230 Methyl 3-hydroxy undecanoate (230) C12H24O3(216) - 10 16.225

231 Dimethyl 2-hydroxy-2-methyl succinate (231) C7H12O5(176) 2.84 26 24.654-

24.704

232 Methyl 7-hydroxystearate (232) C19H38O3(314) 12 51.661

233 Bis(1-methyl propyl) octanedioate (233) C16H30O4(286) 5.19 13 33.313

234 Methyl 10-hydroxy-11-dodecanoate (234) C13H24O3(228) 0.37 13 28.932

235 8-t-Butyl-8-hydroxy-2,2-dimethyl-dodeca-5,11-dien-3-one

(235)

C18H32O2(280) 2.12 24 42.458-

42.492

Page 253: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

246

236 Isopropyl 5-hydroxy-3,7,11-trimethyl-2,10-dodecadienoate

(236)

C18H32O3(296) 0.10 25 56.422

237 Butyl fumarate (237)

C12H20O4(228) - 10 19.861

0.48 11 29.927-

29.947

0.75 13 29.933

2.12 15 29.930

238 Di isobutyl fumarate (238) C12H20O4(228) 6.08 14 19.842

239 Dibutyl malate (239) C12H22O5(246) 31.35 09 20.985

240

Adipic acid, decyl methyl ester (240) C17H32O4(300) 0.3 10 22.454

241 Adipic acid, heptyl methyl ester (241) C14H26O4(258) 1.06 11 32.709-

32.730

242 Dibutyl nonanedioate (242) C17H32O4(300) 3.23 12 25.676

243 Diethyl glutarate (243) C9H16O4(188) 0.40 13 28.815

244 Di(sec-butyl)-2-methylsuccinate (244) C13H24O4(244) 0.7 14 16.724

245 7-(Acetyloxy) heptyl acetate (245) C11H20O4(216) 0.26 24 24.880-

24.927

246 Di butyl succinate (246) C12H22O4(230) 17.95 15 25.399-

25.513

4.11 16,17 25.764

247 4-Pentadecyl acetoxyacetate (247) C19H36O4(328) 0.05 20 14.620

248 Di(sec-butyl) hexanedioate (248) C14H26O4(258) 1.72 15 29.384

249 Ethyl tetradec-3-enyl fumarate (249) C20H34O4(338) 0.16 21 51.983

250 Ethyl 4-methyl succinate (250) C7H12O4(163) 0.87 15 25.935

251 2-Butyl heptadecyl fumarate (251) C25H46O4(410) 0.38 24 56.501

252 Isobutyl tridecyl fumarate (252) C21H38O4(354) 1.00 24 56.414

253 2-(Acetyloxy)-1-[(octadecyloxy) methyl] ethyl acetate (253) C25H48O5(428) 1.08 25 55.119

254 Pentadecyl isovalerate (254) C20H40O2(312) 0.41 26 29.935

255 Methyl 8-octadecynoate (255) C19H34O2(294) 1.32 26 30.303

256 Methyl 2,5-octadecadiynoate (256) C19H30O2(290) 0.41 26 26.275

257 8-Dodecenyl acetate (257) C14H26O2(226) - 10 20.431

258 Methyl pentadecanoate (258) C16H32O2(256) 2.72 12 24.350

259 2-Hexenyl propanoate (259) C9H16O2(156) 0.23 12 15.407

260 Nonyl 2-ethyl hexanoate (260) C17H34O2(270) - 10 20.930

261 Allyl 2-ethyl butyrate (261) C9H16O2(156) 0.12 12 16.466

262 4-Tetradecyl hexanoate (262) C20H40O2(312) 2.7 12 22.073

Page 254: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

247

263 Isopropyl palmitate (263) C19H38O2(298) 0.31 10 28.129

264 Tridec-2-ynyl octanoate (264) C21H38O2(322) 0.19 11 31.032-

31.045

265 Ethyl dodecanoate (265) C12H24O2(200) 4.41 13 29.468

266 Oleyl arachidate (266) C38H74O2(562) 12 -

267 Methyl 8-methyl-decanoate (267) C12H24O2(200) 0.55 13 28.534

268 Ethyl 5,9-dimethyl-2,4-decadienoate (268) C14H24O2(224) 6.97 15 33.946

269 Methyl 3,7,11,15-tetramethyl hexadecanoate (269) C21H42O2(326) 4.0 14 20.056

270 i- Propyl 9-hexadecenoate (270) C19H36O2(296) - 14 49.519

271 2-Isopropenyl 2-methyl-butanedioic acid (271) C8H12O4(172) 4.81 15 34.153-

34.183

272 3-Nonen-2-one (272) C9H16O(140) 9.8 15 28.383

273 Methyl-9-oxodecanoate (273) C11H20O3(200) 0.74 15 29.632

274 Ethyl 2-(2-methylnonadecyl) acrylate (274) C25H48O2(380) 0.87 26 33.659

275 Butyl undec-2-en-1-yl fumarate (275) C19H32O4(324) 1.12 26 43.667

276 Methyl 13-tetradecynoate (276) C15H26O2(238) 1.94 15 30.111

277 2,6-Dimethyl tridecane nitrile (277) C15H29N(223) 0.21 26 28.813

278 i-Propyl-16-methyl heptadecanoate (278) C21H42O2(326) 1.32 15 56.756

279 Octyl acetate (279) C10H20O2(172) 0.05 20 8.984-

9.048

280 Octyl pentanoate (280) C13H26O2(214) 0.29 24 19.582-

19.612

281 Vinyl decanoate (281) C12H22O2(198) 0.17 20 17.574

282 Hexadecyl isovalerate (282) C21H42O2(326) 0.44 20 18.338

283 Pentadecyl butyrate (283) C19H38O2(298) 0.67 24 27.516-

27.566

284 Butyl-9-tetradecenoate (284) C18H34O2 (282) 0.57 24 54.762

285 Tridec-2-ynyl octanoate (285) C21H38O2(322) 3.1 24 41.708

286 11,13-Dimethyl-12-tetradecen-1-ol acetate (286) C18H34O2(282) 3.38 25 38.354

287 Mono methyl succinate (287) C5H8O4(132) 1.12 25 19.091

288 2-Hexadecanoyl glycerol (288) C19H38O4(330) - 12 3022.04

289 Tridecyl 2-methyl propanoate (289) C17H34O2(270) 0.02 26 28.006

290 D-(+)-Arabitol, pentamethyl ether (290) C10H22O5 (222) 0.3 16,17 36.548

291 Ethyl 2-oxo tetradecanoate (291) C16H30O3(270) 2.31 12 20.880

292 Dodecyl hexanoate (292) C18H36O2(284) 0.04 12 9.259

293 Methyl 10-oxostearate (293) C19H36O3(312) 0.06 12 51.076

294 Methyl 7-hydroxystearate (294) C19H38O3(314) 1.00 24 51.966

Page 255: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

248

295 4-Undecenal (295) C11H20O (168) 0.07 10 21.267

296 2-Isopropyl-4-methyl-2-hexenal (296) C10H18O (154) 0.02 16,17 25.088

297

Trichloromethane (297) CHCl3(118) 0.13 11 3.586-

3.639

298 2,2,6,6-Tetramethyl-3,5-heptandione (298) C11H20O2 (184) 0.42 11 23.283

299 2-Butyl-2-ethyl-5-methyl-3,4-hexadienal (299) C13H22O (194) 7.52 11 30.496

300 N-(2,2-Diphenylethyl)-2,2-dimethylpropionamide (300) C19H23ON (281) 1.06 11 50.291

301 7,9-Dimethyl-8-nitro bicycle [4.3.1]decan-10-one (301) C12H19 N O3

(225)

0.33 12 18.486

302 1-Phenylethenyl dimethyl ester phosphoric acid (302) C10H13O4P(228) 2.66 12 44.231

303 4-Hydroxy-3-methoxy styrene (303)

C9H10O2 (150) 0.03 12 14.938

3.96 25 24.255

304 3-(1-methyl-3-phenylpropoxy) butanoic acid (304) C14H20O3 (236) 0.02 12 9.701

305 2-Phenylpropenal (305) C9H8O (132) 0.03 12 11.409

306

4-Hydroxy-3,5-dimethoxybenzohydrazide (306) C9H12N2O4

(212)

2.47 12 23.586

307 4-Ethyl-2,5-dimethoxyphenethylamine (307) C12H19

NO2(209)

0.20 16,17 29.686

308

4-Nitrophenyl octanoate (308) C14H19O4N

(265)

0.14 14 14.082

309 Methyl 2-(acetyl amino)-3-methyl butanoate (309) C8H15NO3(173) 0.22 12 18.553

310

N-Acetyl-nor-leucine (310) C8H15 NO3

(173)

1.21 13 29.880

311 Methyl 4-methyl-2-[(3-methyl butanoyl) amino] pentanoate

(311)

C12H23NO3

(229)

1.12 12 19.845

312 1-Phenylalanine,N-propoxycarbonyl-, butyl ester (312) C9H12N2O4

(307)

2.05 12 29.675

313 N-Butyl benzene sulfonamide (313) C10H15NO2 S

(213)

6.87 09 24.125

314

1-Dimethylamino 2,3-propanediol (314) C15H13O2N

(119)

0.12 15 -

- 16,17 19.063

315 1-Phenylalanine, N-isobutoxy carbonyl-,butyl ester (315) C18H27 O4(321) 3.71 13 39.920-

39.974

316 Vitamin p (316) C27H30O16(610) - 14 56.673

317 Vitamin A palmitate (317) C36H63O2 (524) 0.04 25 56.428

318 α-D-Mannothio furanoside, S-decyl- (318) C16H32O5S(336) 0.44 20 18.318

319 Methyl (3-oxo-2-[2-pentyl] cyclopentyl) acetate (319) C13H20O3(224) 0.55 21 41.672

Page 256: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

249

320 2-Hydroxy-1-methyl cyclopenten-3-one (320) C6H8O2 (112) 0.07 21 13.632

321 p-Cumylphenol (321) C15H16O(212) 3.52 11 31.099

322 Di ethylene glycol (322) C4H10O3 (106) 5.56 25 13.214

6.17 26 15.441

323 2,4-Dihydroxy diphenyl dimethyl methane (323) C15H16O2(228) 0.73 26 50.794

324 4-Phenyl propiophenone (324) C15H14O(210) 1.09 12 25.006

325 Methyl bis(3,5-dimethoxyphenyl) hydroxyacetate (325) C19H22O7(362) 0.68 09 26.383

326 a)Syringol (2,6-dimethoxy phenol) (326)

b)2,2-Di(4-hydroxyphenyl) propane (327)

C8H10O3(154)

C15H16O2(228)

0.13 21 25.121

327 Nonenyl succinic anhydride (328) C13H20O3 (224) 1.89 13 31.437

2.82 15 33.004

328

4-Hydroxy-10-methyl-3,4,7,8,9,10-hexahydro-2H-oxecin-2-

one (329)

C10H16O3 (184) 0.23 24 53.393

329 4-Isopropenyl-1-methyl-1-cyclohexene (330) C10H16 (136) 0.19 25 15.688

330 1,6-Dihydrocarveol (331) C10H18O (154) 0.08 12 8.064

331

5-Isopropenyl-2-methyl cyclohexanol (332) C10H18O (154) - 10 8.063

332 4-Isopropyl-1-methyl-2-cyclohexenol (333) C10H18O (154) 0.19 12 17.394

333 2-Hydroxymethylene-6-isopropyl-3-methyl cyclohexanone

(334)

C11H18O2 (182) 5.03 13 32.291-

32.335

334 Eucalyptol (335) C10H18O (154) 1.56 15 15.748

335

Trans-α-lonone (336) C13H20O (192) 0.6 09 22.638

336 2-Hydroxy-2,4,4-trimethyl-3-(3-methylbuta-1,3-dienyl)

cyclohexanone (337)

C14H22O2 (222) 0.33 11 27.884

1.62 12 21.487

337

4-(2,2,6-Trimethyl-1-cyclohexen-1-yl) butanoic acid (338) C13H22O2 (210) - 14 23.563

338 1-(2,6,6-trimethyl-1cyclohexen-1-yl)-1-penten-3-one (339) C14H22O (206) 0.15 24 26.240

339 3-Methyl-4-(2,6,6-trimethyl-2-cyclohexen-1-yl)-3-buten-2-one

(340)

C14H22O (206) 4.63 13 36.963

340 2-(2,2,6-Trimethyl-7-oxa bicycle [4.1.0] hept-1-yl)-1-propenyl

acetate (341)

C14H22O3 (238) - 14 23.737

341

2,6,10,10-Tetramethyl-1-oxaspiro[4,5] decan-6-ol (342) C13H24O2(212) - 14 23.895

342 1-[2-(2,2,6-Trimethyl bicycle [4.1.0]hept-1-yl)ethyl]vinyl

acetate (343)

C16H26O2(250) 0.63 26 31.506

Page 257: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

250

343 Methyl 2-[7-hydroxy-3-methyl-1,3-octadienyl]1,3-dimethyl-4-

oxo-2-cyclohexene-1-carboxylate (344)

C19H28O4(320) 0.10 26 53.721

344 Caryophyllene (345) C15H24(204) 2.15 25 26.730

345 (6,8)-Bis-hydroxymethyl-4-isopropyl-7-methylene-bicyclo

[3,2,1]oct-1-yl) methanol (346)

C15H26O3(254) - 14 28.372

346

3-Isobutyl hexahydro pyrrolo [1,2] pyrazine-1,4-dione (347) C11H18O2 N2

(210)

3.90 24 34.997

347 1,2-Dihydrothujopsene-(l1) (348) C15H26(206) 0.08 09 19.427

348 1-Isopropyl-4,7-dimethyl-1,2,4,5,6,8-hexahydro naphthalene

(349)

C15H24 (204) 0.47 25 28.052

349 7-Isopropyl-4-methyl octahydro-2(1H)-napthalenone (350) C14H24O(208) 2.84 11 34.535

350 3-Isopropyl-6,10-dimethyl-6-cyclodecene-1,4-dione (351) C15H24O2 (236) 0.12 26 50.378

351

2-Isopropyl-5,9-dimethyl-1,4-cyclodecane dione (352) C15H26O2 (238) 4.67 11 38.014

10.5 12 27.954

352 9-Isopropyl-2,6-dimethyl cyclo decanone (353) C15H28O(224) 0.25 26 31.616

353 Cyclopentadecanone (354) C15H28O (224) 1.79 13 31.065

354 3-Methyl-2-cyclopentenone (355) C6H8O (96) - 12 15.481

355 Bisabolol oxide A (356) C15H26O2 (238) 0.33 09 19.283

356 Limonene (357) C10H16 (136) 3.86 11 15.678

357 5-Methyl-2-isopropyl cyclohexanone (358) C10H18O (154) - 12 15.685

358 2-Isopropyl-5-methyl cyclohexenone (359) C10H18O (154) 0.01 16,17 25.108

359 Neo dihydrocarveol (360) C10H18O (154) 0.1 12 13.191

360 2,2,4-Trimethyl-3-(3-oxobutyl)-2-cyclohexen-1-one (361) C13H20O2 (208) 2.29 12 20.405

361 4-(3-hydroxy-6,6-dimethyl-2-methylenecyclo hexyl)-3-buten-

2- one (362)

C13H20O2 (208) 1.06 12 20.485

362 Menthone (363) C10H18O (154) 0.13 12 15.685

363 D-Isomenthone (364) C10H18O (154) 0.13 12 15.685

364 2,2,6,6-Tetramethyl-3,5-heptanedione (365) C11H20O2 (184) 0.83 13 23.276

365 4-(1,5-Dihydroxy-2,6,6-trimethylcyclohex-2-enyl)but-3-en-2-

one (366)

C13H20O3 (224) 3.38 13 30.911

366 4-Isopropyl-1-methyl-2-cyclo hexenol (367) C10H18O (154) 1.67 14 17.394

367 7-Methyl-oxa-cyclododeca-6,10-dien-2-one (368) C12H18O2 (194) 8.17 15 32.305

368 4-(2,2,6-Trimethyl-1-cyclohexen-1-yl)-butyric acid (369) C13H22O2(210) 4.87 15 33.785-

33.815

369 4-Isopropyl-1-methyl-1,2,3-cyclohexanetriol (370) C10H20O3 (188) 0.16 20 17.340

370 2,2-Dimethyl-3-[3-methyl-5-(phenyl thio)pent-3-enyl] oxirane

(371)

C16H22OS(262) 1.1 26 53.074

Page 258: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

251

371 Bicyclo[4,3.0]nonane, 1-isopropenyl-4,5-dimethyl-5-phenyl

sulfonyl methyl (372)

C21H30O2 S

(346)

- 14 63.140

372 Methyl 2-methyl-2-thiophene carboxylate (373) C7H8SO2 (156) 2.81 26 31.332

373 Methyl 3-methyl-2-thiophenecarboxylate (374) C7H8O2S (156) 0.21 21 30.858

374 2,2-Bis(5-formylthien-2-yl)- butane (375) C14H14O2 S2

(278)

- 14 52.285

375 Di methyl sulfoxide (376) C2H6OS (78) 5.61 25 5.562

376 2-Methyl-5-propionyl thiophene (377) C9H10OS (154) 0.21 21 26.953

377 Gibberillic acid (378) C19H22O6 (346) 1.05 11 54.571

378 4,4-Dimethyl androsta-5,7-diene (379) C21H32 (284) - 12 -

379 17-Acetoxy-3-methoxy-4,4,7-trimethyl-3, 19:7,8-diepoxy

androstane (380)

C25H38O5(418) 5.99 24 65.218

380 β-Sitosterol (381) C29H50O2(414) 1.39 09 64.557

381 3-Isopropyl-6,10-dimethyl-8-(2-oxo-2-phenyl-ethyl)-

dodecahydro-benzo chromen-7-one (382)

C26H36O3(396) 0.28 10 51.039

382 5α-Pregnan-20-one,5,6α:16α,17-diepoxy -3β-hydroxy acetate

(383)

C23H32O5(388) 0.59 10 52.717

383 4,6,8(14)-Cholestatriene (384) C27H42(366) 0.16 10 54.780

384 13-Ethyl-3-hydroxy- gona-1,3,5,7,9-pentaen-17-one (385) C19H20O2(280) 10.73 11 53.948

385 3,9-Epoxypregnane-11β-20-diol,3α-methoxy-18[N-methyl-N-

(2',14-epoxy ethyl)amino] (386)

C25H41 NO5

(435)

1.00 12 19.429

386 4-Chlorotestosterone acetate (387) C21H29O3Cl

(364)

- 12 3046.72

387 3-O-acetyl-20-[N-{3-cyano-2-methyl propyl} carbamoyl]-

allopregane-3-ol (388)

C29H46N2O3

(470)

- 12 3066.78

388 Androstane-3,11,17-triol (389) C19H32O3(308) - 14 46.116

389 3-Acetoxy-17-acetyl-5,7,9(10)-estratriene (390) C22H28O3 (340) 0.3 16,17 55.928

390 Stigmastan-3,5-diene (391) C29H48 (396) 1.11 20 52.633

391 Methyl-3,7-diketo-5α-cholanoate (392) C25H38O4 (402) 0.59 24 66.890

392 4-Norlanosta-17(20),24-diene-11,16-diol-21-oic acid,3-oxo-

16,21-lactone (393)

C29H42O4(454)

(418)

0.68 24 67.476-

67.499

393 9,19-Cyclocholestene-3,7-diol 4,14-dimethyl-3-acetate (394) C31H52O3 (472) 0.81 24 59.391

394 Ethyl iso-allocholate (395) C26H44O5 (436) 1.59 24 59.548-

59.639

395 3-Deoxy-D-3,17β-estradiol (396) C18H24O (256) 0.14 26 54.967

396 Pregna-1,4-diene-3,20-dione,11β,17,21-trihydrox y-,21-acetate

(397)

C23H30O6 (402) 0.54 25 66.888

Page 259: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

252

397 5α-Androstan-17β-ol (398) C19H32O (276) 0.26 16,17 53.701

398 4-Butoxyphenylacetic acid (399) C12H16O3(208) 1.21 09 22.893

399 Methyl salicylate (400) C8H8O3(152) 0.15 24 21.166

400 3-Phenylpentanedioic acid (401) C11H12O4(208) 3.01 12 32.455

401 3-[4-(Acetyloxy)-3-methoxy phenyl], methyl-2-propenoate

(402)

C13H14O5(250) 1.47 13 66.590-

66.667

402 1-n-Dodecyloxy-1-methyl-1-silicacyclo hexane (403) C18H38OSi

(298)

0.47 26 57.723

403 Unidentified (288) - 10 24.359

404 Unidentified (328) 4.19 11 56.286

405 Unidentified (340) - 12 3022.04

406 Unidentified (152) 8.43 14 15.907

407 Unidentified (503) 0.05 21 58.704

408 Unidentified (503) 0.04 21 56.028

409 Unidentified (503) 0.09 21 57.304

410 Unidentified (576) 0.05 21 52.666-

52.689

411 Unidentified (503) 0.03 21 54.571

412 Unidentified (418) 6.12 24 65.932

413 Unidentified (284) 0.19 25 27.466

414 Unidentified (502) 2.27 25 41.713

415 Unidentified (389) 1.21 25 57.557

Page 260: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

253

Outlook

Page 261: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

254

1 The present studies carried out on O. dillenii Linn. Keeping in mind the remarkable

properties of plants, which have been shown in the following fact.

2 O. dillenii is a rich source of medicinally important photochemicals like opuntiol and

its glucoside, opuntioside, which were isolated previously from this plant. Both

compounds have been reported as anti-inflammatory, hypotensive and analgesic

agents.

3 The cladodes of O. dillenii were extracted with methanol to obtained methanol

extract. This extract was treated with ethyl acetate and water to give ethyl acetate and

aqueous phases. The aqueous phase was treated with butanol to give butanol and

aqueous phases. Chemical study on this butanol phase has been carried out after the

purification and isolation of chemical compounds through vacuum liquid

chromatography (VLC).

4 The vaccum liquid chromatography (VLC) fractions were subjected to GC and GC-

MS studies which led to the detection of 409 chemical compounds, which belongs to

different class of cmpounds.

5 Two known compounds opuntiol (1) and opuntioside (2), have been isolated from

the current working. Structures of these pure compounds have been determined

through TLC chromatogram and EI-MS and 1H-NMR studies.

6 The chemical investigation has proved that O. dillenii comprising important class of

compounds, which possess valuable medicinal importance. There is a need to be

further work on this plant for new and novel medicinally important chemical

components and will be submitted for biological studies.

7 In order to isolate the pure bioactive chemical constituents of the plant, several

chromatographic techniques such as high performance liquid chromatography

(HPLC) vaccum liquid chromatography (VLC), and flash column chromatography

(FCC) will be used.

Page 262: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

255

Experimental

Page 263: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

256

Materials and methods

General methods

EI-MS and HREI-MS spectra were run on MAT 312 (Finnigan, Germany), and JMS HX110

spectrometers (Jeol, Japan). 1H-NMR spectra were recorded on a Bruker AV-300 and AV-

400 devices functioning at 300 and 400 MHz. The chemical shifts (δ) and coupling constant

(J) were recorded in ppm and Hz. For vacuum liquid chromatography (VLC) silica gel 60

GF254 (Merck) was used. Chemicals and solvents utilized were of analytical grade.

GC and GC-MS studies

The non polar extracts were examined by GC-FID and GC-MS analysis. GC-FID spectra were

run on a 17-A Shimadzu [FID mode; column, fused silica capillary column OV-1, DB-1 (30

m x 0.53 mm, 0.5mm film thickness) carrier gas N2], at 75 oC and programmed to 75 oC at

240 oC min-1 and 3-5 min hold. Injector and detector were at 240 and 250 oC respectively. 2

mL of each sample were triplicate injected and quantities represented as relative area % as

derived from integrator. GC-MS system was functioned on a JSM 630H (Jeol, Japan) with

Agilent 6890N USA [EI mode; ionization potential, 70ev; column DS-6 (0.32 mm x 30 m);

column temperature 50-250 oC (temperature rate increases 5 oC/min); carrier gas, He; flow

rate, 1.8 mL/min; split ratio, 1:30]. Sample injection was carried out with a split ratio of 35:1

at a temperature of 25 oC.

The recognition and verification of chemical compounds were completed by assessment of

their GC-MS spectra, with Mass library search, Agilent Mass Hunter Qualitative Analysis

(version B.04.00) database.99

Plant material

O. dillenii cladodes were collected during 2011 from HEJRIC (ICCBS) gardens, University

of Karachi. Plant taxonomist Dr. Rubina Dawar was recognized this plant, she affiliated with

Botany department, University of Karachi and the voucher specimen (KUH. G.H. 67280) was

placed in the herbarium of the similar department.

Extraction and isolation of pure compounds from O. dillenii

Page 264: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

257

Plant cladodes 45 kg were extracted thrice with methanol at room temperature. The extracts

were filtered and mixed collectively followed by evaporation under vacuum, affording a thick

gummy residue OM (1071 g), of which 871 g was treated with ethyl acetate and water and the

two layers were separated into ethyl acetate and aqueous phases. The aqueous phase was

treated six times with butanol to give aqueous phase, the later phase was evaporated under

vacuum affording a gummy residue OM-But (18 g) (Scheme 1). The TLC of OM-But showed

a number of spots, alongwith the spots of two known compounds namely opuntiol (1) and

opuntioside (2) as major chemical constituents.

Butanol phase obtained from O. dillenii possessed antidepressant potential.84 Therefore

further fractionation of butanol phase was performed by subjecting it to VLC (Silica gel; 60

GF254) and eluated with petroleum ether (PE), ethyl acetate (EtOAc), methanol (MeOH), with

increasing polarity, yielding 45 fractions.

Out of 45 fractions, thirteen fractions encoded (09, (eluted with PE:EtOAc: 130:70), 10

(PE:EtOAc: 120:80), 11(PE:EtOAc: 110:90), 12 (PE:EtOAc: 100:100), 13 (PE:EtOAc:

90:110), 14 (PE:EtOAc: 80:120), 15 (PE:EtOAc: 70:130), 16-17 (PE:EtOAc: 63:140), 20,

(PE:EtOAc: 10:190), 21 (EtOAc: 100%), 24 (EtOAc: MeOH: 180:20), 25 (EtOAc: MeOH:

170:30), 26 (EtOAc: MeOH: 163:40)), were subjected to GC-FID and GC-MS studies for the

recognition of chemical constituents, which were present in the above mentioned fractions.

Isolation of opuntiol (172):

On evaporation at room temperature of VLC fractions 16-22 (P.E:EtOAc (50:150) to

EtOAc:MeOH (180:20)), white needle like crystals was deposited. These crystals were

washed with P.E, CHCl3 and EtOAc, after washing these crystals demonstrated a single spot

on TLC chromatogram (Rf = 0.42, CHCl3:MeOH (9.5:0.5), silica gel 60 GF254). The spectral

studies, EI-MS and 1H NMR revealed its structure as a known compound opuntiol (172).77a,b

Isolation of opuntioside (172a):

Fraction No: 27-33 eluting with EtOAc:MeOH (150:50) to EtOAc:MeOH (190:10), showed

a single spot on TLC (Rf = 0.43, CHCl3:MeOH (8:2), silica gel 60 GF254), the spectral studies

EI-MS, 1H-NMR of this pure fraction revealed its structure as a known compound opuntioside

(172a).77a,b

Page 265: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

258

Opuntia dillenni cladodes,fresh,undried

45kg, MeOH´ 3

Continue on next page....

Extract Marc

Residue

(OM,1071 gm)

Evaporated

871gm

E.Aphase Aq.phase

EtOAc

phase

Aqueous

washing

Aqueous phase

(OM-Aq)

Butanol phase

E.A:H2O

(1:1 )

+ H20Butanol x 5

Aqueous

washingButanol phase

Residue

(OM-But, 18 gm)

VLC, (silica gel,

PE, EtOAc, MeOH

1A-8

PE

100%

to

PE : EtOAc

40:60

+ H20

Evaporated

09

PE : EtOAc

130 :70

10

PE : EtOAc

120 :80

11

PE : EtOAc

110 :90

12

PE : EtOAc

1 :1

13

PE : EtOAc

90 :110

Scheme 1: Vacuum liquid chromatography on butanol phase of O. dillenii cladodes

Page 266: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

259

15

PE : EtOAc

60 :140

16

PE : EtOAc

50 :150

17

PE : EtOAc

40 :160

18

PE : EtOAc

30 :170

19

PE : EtOAc

20 :180

20

PE : EtOAc

10 :190

21-22

EtOAc (100%)

23

EtOAc: MeOH

190: 10

24

EtOAc: MeOH

180: 20

25

EtOAc: MeOH

170: 30

26

EtOAc: MeOH

160: 40

28

EtOAc: MeOH

140 : 60

29

EtOAc: MeOH

130 : 70

30

EtOAc: MeOH

120 : 80

Opuntiol,

needle like crystals

27

EtOAc: MeOH

150: 50

14

PE : EtOAc

70 :130

31

EtOAc : MeOH

110 : 90

32-41

EtOAc : MeOH

1 : 1

to

EtOAc : MeOH

10 : 190

434445

Acetone : H20

1:1

MeOH : Acetone

150 : 50

MeOH : Acetone

1 : 1

42

MeOH

Page 267: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

260

References

Page 268: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

261

1 a) Abidi L. (2012). Ph. D. Thesis. Development of a novel and efficient method for the

regiospecific acylation and alkylation of pyridine and its derivatives; phytochemical

investigation on Opuntia dillenii. b) Safina (2015). M.Sc. Thesis. Chemical studies on Opuntia

dillenii for the search of bioactive agents. c) Jaweria (2015). M.Sc. Thesis. Phytochemical

investigation on Opuntia dillenii for the search of bioactive agents. d) Kumari D. (2007). M.Sc.

Thesis. Studies on and antibacterial and antifungal activity from extracts of Opuntia dillenii,

Illicium verum and Bombax ceiba. e) Ismail R. (2009). M.Sc. Thesis. Phytochemical studies on

the cladodes of Opuntia dillenii. f) Kanwal S. (2010). M.Sc. Thesis. Synthetic studies on

opuntiol, a constituent of Opuntia dillenii.

2 a) http://www.nybg.org/bsci/herb/Cactaceae1.html.b)www.csdl.tamu.edu/Flora/301

Ma.c)http://www.drugs.com/npp/prickly-pear.html.d) http://utopia. knoware.nl/ users/

aart/flora/Cactaceae/Opuntia/opuntia.html.

3 a) Sastri, S. B. N. (1969). The Wealth of India, Council of Scientific and Industrial Research

New Dehli, pp. 100-104. b) Khare, C. P. (2007). Indian Medicinal Plants, Springer Science,

New York, USA, pp. 451-452. c) Stintzing, F. C., Carle, R. (2005). Review. Cactus stems

(Opuntia spp.): A review on their chemistry, technology, and uses. Mol. Nutr. Food Res., 49,

175-194. d) Stintzing, F. C., Scheiber, A., Carle, R. (2001). Phytochemical and nutritional

significance of Cactus Pear. Eur. Food Res. Technol., 212(4), 396-407. e) Lorena, M., Flores, P.,

Tejera, F., Jacinto, D. M., Rodriguez, R., Elena, M., Romero, C. D. (2015). Physicochemical

characterization of cactus pads from Opuntia dillenii and Opuntia ficus-indica. Food Chem., 188,

393-398. f) Chauhan, S. P., Sheth, N. R., Jivani, N. P., Rathod, I. S., Shah, P. I. (2010). Biological

actions of Opuntia species. Sys. Rev. Pharm., 1(2), 146-151. g) Xinping, D., Xiong, N., Tingbao,

H. (2015). Cicer arietinum, Amorphophallus rivieri and Opuntia dillenii health nutritional

powder and its production method. Faming Zhuanli Shenqing, CN 104738632 A 20150701.

4 a) Dominguez, L. (1995). Review use of the fruits and stems of the prickly pear cactus (Opuntia

spp.) in human food. Food Sci. Technol. Int., 1(2, 3), 65-74.

5 a) Marderosian, A. D., Beutler, J. A. (2002). The Review of Natural Products, Facts and

Comparisons, USA, pp. 531-532. b) Pullaiah, T. (2006). Encyclopedia of world medicinal plants,

Regency publications, India, vol. 3, 1438-1439.

6 a) Jun, H. G., Yoon, U. C. Extract composition having good antimicrobial activity extracted

from Opuntia, (Cl. A61K35/78), 14 sep 2002, Appl, 12, 275, 9 March 2001. b) Pamoda B. R.,

Dilip, d. S., E., David E. W., Raymond J. A., (2015). Antimicrobial activities of endophytic fungi

obtained from the arid zone invasive plant Opuntia dillenii and the isolation of equisetin, from

Page 269: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

262

endophytic Fusarium sp. BMC Comp. Alt. Med., 15, 1-7. c) Galati, E. M., Monforte, M. T.,

Tripodo, M. M., Aquino, A d.’, Mondello, M. R. (2001). Antiulcer activity of Opuntia ficus

indica (L.) Mill. (Cactaceae): ultrastructural study. J. Ethnopharmacol., 76, 1-9. d) Ahmed, A.,

Davies, J., Randall, S., Skinner, G. R. B. (1996). Antiviral properties of extract of Opuntia

streptacantha. Antivir. Res., 30(2, 3), 75-85. e) Lixiu, Y. (2015). A traditional chinese medicine

for treating gastric ulcer. Faming Zhuanli Shenqing, CN 105169080 A 20151223. f) Xiaohua,

W. (2015). Chinese medicine preparation for treatment of gastric cancer. Faming Zhuanli

Shenqing, CN 104784401 A 20150722. g) Renyong, Z. (2015). A traditional Chinese medicine

for treating gastric disease and its production method. Faming Zhuanli Shenqing, CN 104547563

A 20150429. h) Dan, W., Yuxin, R. (2015). A pharmaceutical preparation for treating blood

deficiency and yin deficiency type oral ulcer, and its preparation method. Faming Zhuanli

Shenqing, CN 105031585 A 20151111. i) Kehua, D. (2016). Traditional chinese medicine

composition for treating decubital ulcer by combining oral administration and external

application. Faming Zhuanli Shenqing, CN 105434594 A 20163330.

7 Yongzhen, W., Shulin, Q., Lin, X., Xiaomin, Z. (2013). Lotion comprising oligosaccharides for

treating hemorrhoid. Faming Zhuanli Shenqing, CN 103006744 A20130403, (Chem. Abs: 2013,

158, 544954) 4pp.

8 a) Jayaweera, D. M. A. (1980). Medicinal plants (indigenous and exotic) used in ceylon, A

publication of the national science council of Srilanka Colombo, 1-3. b) George, W. (1891).

Dictionary of the economic products of India, cosmo publications, Delhi, India, 491-493. c)

Baquar, S. R. (1989). Medicinal and poisonous plants of Pakistan, print as Karachi, Pakistan,

307-309. d) Houghton, P. J., Osibogun, I. M. (1993). Flowering plants used against snakebite. J.

Ethnopharmacol., 39, 1-29. e) Mhaskar, K. S., Blatter, E., Caius, J. F. (2000). Indian medicinal

plants, sri satguru publications, Delhi, India, Vol. 5, 1633-1638. f) Bohm, H. (2008). Opuntia

dillenii-An interesting and promising Cactaceae taxon. J.PACD, 148-170.

9 a) Xuling, Q., Longxian, G. (2015). Chinese medicinal composition for treating cough and

preparation method. Faming Zhuanli Shenqing, CN 104667247 A 20150633. b) Zailiang, H.

(2016). Sack for treating diabetes. Faming Zhuanli Shenqing, CN 105232954 A 20163113. c)

Haixia, W., Yun, L. (2015). Traditional Chinese medicine preparation for treating neurasthenia

and preparation method thereof. Faming Zhuanli Shenqing, CN 105194241 A 20151230. d)

Hua, P., Lanzi, L., Xiongzhi, Z. (2013). Isolation and identification of sunscreen activities from

cactus. Xiangliao Xiangjing Huazhuangpin, 2, 33-35. e) No inventor data available. (2014). Eye

applying mask. Faming Zhuanli Shenqing, CN 103655373; A 20140326.

Page 270: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

263

10 a) Yu-Chun, W., Zhan-peng, Q., Zhen-Zhong, L., Tao, L., Hong-xia, C., Bao-qing, W. (2015).

Therapeutic effects and mechanisms of Opuntia dillenii Haw. on atherosclerosis of rats. Acta

Pharm. Sin, 50(4), 453-458. b) Qiong, W., Hui-Ming, H., Zhan-lin, L. (2013). Isolation and

identification of the chemical constituents of Opuntia dillenii Haw. Zhongguo Yaowu Huaxue

Zazhi, 23(2), 120-126.

11 a)Buckingham, J. (1994). Dictionary of Natural Products, Chapman and Mall, London, 3, 2573-

5506, 4, 4528. b) Qiu, Y., Chen, Y., Pei, Y., Matsuda, H., Yoshikawa, M. (2002). Constituents

with radical scavenging effect from Opuntia dillenii, Structures of new α-pyrones and flavonol

glycoside. Chem. Pharm. Bull., 50(11), 1507-1510. c) Qui, Y., Dou, D., Pei, Y., Yoshikawa, M.,

Matsuda, H., Chen, Y. (2003). Isolation and identification of a new pyrone from Opuntia dillenii.

Yaoxue Xuebao, 38(7), 523-525. d) Wang, K-S., Ding, L-N., Liu, J-H. (2009). Determination of

chemical constituents of the volatile oil from Opuntia dillenii (Ker-Gawl) Haw. Shengwu Jishu,

19(5), 54-55.

12 Feng, X., Yuanmin, W., Hongmei, W., Xiangpei, W. (2015). Determination of the volatiles in

Opuntia dillenii by headspace solid phase micro extraction and gas chromatography-mass

spectrometry. Instrum. Sci. Technol., 43(4), 446-452.

13 a) Wang, Z., Lin, L., Bao, S. Q. (2001). Component analysis of cactus in Hainan province and

its exploration perspective. Tianran Chanwu Yanjiu Yu Kaifa, 13(1), 44-48. b) Yin, X. (2007).

Medicinal compositions containing amino acids and vitamins and Chinese medicines for treating

hyperlipidemia. (C1.A61K36/884), 18 Jul 2007, Appl. 10, 102, 354, 28 Dec 2006; 9pp. c) Qiu,

Y-K., Chen, Y-J. Pei, Y-P. (2003). New constituents from the fresh stems of Opuntia dillenii. J.

Chin. Pharm. Sci., 12(1), 1-5. d) Qiu, Y., Dou, D., Pei, Y., Yoshikawa, M., Matsuda, H., Chen,

Y. (2005). Chemical constituents of Opuntia dillenii. Zhongguo Yaoke Daxue Xuebao, 36(3),

213-215. e) Qiu, Y., Dou, D., Yoshikawa, M., Matsuda, H., Liu, K. (2005). Chemical

constituents in the stem of Opuntia dillenii. Zhongcaoyao, 36(10), 1445-1447. f) Qiu, Y., Dou,

D., Pei, Y., Yoshikawa, M., Matsuda, H., Chen, Y. (2005). Study on chemical constituents from

Opuntia dillenii. Zhongguo Zhongyao Zazhi, 30(23), 1824-1826. g) Qiu, Y., Dou, D., Chen, Y.,

Yoshikawa, M., Matsuda, H. (2005). Studies on the chemical constituents from stem of Opuntia

dillenii. Shenyang Yaoke Daxue Xuebao, 22(4), 263-266. h) Sohail, E., Khaleeq, A., Robina, T.,

Muhammad, A. (2014). A novel link between angiogenesis and natural products: Anti-

angiogenic effects of Opuntia dillenii. Cent. Eur. J. Biol., 9(3), 298-308.

14 a)Srivastava, B. K., Pande, C. S. (1974). Arabinogalactan from the pods of Opuntia dillenii.

Planta Med., 25(1), 92-7. b) Kim, I. H., Kim, H. M., Jung, J. W., Kim, M. H. (1995). Process for

Page 271: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

264

purifying the water soluble carbohydrate from Opuntia. (Cl. C08B37/00), 1 Feb 1999, Appl

9,555, 055, 22 Dec. c) Nair, A. G. R., Subramanian, S. S. (1961). Pigments of the flowers of

Opuntia dillenii. J. Sci. Ind. Res., 20B, 507-8. d) Tao, M-H., Zeng, F-H., Zhang, W-M., Liang,

Y-L., Lu, X-Y. (2006). Isolation and purification of polysaccharides from Opuntia dillenii and

their properties. Zhongcao Yao, 37(11), 1641-1645. e) Zhao, L-Y., Huang, W., Yuan, Q-X.,

Cheng, J., Huang, Z-C., Ouyang, L.-J., Zeng, F-H. (2012). Hypolipidaemic effects and

mechanisms of the main component of Opuntia dillenii Haw. polysaccharides in high-fat

emulsion-induced hyperlipidaemic rats. Food Chem., 134(2), 964-971. f) Fuhua, Z., Qingxia, Y.,

Heng, L., Limei, L., Cailing, H., Wanling, L. (2013). Manufacture of poly (lactic-co-glycolic

acid) (PLGA) encapsulated wild Opuntia dillenii Polysaccharide microencapsulation by double

emulsion solvent evaporation. Faming Zhuanli Shenqing, CN 103040790 A2013041, 7pp. g)

Yan, H. (2016). Health-care complementary traditional Chinese medicine. Faming Zhuanli

Shenqing CN 105311429 A 20163210. h) Yan, H. (2016). Health-care and treatment traditional

Chinese medicine. Faming Zhuanli Shenqing CN 105311567 A 20163210.

15 a)Yong, J-H., Peng, G-P., Rao, L-Q. (2009). Isolation and purification of polysaccharides from

Opuntia dillenii and their properties. Hunan Huanjing, Shengwu Shengwu, Zhiye Jishu, Xueyuan

Xuebao, 15(3), 20-23. b) Qing-xia, Y., Miao, Z., Heng, L., Li-mei, L., Fu-hua, Z. (2014).

Microencapsulation of Opuntia dillenii Haw. Polysaccharides. Shipin Gongye Keji, 35(7), 202-

206. c) Heng, L., Li-mei, L., Chun-mei, H., Miao, Z., Xian-jiao, Z., Fu-hua, Z. (2015).

Optimization of extraction conditions of Opuntia dillenii Haw. polysaccharides by response

surface analysis and their antioxidant activity study. Shipin Gongye Keji, 36(4), 210-214. d)

Fuhua, Z., Qingxia, Y., Longyan, Z., Heng, L., Limei, L., Xiaoya, Z. (2013). Method for

increasing the extraction yield of polysaccharides from wild Opuntia dillenii. Faming Zhuanli

Shenqing, CN 1029 42637 A2013 0227, (Chem. Abs: 2013, 158, 333991) 6pp. e) Li, W., Wu,

D., Wei, B., Wang, S., Sun, H. X., Li, X. L., Zhang, F., Zhang, C. L., Xin, Y. (2014). Anti-tumor

effect of cactus polysaccharides on lung squamous carcinoma cells (SK-MES-1). Afr. J. Trad.

Complementary Altern. Med. 11(5), 99-104.

16 Chen, Z., Zhao, S., Ben, K., Cao, X. (2006). Opuntia dillenii polysaccharide sulfate for

preventing or treating HIV and herpes simplex viruses (Cl. C08B37/00), 3 Oct 2007, Appl. 10,

048, 670, 11 Sept.

17 Liu, W., Fu, Y-J., Zu, Y-G., Tong, M.-H., Wu, N., Liu, X-L., Zhang, S. (2009). Supercritical

carbon dioxide extraction of seed oil from Opuntia dillenii Haw. and its antioxidant activity.

Food Chem., 114(1), 334-339.

Page 272: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

265

18 a)Qiu, Y., Dou, D., Xu, B., Pei, Y. (2006). Studies on the constituents from the stems of Opuntia

dillenii. Shenyang Yaoke Daxue Xueboo, 23(5), 274-276. b) Jiang, J., Li, Y., Chen, Z., Lou, F.,

Min, Z. (2006). Two novels C29-5-sterols from stems of Opuntia dillenii. Steroids, 71(13-14),

1073-1085.

19 a)Xiao-hua, D., Zhen, Y., Muhetaer, K., Xiao-wei, B., Xiu-zhen, L. (2014). High performance

liquid chromatography for the determination of rutin. Zhongyiyao Xuebao, 42(1), 22-24. b) Nair,

Subramanian, S. S. (1964). Isolation of isoquercetrin from the flowers of Opuntia dillenii. Curr.

Sci. (India), 33(7), 211-12. c) Qiu, Y., Yoshikawa, M., Li, Y., Dou, D., Pei, Y., Chen, Y. (2000).

Study on chemical of stems of Opuntia dillenii. Shenyang Yaoke Daxue Xuebao, 17(4), 267-268.

d) Gupta, R. S., Sharma, R., Sharma, A., Chaudhudery, R., Bhatnager, A. K., Sharma, M. C.,

Joshi, Y. C., Dobhal, M. P. (2002). Antispermatogenic effect and chemical investigation of

Opuntia dilleni. Pharm. Biol., 40(6), 411-415. e) Ahmed, M. S., Seida, A. A., Tanbouly, N. D.E.,

Islam, W. T., Sleem, A. A., Senousy, S. E. (2004). Quantification of flavonoids in different

organs of Opuntia dillenii (Ker-Gawl) Haw. and investigation of the spines. Bull. Fac. Pharm.,

42(2), 247-258. f) Chen, Y., Qiu, Y., Fu, W., Pei, Y., Dou, D., Xu, S. (2003). New medical

application of total flavone of Opuntia and its preparation. (Cl. A61K31/7048), 17 Sep 2003,

Appl. 2003, 111, 390, 9 Apr, 11 pp. g) Ahmed, M. S., Tanbouly, N. D. E., Islam, W. T., Saleem,

A. A., Senousy, A.S. E. (2005). Anti-inflammatory flavonoids from Opuntia dillenii Haw

flowers growing in Egypt. Phytother. Res., 19(9), 807-809. h) Chang, S-F., Hsieh, C-L., Yen, G-

C. (2008). The protective effect of Opuntia dillenii Haw fruit against low density lipoprotein

peroxidation and its active compounds. Food Chem., 106(2), 569-575. i) Chen, J., Wang, L.,

Wei, D., Ding, N. Z. (2009). Determination of rutin in Opuntia dillenii Haw. by HPLC, Shipin

Gongye Keji, 30(8), 309-310. j) Cui, J., Qian, X., Xu, X., Wang, X. (2008). Method for preparing

chiral 2-hydroxy acenaphthenone like compounds. CN. 101492331. A20090729, Appl. 2008.

1003015. k) Wei, G., Haung, Z., He, Y. (2010). Study on the separation and purification of total

flavone in cactus by macroporous adsorption resins. Lizi Jiaohuan Yu Xifu, 26(1), 47-52. l)

Abbasi, M. A., Shahzadi, T., Akkurt, M. (2010). 6-Hydroxymethyl-4-methoxy-2H-pyran-2-one

(opuntiol). Acta crystallographica, section E: structure reports online, 66(1), 01-99. m) Loro, J.

F., Rio, L., Santana, L. P. (1999). Preliminary studies of analgesic and antiinflammatory

properties of Opuntia dillenii aqueous extract. J. Ethanopharm., 67, 213-218. n) Dan-ya M.,

Hong-kun, Z., Lan, Z., Hong-tao, D., Hui-yu, J., Jing, Z. (2013). Extraction process of flavonoids

from cactus pear fruit. Shipin Gongye Keji, 34(10), 263-268.

20 Qiu, Y. K., Zhao, Y. Y., Dou, D. Q., Xu, B. X., Liu, K. (2007). Two new α-pyrones and other

components from the cladodes of Opuntia dillenii. Arch. Pharm. Res., 30(6), 665-669.

Page 273: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

266

21 a) Zhang, F., Liu, M. (1992). Natural pigments from fruits of Opuntia dillenii. Tianran Chanwu

Yanjiu, Yu Kaifa, 4(2), 15-22. b) Lin, H. P., Liou, C. C., Tsai, S. C. (2001). Study on chemical

structure of Opuntia dillenii fruit pigment. Taiwan Nongye Huaxue Yu Shipin Kexue, 39(1), 51-

57. c) Stuppner, H., Egger, R. (1996). Application of capillary zone electrophoresis to the

analysis of betalains from beta vulgaris. J. Chromatogr. A, 735, 409-413.

22 Tayyaba, S., Muhammad, A. A., Aziz-Ur-Rehman, Tauheeda, R., Muhammad, A., Iftikhar, A.,

Mohammad, K. K. (2013). Synthesis of some Q-substituted derivatives of natural 6-

hydroxymethyl-4- methoxy-2H-pyran-2-one (opuntiol). J. Chem. Soc. Pak., 35(2), 397-404.

23 Bi, X., Sheng, G., Liu, X., Li, C., Fu, J. (2005). Molecular and carbon and hydrogen isotopic

composition of n-alkenes in plant leaf waxes. Org. Geochem., 36(10), 1405-1417.

24 Liu, L., Ding, L., Qi, M., Han, X-L., Zhang, H-Q. (2007). Determination of trace elements in

new food sources by flame atomic absorption spectrometry. Guangpurcue Yu Guangpu Fenxi,

27(7), 1436-1439.

25 Hajarnavis, L. S. (1964). Free organic acids in some xerophytes, Curr. Sci. (India) 33(19), 584-

5.

26 Han, B., Chen, C., Zhao, S. (2008). Optimization of the extraction conditions of total saponins

from Opuntia dillenii. Shizhen Guoyi Guoyao, 19(3), 583-584.

27 Jinsheng, C. (2015). β-Sitosterol based drug slow release agent and its preparation method.

Faming Zhuanli Shenqing, CN 104474553 A 20150401.

28 Medina, E. M. D., Rodriguez, E. M. R., Romero, C. D. (2007). Chemical characterization of

Opuntia dillenii and Opuntia ficus indica fruits. Food Chem. 103(1), 38-45.

29 a) Lin, L. (2001). A health promoting composition. CN. 1386521. A. 20021225. Appl. 118096.

b) Xinzhuang, L. (2013). A food stomach nourishing tea granules for protecting gastric mucosa.

Faming Zhuanli Shenqing, CN 103461636; A20131225, 5pp. c) Mei, H. (2014). Chinese

medicine composition for treating stomach disease. Faming Zhuanli Shenqing, CN 103933281

A 2014 0723, 2014. d) Renyong, Z. (2015). A traditional Chinese medicine for treating gastric

disease and its production method. Faming Zhuanli Shenqing, CN 104547563 A 20150429. e)

Luan, B. (2008). Production of feed additive containing traditional Chinese medicine for

preventing diarrhea. CN. 101385505. A. 20090318. Appl. 10155197, 2008. (Chem. Abs. 2009,

150, 351049). f) Zailiang, H. (2015). Chinese medicinal capsule for treating various stomach

diseases. Faming Zhuanli Shenqing, CN 105193937 A 20151230.

30 a)Xiuying, C. (2014). A traditional Chinese medicinal preparation for treating psora and its

production method. Faming Zhuanli Shenqing, CN 103495035, A 2014 0108. b) Guoxin, W.,

(2015). Chinese medicine composition for treating diabetes. Faming Zhuanli Shenqing, CN

Page 274: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

267

105168890 A 20151223. c) Guoxin, W. (2015). Chinese medicine composition for treating

diabetes. Faming Zhuanli Shenqing, CN 105169078 A 20151223.

31 a) Lei, Z., Jian, G. (2014). A kind of Chinese medicine composition for auxillary delaying

diabetic nephropathy and preparation method thereof. Faming Zhuanli Shenqing, CN 103985249

A 20140813. b) Jian, W., Yifang, K. (2014). A traditional Chinese medicine preparation for

treating skin psoriasis and its manufacture method. Faming Zhuanli Shenqing, CN 104128574;

A 20141105. c) Jian, W., Yifang, K. (2014). A drop of treating skin ringworm and its

manufacture method. Faming Zhuanli Shenqing, CN 104128565; A 20141105. d) Qiang, Z.

(2014). Chinese medicinal composition for treating acne by oral administration. Faming Zhuanli

Shenqing, CN 103610901 A 20140305. e) Yuxia, Z., Lili, G. (2014). A kind of Chinese medicine

ointment for the treatment of radioactive skin injury and preparation method. Faming Zhuanli

Shenqing, CN 103893348 A 20140702. f) Dong, L. (2010). Chinese medicine cosmetic capable

of inhibiting skin fibroplasias. CN. 101716131. A. 20100632. Appl. 10029006, 2010. g)

Fengcai, N., Jinxian, D., Chunlan, Z. (2015). Chinese medicine composition for caring skin

diseases and preparation method thereof. Faming Zhuanli Shenqing, CN 104524268 A

20150422.

32 a)Song, Z., (2015). An efficient drug combination for treatment of heart disease. Faming Zhuanli

Shenqing, CN 105012891 A 20151104. b) Lihua, Y. (2015). Chinese medicine for treating heart

disease. Faming Zhuanli Shenqing, CN 104998222 A 20151028. c) Xusheng, J., Lei, G. (2016).

Failure medicine for treating cardiac function. Faming Zhuanli Shenqing, CN 105497650 A

20163420. d) Yizhuang, D., (2016). A kind of pure traditional Chinese medicinal preparation for

treating Varicose veins. Faming Zhuanli Shenqing, CN 105535497 A 20163504. e) Yibin, R.,

Jian, L., Shilong, H., Shunping, X., Zhenghong, H., Houwei, J. (2015). An electronic tobacco

smoke liquid with hypoglycemic function. Faming Zhuanli Shenqing, CN 104544555 A

20150429. f) Ying, Z., Shao-bin, Y. (2015). Hypoglycemic activity of polysaccharides from

Cordyceps sinensis and other polysaccharides combination. Shipin Gongye Keji, 36(11), 356-

363.

33 a)Jianmei, W. (2014). A Chinese medicinal preparation for treating spleen and the stomach loss

management type xerophthalmia and its nursing method. Faming Zhuanli Shenqing, CN

104096301; A 20141015. b) Youli, W. (2014). A Chinese medicinal composition for treating

spleen stomach incoordination type child anorexia. Faming Zhuanli Shenqing, CN 104055938;

A 20140924, 2014. c) Shujuan, Z., Lihua, Z. (2016). Preparation method of traditional chinese

medicine for treating the spleen-qi insufficiency type allergic rhinitis. Faming Zhuanli Shenqing,

CN 105381254 A 20163309. d) Mei, H. (2014). Chinese medicine composition for treating

Page 275: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

268

stomach disease. Faming Zhuanli Shenqing, CN 103933281; A 20140723. e) Jiali, W. (2014).

Chinese medicine composition for the treatment of spleen deficiency pantothenic type infantile

hydrocephalus. Faming Zhuanli Shenqing, CN 103751612 A 20140430. f) Jia, Jianchen. (2014).

A traditional Chinese medicinal preparation for treating gastric ulcer. Faming Zhuanli Shenqing,

CN 103990073; A 20140820. g) Xiuqin, W. (2014). A kind of Chinese medicine composition

for the treatment of duodenal ulcer. Faming Zhuanli Shenqing, CN 103751347 A 20140430. h)

Dianliang, S. (2016). Traditional chinese medicine for treating iron deficiency anemia due to

weakness of the spleen and the stomach and preparation method. Faming Zhuanli Shenqing, CN

105395991 A 20163316. i) Xudong, Z. (2016). Spleen-strengthening and stomach-nourishing

milk tea powder. Faming Zhuanli Shenqing, CN 105475553 A 20163413.

34 a)Huapeng, Z., Jujiao, Z. (2015). Chinese medicine liquid for treating anesthetic adverse reaction

and preparation method. Faming Zhuanli Shenqing, CN 104547447 A 20150429. b) Honglei, W.

(2015). Traditional chinese medicine for treating acute cystitis. Faming Zhuanli Shenqing, CN

104721408 A 20150624. c) Xuling, Q., Longxian, G. (2015). Chinese medicinal composition for

treating cough and preparation method. Faming Zhuanli Shenqing, CN 104667247 A 20150633.

d) Honglei, W. (2015). Chinese medicine composition for treating chronic cystitis and its

formulation. Faming Zhuanli Shenqing, CN 104800431 A 20150729.

35 a)Huiyun, Z. (2015). Chinese medicinal decoction for treating upper respiratory infection.

Faming Zhuanli Shenqing, CN 104547464 A 20150429. b) Zhuqing, H. (2016). Opuntia dillenii

freshly-squeezed spray-dried particle decoction and preparation process thereof. From Faming

Zhuanli Shenqing CN 105232637 A 20163113. c) Zhuqing, H. (2016). Opuntia dillenii roots and

stems freshly squeezed spray-dried powder decoction piece and its preparation process. From

Faming Zhuanli Shenqing CN 105213463 A 20163106.

36 a)Shulei, Z., Jing, W. (2015). A novel patch for treating acute enteritis and its production method.

CN 104547251; A 20150429. b) Mingru, W., (2015). A disinfectant for clinical laboratory and

preparation method. Faming Zhuanli Shenqing, CN 105123816 A 20151209. c) Jianqi, P.,

(2015). A traditional chinese medicine for treatment of endometritis. Faming Zhuanli Shenqing,

CN 105106812 A 20151202. d) Hongbin, L., (2015). A Chinese medicine preparation for

treating helosis and production method thereof. Faming Zhuanli Shenqing, CN 105106272 A

20151202.

37 a)Yuehua, L., (2015). Traditional chinese medicine composition for prevention and treatment of

asthma and preparation method thereof. Faming Zhuanli Shenqing, CN 105079566 A 20151125.

b) Changhong, L., (2015). Chinese medicinal composition for treating wind-warm pyretic

pulmonary disease. Faming Zhuanli Shenqing, CN 105079580 A 20151125. c) Dongli, W.,

Page 276: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

269

(2015). Chinese medicinal composition for treating atrophic rhinitis. Faming Zhuanli Shenqing,

CN 105079579 A 20151125. e) Lu, W., (2015). Traditional chinese medicine for treating

infantile anorexia. Faming Zhuanli Shenqing, CN 105012834 A 20151104. d) Yubo, W. (2015).

A beautifying, anti-aging health fruit wine. From Faming Zhuanli Shenqing, CN 104885875 A

20150902. e) Suescum, O. G. (2005). Wine from Opuntia dillenii. Bistua 3(1), 99-106. (Chem.

Abs. 2008, 148, 306925g). f) Ying, T. (2015). Traditional Chinese veterinary medicine for

preventing and treating fowl plague. Faming Zhuanli Shenqing, CN 104851472 A 20150715. g)

Huiyun, Z. (2015). Traditional Chinese medicine composition for preventing and treating urinary

tract infection and its production method. Faming Zhuanli Shenqing, CN 104645095 A

20150527. h) Lijing, S., Rongwei, F., Yan, W. (2015). Chinese medicine composition for treating

facial paralysis. Faming Zhuanli Shenqing, CN 104547835 A 20150429.

38 Chunjuan, L., Airong, S. (2015). Traditional chinese medicine preparation for treatment of breast

hyperplasia and preparation method thereof. Faming Zhuanli Shenqing, CN 104547450 A

20150429.

39 a)Canfeng, G., (2015). A skin-whitening emulsion. Faming Zhuanli Shenqing, CN 105055299

A 20151118. b) Kun, X., Yushan, Y. (2015). A kind of skin care product with deep moisturizing

effect containing Radix et Cauli Opuntia dillenii essence. Faming Zhuanli Shenqing, CN

104586695 A 20150506. c) Chunliang, B., Qing, Z. (2015). A kind of moisturizing and

nourishing wash-free mask and the production method thereof. Faming Zhuanli Shenqing, CN

105106364 A 20151202. d) Qi, Z. (2014). A sunscreen foundation cream. Faming Zhuanli

Shenqing, CN 103655402 A 20140326. e) Shengzhao, G. (2014). A kind of Chinese medicine

composition extract with effect of anti-hair loss and its application in cosmetic. Faming Zhuanli

Shenqing, CN 103768585; A 201407507. f) Zhongchun, H., Liangde, D., Ruihong, D., Jinbo,

C., Lietong, L., Shaojin, C., Ruibin, D., Yiying, X., Suying, C., Baijia, L. (2014). Cleansing

cosmetic. Faming Zhuanli Shenqing, CN 104027257; A 20140910.

40 a)Liu, W., Zhang, G., Liu, Z. (2002). A Chinese medicinal composition containing Radix et.

caulis Opuntia dillenii and herbataraxaci for the treatment of acute and chronic mastitis,

cyclomastopathy, pelvic inflammatory disease, and adnexitis. CN. 1389247. A. 20030108. Appl.

125415. b) Ping, T., Enchang, Z. (2015). Chinese medicine tablet for treating pelvic

inflammation and its preparation method. Faming Zhuanli Shenqing, CN 104491747 A

20150408. c) Jianqi, P. (2016). Traditional chinese medicine for treating chronic pelvic

inflammatory disease. From Faming Zhuanli Shenqing CN 105311485 A 20163210.

41 a) Kumaar, A.P. S., Vanitha, J., Venkateshwaran, K., Reddy, K. S., Karthikeyan, D. (2013).

Antibacterial and antifungal activity of Opuntia dillenii (Cactaceae) fruit extract. J. Environ.

Page 277: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

270

Nanotechnol., 2(1), 16-19. b) Limei, L., Fuhua, Z., Heng, L., Yuejun, O. (2013). Method for

testing antibacterial effects of wild cactus polysaccharide. Faming Zhuanli Shenqing, CN

103018409 A20130403.

42 a)Sharma, C., Rani, S., Kumar, B., Kumar, A., Raj, V. (2015). Plant Opuntia dillenii: A Review

on it’s traditional uses, phytochemical and pharmacological properties. Ec Pharm. Sci., 1(1), 29-

43. b) Lou, G., Chen, J., Chen, X. (2003). Antiviral preparation containing radix et caulis Opuntia

dillenii and alumen, and its preparation method. CN. 1449782. A. 20031022. Appl. 108034.

43 Ling, L. (2013). Chinese medicinal composition for the treatment of tinea favosa and

manufacture method thereof. Faming Zhuanli Shenqing, CN 103372136 A20131030.

44 a) G Teixeira; R Santana, T Batista, M S Pais, A. (2001). Clemente. Isolation of protease-rich

Opuntia extracts for use in medicine and food industry, (Cl. C12 N11/18), 31, Jan 2001, Appl.

102, 330, 7, Jul 1999; 43 pp. (port). b) Shufang, W. (2015). Chinese medicine spray for

promoting wound healing after surgery and preparation method thereof. Faming Zhuanli

Shenqing, CN 104587101 A 20150506. c) Qi, C. (2015). A traditional Chinese medicinal spray

for promoting wound healing after caesarean operation and preparation method thereof. Faming

Zhuanli Shenqing, CN 104547584 A 20150429. d) W Qiu, S Qian, R Zhou, (2004). Studies on

characteristics and inhibition of polyphenol oxidase (PPO) in Opuntia dillenii. Shipin kexua

25(9), 64-66. e) Xiaowu, Y. (2014). A bulbul lilii and lentinus edodes flavor flour and preparation

method thereof. Faming Zhuanli Shenqing, CN 104222856; A 20141224. f) Wang, H., He, W.

(2005). Manufacture of steamed bread premix flour with health care functions. (C1. A21D2/36),

20 Jul. 2005, Appl. 10,002,385, 13 Jan 2004; 6pp. (Chem. Abs. 2006, 144, 253195c). g) Jinbo,

W., (2014). A Chinese medicinal formula for treating interactable hematuria and preparation

method thereof. Faming Zhuanli Shenqing, CN 104248721 A20141231. h) Shufang, W. (2015).

Chinese medicine spray for promoting wound healing after surgery and preparation method

thereof. Faming Zhuanli Shenqing, CN 104587101 A 20150506. i) Qi, C., (2015). A traditional

chinese medicinal spray for promoting wound healing after caesarean operation and preparation

method thereof. Faming Zhuanli Shenqing, CN 104547584 A 20150429.

45 a)Yanfei, Z. (2013). Cosmetic facial mask containing Opuntia dillenii and its preparation method

thereof. Faming Zhuanli Shenqing, CN 103462856 A20131225, 6pp. b) Wang, J., Wang, C.

(2006). Skin caring facial mask containing Opuntia dillenii, micropowder and juice. (C1.

A61K7/48), 15 Jun. 2005, Appl. 10,043,794, 12 Aug. 2004; 4pp. c) Shengzhao, G. (2014). A

kind of compound Chinese medicine extract with dandruff removing effect and application

thereof. Faming Zhuanli Shenqing, CN 103751073; A 20140430.

Page 278: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

271

46 Qingxin, S., Min, W., Liping, C., Hong, Y. (2013). A sesame oil and Opuntia dillenii juice-

containing cataplasma for treating skin scar and manufacture method thereof. Faming Zhuanli

Shenqing, CN 1034 05488 A2013 1127, (Chem. Abs: 2013, 163, 13343) 5pp.

47 a)Chunyan, Z., Yuguang, Z. (2013). Method of preparing bacterial cellulose facial mask with

radiation-resistant effect. Faming Zhuanli Shenqing, CN 103340819 A2013 1009, (Chem. Abs:

2013, 159, 614666) 7pp. b) Qingxian, K. (2014). Cosmetic face cleaning lotion containing

marine bioactive substance and Chinese medicines. Faming Zhuanli Shenqing, CN 104046381

A 2014 0917. c) Qingxian, K. (2014). Cosmetic free cleansing lotion containing marine bioactive

substance and Chinese medicine. Faming Zhuanli Shenqing, CN 104027291; A 20140910, 2014.

d) Zhongchun, H., Liangde, D., Ruihong, D., Jinbo, C., Lietong, L., Shaojin, C., Ruibin, D.,

Yiying, X., Suying, C., Baijia, L. (2014). Cleansing cosmetic. Faming Zhuanli Shenqing, CN

1040 27257; A 2014 0910. e) Baning, L., (2016). Scar-removing whitening facewash mud and

preparation method. Faming Zhuanli Shenqing CN 105596255 A 20163525. f) Peiyi, L., Jiaxin,

W. (2015). Application of gentle plant extract composition in cosmetic and preparation method

thereof. Faming Zhuanli Shenqing, CN 104825373 A 20150812.g) Xiaoxia, L., Yan, P., Qiaojia,

F. (2013). Chinese medicinal gel prepared from Aloe vera, Opuntia dillenii and Prunus persica

and preparation method thereof. Faming Zhuanli Shenqing, CN 103463333 A20131225, (Chem.

Abs: 2013, 163, 166288) 9pp. h) Liao, C. (2002). A health food containing radix at caulis

Opuntia dillenii and Ganoderma. CN. 1466891. A. 20040114. Appl. 140417, 2002. i) Song, Q.

(2006). Chinese medicine preparation and it medical ointment for treating cancer of lung. (Cl.

A61K36/70), 27 Dec. 2006, appl. 10, 013, 793, 19 May, 4 pp. j) Li, W., Wu, D., Wei, B., Wang,

S., Sun, H. X., Li, X. L., Zhang, F., Zhang, C. L., Xin, Y. (2014). Anti-tumor effect of cactus

polysaccharides on lung squamous carcinoma cells (SK-MES-1). Afr. J. Trad. Complement.

Alternat. Med., 11(5), 99-104.

48 a)Xiaoli, Z. (2015). A traditional Chinese medicine for treating essential thrombocythemia and

its production method. Faming Zhuanli Shenqing, CN 104491248 A 20150408. b) Fumei, L.

(2015). A traditional Chinese medicine lotion for treating bartholintis and its production method.

Faming Zhuanli Shenqing, CN 104491367 A 20150408. c) Lian, C., Chen, Z. (2007). Research

progress in antiaging effects of Opuntia dillenii. Bengbu Yixueyuan Xuebao, 32(3), 385-379.

(Chem. Abst. 2008, 149, 528596k). d) Junhua, J. (2006). Chinese medicine solution as

antiobesity agents and for treating rheumation, disease, arthritis, gout, and cervical spondylysis.

(CI. A61K36/8988), 24 Jan. 2007, Appl. 10,098,968, 20 Jul. 3pp. (Chem. Abstr. 2007, 146,

258798c). e) Xiaodong, Y., Jingyi, Z. (2016). A kind of medical ointment plaster for treating

rheumatoid arthritis. Faming Zhuanli Shenqing, CN 105435110 A 20163330.

Page 279: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

272

49 a)Gao, S., Ji, Y., Zou, X., Ji, C., Zhang, Y., (2007). Chinese medicinal capsules containing

extracts from Opuntia and Aloe vera for treating cancer (Cl. A61K36/896), 6 Feb. 2008, Appl.

10,072, 159, 30 Apr. 2007, 13 pp. (Chem. Abstr. 2008, 148, 269376 f). b) Zhao, F., Qiu, Y., Dou,

D., Jiang, Y., Liu, K. (2008). Effects of flavonoids from Opuntia dillenii on the NO relaxation

in activated macrophage. Tianram Chanwu Yanjiu Yu Kaifa, 20(6), 956-959. (Chem. Abst. 2009,

151, 163244h). c) Xu, D., Xu, P., Xu, Y. (2008). Pharmaceutical ointment containing Chinese

medicines for the treatment of acute periodeontitis (C1.A61k36/896), 28 May 2008, Appl.

10,301,034, 11 Dec 2007; 4pp. (Chem. Abstr. 2008, 149, 38762h). d) Yang, W., (2008). Oral-

disinfection hygiene product containing propylene glycol and calcite and extracts from Opuntia.

(C1.A61k8/73), 19 Nov. 2008, Appl. 10, 133, 100, 8 Jul. 2008; 10pp. (Chem. Abst. 2009, 150,

10515b).

50 a)Sandra, M-L., Nelson, H., Natalia, M., Francisco, J. H., Jesus, C-B., M. (2016). Effect of

technological practices on individual betalains and antioxidant activity of Columbian betalain-

rich raw materials. Int. J. Food Sci. Technol., 51(4), 1041-1047. b) Xiao-ya, Z., Qing-xia, Y.,

Cai-ling, H., Wan-ling, L., Fu-hua, Z. (2014). Optimization of extraction technology of Opuntia

dillenii Haw. Polysaccharides and evaluation of its antioxidant activity. Shipin Gongye

(Shanghai, China), 35(4), 1-5. c) Heng, L., Li-mei, L., Chun-mei, H., Miao, Z., Xian-jiao, Z.,

Fu-hua, Z. (2015). Optimization of extraction condition of Opuntia dillenii Haw.

Polysaccharides by response surface analysis and their antioxidant activity study. Shipin Gongye

Keji, 36(4), 210-214.

51 a)Luo, W. (2008). Method for preparing high-performance compound dietary fiber based on

surface modification. (C1.A23L1/29), 10 Dec. 2008, Appl. 10,073,688, 18 Jul. 200 7pp. (Chem.

Abst. 2009, 150, 54819h). b) Shen, Q., Hu, J., Zhang, L. (2008). Hemostatic spray or film

prepared from Chinese herbal medicines. (C1.A61L15/28), 30 July 2008, Appl. 10, 033, 787,

and 22Feb 2008; 6pp. (Chem. Abs. 2008, 149, 274898c). c) Han, G. (2008). Health care oral

solution specific for hepatitis B and preparation method thereof. (C1.A61k36/45), 4 Mar. 2009,

Appl. 10,051,266, 9 Oct. 2008; 5pp. (Chem. Abs. 2009, 150, 322759c). d) Luan, B. (2009).

Production of feed additive containing traditional Chinese medicine for preventing diarrhea.

(C1.A23K1/16), 18 March 2009, Appl. 10,155,197,24 Oct. 2008; 15pp. (Chem. Abs. 2009, 150,

351049b).

52 a) Yongsheng, W., Zongjia, C., Heng, L., Bo, W. (2015). Feed additive. Faming Zhuanli

Shenqing, CN 104543409 A 20150429. b) Zeng, F., Tao, M., Yang, X., Lan, Q., Huang, W.,

Zhang, S. (2009). Method for manufacturing polysaccharide extract of Opuntia dillenii for

effectively reducing serum cholesterol. (C1.A61k36/33), 8 Jul. 2009, Appl. 10,036,736,19 Jan.

Page 280: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

273

2009; 20 pp. (Chem. Abs. 2009, 151, 229142g). c) Zou, M. (2008). Chinese medical composition

for lowering blood sugar and its formulation. (C1.A61k36/61), 29 Jul. 2009, Appl. 10,056,701,

23 Jan. 2008; 8pp. (Chem. Abs. 2009, 151, 272885p). d) Yang, X., Huang, W., Zeng, F., Rao,

L. (2009). A preliminary study on antioxidative effect of polysaccharides from Opuntia dillenii

Haw. In hyperlipidemia. Shizhen Guoyi Guoyao, 20(10), 2440-2442.

53 a)Kavitha, V., Surya, S. (2009). Phytochemical screening and antimicrobial activity of Opuntia

dillenii (Ker-Gawl) against urinary tract infection causing bacteria. Pharmacol., 2, 524-530. b)

Yu, N., Zeng, F., Rao, L. (2009). Effect of polysaccharide from Opuntia dillenii Haw. On acute

liver injury in mice. Zhongguo Shenghua Yaow Zazhi, 2009, 30(4), 255-258. (Chem. Abs. 2009,

152, 517439). c) Qin, Y., Huaguo, C., Xin, Z., Junzeng, Z. (2013). Optimum extraction of

polysaccharides from Opuntia dillenii and evaluation of its antioxidant activities. Carbohydr.

polymer., 97(2), 736-742. d) Qing-xia, Y., Miao, Z., Heng, L., Li-mei, L., Fu-hua, Z. (2014).

Microencapsulation of Opuntia dillenii Haw. polysaccharides. Shipin Gongye Keji, 35(7), 202-

206. e) Zou, M. (2008). Method for manufacturing traditional chinese medicine composition for

reducing blood sugar. CN. 101491581. A. 20090729. Appl. 10056699. f) Jiang, X. (2009). A

chinese medical composition for treating gastropathy. CN. 101732651 A. 20100616. Appl.

10102532. g) Zhang, X., Yu, J., Chen, B. (2009).Topical chinese medicinal paste for treating

burn and scald and its preparation method. CN. 101711787 A. 20100526. Appl. 10219313. h)

Guo, Z., Song, J., Liu,. A (2009). Compounded cataplasm containing aspirin and Opuntia dillenii

extract for treating parotitis, and its formulation CN 101757078 A. 20100630. Appl. 10218499.

54 Cejudo-Bastante, Jesus, M., Nelson, H., Francisco, J. H., (2015). Potential use of new colobian

source of betalains. Colorimetric study of red prickly pear (Opuntia dillenii) extracts under

different technological condition. Food Res. Int., 71, 91-99.

55 a) Pavithra, K., Shashirekha, M. N., Dharmesh, Shylaja M., Rajarathnam, S. (2016). Process for

preparation of nutraceutical beverage from cactus (Opuntia dillenii) stem (cladode) and fruit

(cactus pear). Indian Pat. Appl. IN 2014DE02947 A 20163422. b) Haiyan, L. (2015). Composite

fruit flavor health beverage based on Chelidonium Majus and Opuntia dillenii and preparing

method. Faming Zhuanli Shenqing, CN 104664470 A 20150633. c) Yang, K. (2005).

Manufacture of health care vinegar containing Opuntia dillenii. (C1. C12J1/00), 31 Aug. 2005,

Appl. 10,075,759, 30 Dec. 2004; 10pp. (Chem. Abstr. 2006,144, 330458v).

56 Soo, K. H., (2006). Productions of mixed grain powder, which is rich in vitamin C and dietary

fiber and contains efficacy of cactus by freeze drying and grinding cactus and then mixing with

cereal powder. (C1. A23L1/29), 31 Dec. 2004, Appl. 39,986, 20 Jun 2003. (Chem. Abstr. 2006,

145, 248116u).

Page 281: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

274

57 Yu, N., Yu, Qianliang, Q. (2006). Method for preparing soybean milk powder with anti-fatigue

effect by adding Codonopsis pilosula micropowder, Lilium brownii micropowder, Opuntia

dillenii micropowder, Trionyx sinensis micropowder, Dendrobium officinale micropowder, and

oligosaccharide. (C1.A23C11/10), 28 Jun. 2006, Appl. 10,049,040, 12 Jan. 2006; 4pp. (Chem.

Abs. 2006, 145, 144410u).

58 a)Yu, N., Yu, Q. (2006). Method for preparing milk powder with antifatigue effect by adding

Codonopsis pilosula micropowder, Lilium brownie micropowder, Opuntia dillenii micropowder,

Trionyx sinensis micropowder, Dendrobium officinale micropowder, and oligosaccharide.

(C1.A23C9/152), 28 Jun. 2006, Appl. 10,049,033, 12 Jan. 2006, 4 pp. (Chem. Abs. 2006, 145,

144459s). b) Yu, N., Yu, Q. (2006). Method for manufacturing nurtraceutical bean milk powder

containing chicken’s gizzard-membrane, Crataegus pinnatifids, Opuntia dillenii and

Pseudostellaria heterophylla. (C1. A23C9/152), 12 Jul. 2006, Appl. 10,049,017, 12 Jan. 2006;

4pp. (Chem. Abstr. 2006, 145, 166123e).

59 Yu, N., Yu, Q. (2006). Method for manufacturing nutraceutical milk powder containing pine

pollen, Citrus aurantium flower, Opuntia dillenii, Ganoderma lucidum, and Lyceum barbarum

fruit. (C1. A23C9/152), 19 July 2006, Appl. 10,049,320, 25 Jan 2006; 4pp. (Chem. Abs. 2006,

145, 187552j).

60 a)Yu, N., Yu, Q. (2006). Method for manufacturing nutraceutical milk powder containing Hairy

Antler powder, Rhodiola kirilowii, bee pollen, Opuntia dillenii, and Cuscuta chinensis seed. (C1.

A23C9/152), 19 Jul. 2006, Appl. 10,049,338, 25 Jan. 2006; 4pp. (Chem. Abs. 2006, 145,

187557q). b) Yu, N., Yu, Q. (2006). Method for manufacturing nutraceutical soy milk powder

containing hairy antler powder, Rhodiola kirilowii, pollen, Opuntia dillenii, and Cuscuta

chinensis seed. (C1. A23C11/10), 19 Jul. 2006, Appl. 10,049,345, 25 Jan. 2006; 4pp. (Chem.

Abs. 2006, 145, 187564q).

61 Yu, N., Yu, Q. (2006). Method for preparing soybean milk tablet with spleen invigorating and

digestion promoting effects by adding chicken’s gizzard membrane micropowder, Crataegus

pinnatifida micropowder, Opuntia dillenii micropowder, Pseudostellaria heterophylla

micropowder, and oligosaccharide. (C1. A23C11/10), 28 Jun. 2006, Appl. 10,049,026, 12 Jan.

2006; 4pp. (Chem. Abstr. 2006, 145, 144457q).

62 Yu, N., Yu, Q. (2006). Method for manufacturing nutraceutical bean milk tablet containing

chicken’s gizzard-membrane, Crataegus pinnatifida, Opuntia dillenii, and Pseudostellaria

heterophylla. (C1. A23C9/152), 12 Jul. 2006, Appl. 10,049,019, 12 Jan. 2006; 4pp. (Chem. Abs.

2006, 145, 166125g).

Page 282: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

275

63 Yu, N., Yu, Q. (2006). Method for manufacturing nutraceutical milk tablet containing hairy

antler powder, Rhodiola kirilowii, bee pollen, Opuntia dillenii, and Cuscuta chinensis seed. (C1.

A23C9/152), 19 Jul. 2006, Appl. 10,049,340, 25 Jan. 2006; 4pp. (Chem. Abs. 2006, 145:

187563k).

64 Yu, N., Yu, Q. (2006). Method for preparing sour soy milk with spleen in vigorating and

digestion promoting effects by adding chicken’s gizzard membrane micropowder, Crataegus

pinnatifida micropowder, Opuntia dillenii micropowder, Pseudostelbria heterophylla

micropowder, and oligosaccharide. (C1. A23C9/13), 28 Jun. 2006, Appl. 10,049,026, 12 Jan.

2006; 4pp. (Chem. Abs. 2006, 145, 144456p).

65 a) Yu, N., Yu, Q. (2006). Method for manufacturing nutraceutical bean milk containing hairy

antler powder, Rhodiola kirilowii, bee pollen, Opuntia dillenii, and Cuscuta chinensis seed. (C1.

A23C9/152), 19 Jul. 2006, Appl. 10,049,341, 25 Jan. 2006; 4pp. b) Yu, N., Yu, Q. (2006).

Method for manufacturing nutraceutical milk containing hairy antler powder, Rhodiola kirilowii,

bee pollen, Opuntia dillenii, and Cuscuta chinensis seed. (C1. A23C9/152), 19 Jul. 2006, Appl.

10,049,342, 25 Jan. 2006; 4pp. (Chem. Abs. 2006, 145, 187562n).

66 Yu, N., Yu, Q. (2006). Method for preparing nutraceutical bean milk containing micron-scale

cervus, Rhodiola, bee pollen, Opuntia dillenii, and Cuscuta chinensis with kidney invigorating

and antifatigue effects. (C1. A23C11/10), 16 Aug. 2006, Appl. 10,049,274, 25 Jan. 2006; 4pp.

(Chem. Abs. 2006, 145, 270666v).

67 Yu, N., Yu, Q. (2006). Method for preparation sour soymilk with antifatigue effect by adding

Codonopsis pilosula micropowder, Lilium brownii micropowder, Opuntia dillenii micropowder,

Trionyx sinensis micropowder, Dendrobium officinale micropowder and oligosaccharide. (C1.

A23C9/13), 28 Jun. 2006, Appl. 10,049,038, 12 Jan. 2006; 5pp. (Chem. Abstr. 2006, 145,

144464q).

68 Yu, N., Yu, Q. (2006). Method for manufacturing nutraceutical yoghurt containing chicken’s

gizzard-membrane, Crataegus pinnatifida, Opuntia dillenii, and Pseudostellaria heterophylla.

(C1. A23C9/13), 12 Jul. 2006, Appl. 10,049,024, 12 Jan. 2006; 4pp. (Chem. Abs. 2006, 145,

166333a).

69 Yu, N., Yu, Q. (2006). Method for manufacturing nutraceutical oral liquid from Codonopsis

pilosula, Lilium turtle carapace, Opuntia dillenii, Dendrobium candidum and royal jelly. (C1.

A61K36/8984), 4 Oct. 2006, Appl. 10,049,030, 12 Jan. 2006; 4pp. (Chem. Abstr. 2006, 145,

396578m).

70 a) Sun, L., Zhao, P. (2007). Health food prepared from fruit and vegetable for enhancing function

of five viscera and its preparation, (C1. A23L1/29), 21 May 2008, Appl. 10,150,361, 23 Nov.

Page 283: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

276

2007; 15pp. (Chem. Abstr. 2008, 149, 8555a). b) Qu, Y. (2007). A series of health beverages

and foods prepared from radix et caulis Opuntia dillenii and beans. CN. 1286349. A. 20010307.

Appl. 254652. 2007. c) Yang, L. (2014). Streamed bread of bitter melon tea. Faming Zhuanli

Shenqing, CN 103598506 A 2014 0226. d) Shenghua, F., Lihui, F., Xiaoyun, C., Zhiming, C.,

Guolan, C., Linsheng, W. (2014). A kind of flos lonicerae-blue berry leaf herbal tea beverage

and preparation method thereof. Faming Zhuanli Shenqing, CN 103493926 A 20140108. e)

Liangqing, D. (2014). Opuntia dillenii herbal tea with clearing away summer-heat function and

preparation method. Faming Zhuanli Shenqing, CN 103689164 A 2014 0402.

71 a) Shouliang, Z. (2015). Nutritional health tea and preparation method thereof. Faming Zhuanli

Shenqing, CN 104431191 A 20150325. b) Duancheng, D. (2016). A weight loss health tea.

Faming Zhuanli Shenqing, CN 105533085 A 20163504. c) Jung, S. D. (2006). Method of making

glutinous rice cake using fruit powder of Opuntia dillenii and glutinous rice flour, (C1.

A23L1/10), 22 Feb. 2006, Appl. 64,937, 18 Aug. 2004. (Chem. Abstr. 2006, 145, 417805a).

72 a) Peijian, L., (2016). Pudding blood lipid-lowering skin-care mayonnaise and its preparation

method. Faming Zhuanli Shenqing, CN 105559026 A 20163511. b) Shen, Z., Yifei, Z. (2016).

Chinese festival cosmetics. From Faming Zhuanli Shenqing CN 105411978 A 20163323. c)

Shengzhao, G. (2014). A kind of compound Chinese medicine extract with dandruff removing

effect and application thereof. Faming Zhuanli Shenqing, CN 103751073; A 20140430. d)

Shengzhao, G. (2014). A kind of compound Chinese medicine extract with dandruff removing

effect and application thereof. Faming Zhuanli Shenqing, CN 103751073; A 20140430.

73 Wang, J., Wang, C. (2005). Toothpaste containing Opuntia dillenii micropowder (Cl.

A61K7/26), 15 Jun 2005, Appl. 10, 043, 796, 12 Aug. 2004, 4pp. (Chem. Abstr. 2006, 144,

176966a).

74 Liu, Y., Liu, S., Zhao, M. (2010). Extraction of Opuntia dillenii Polysaccharide and its

application in cigarettes. CN. 101704900. A. 20100512. Appl. 10172520. 2009. (Chem. Abs.

2010, 152, 594404).

75 Wang, W. (2007). Functional cigarette with health care effects and the manufacture. (C1.

A24B15/10), 21 Dec. 2008, Appl. 10,072,339, 11 Jun. 2007: 11pp. (Chem. Abs. 2009, 150,

93900x).

76 Siddiqui, F., Naqvi, S., Abidi, L., Faizi, S., Lubna; Avesi, L., Mirza, T., Farooq, A. D. (2016).

Opuntia dillenii cladode: Opuntiol and opuntioside attenuated cytokines and eicosanoids

mediated inflammation. J. Ethnopharmacol., 182, 221-234.

Page 284: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

277

77 Siddiqui, F., Abidi, L., Lubna; Poh, C. F., Naqvi, S., Faizi, S., Farooq, A. D. (2016). Analgesic

potential of Opuntia illenii and its compounds Opuntiol and Opuntioside against pain models

in mice. Rec. Nat. Prod.,10(6), 721-734.

78 Yan, L., Tingting, H., Xiaomei, W., Suzhen, Y., Wengang, Z. (2031). Preparation and application

of urban pollution-resistant natural emulsion containing Chinese medicine extracts. Faming

Zhuanli Shenqing, CN 1034 05373 A2013 1127, (Chem. Abs: 2013, 163, 38766) 8pp.

79 a)Raza, S. H., Shylaja, G. (1992). Studies of tolerance of certain succulent plants to ambient air

sulfur dioxide levels in urban environments of a city of India. Int. J. Environ. Stud., 42(4), 301-

18. b) Gopi, D., Malini, P., Ramesh, S., Rajeswari, S. (2002). A green way of protection against

corrosion and calling. Res. J. Chem. Environ., 6(1), 43-46.

80 a)Zhang, Z. (2007). Method of Manufacturing weight loss food from plant butter, konjac

mannan, meal fibers and Cactus extract (Cl. A23L/29), 2 Jan 2008. Appl, 10, 085, 835, 11 July

2007, 6pp. (Chem. Abstr. 2008, 148, 167665g). b) Dan-ya, M., Jing, Z., Jing, Y., Hong-mei, W.,

Lin, S., Tong-zhou, Y., Zhi-bin, C. (2012). Extraction process and stability of red pigment from

cactus pear fruit. Shipin Gongye Keji, 23, 214-217 (Chem. Abstract; 158: 678293).

81 a)Fu, G., Wu, M. (1993). Stability of the red pigment of Opuntia dillenii fruit and its

enhancement. Tianran Chanwu Yanjiu Yu Kaifa, 5(2), 18-23. (Chem. Abs. 1994, 120,

296994j).b) Fu, G., Wu, M. (1994). Chemical characteristics and stability strengthening of red

pigment in Opuntia dillenii fruits. Shipin Kexue (Beijing), 170, 18-21. (Chem. Abs: 1994,

121,129917a).

82 a) Luan, B. (2008). Production of feed additive for egg-laying hens (C2. A23K1/16), 18 Mar.

2009, Appl. 10, 155, 198, 24 Oct. 2008; 20pp. (Chem. Abstr. 2009,150, 328728p). b) Yue, L.,

(2015). Egg-laying hen feed. Faming Zhuanli Shenqing, CN 104814359 A 20150805.

83 a)Jianmin, J. (2013). A Chinese herbal medicine compound feed for beef cattle. Faming Zhuanli

Shenqing, CN 103461662 A20131225, (Chem. Abs: 2013, 163, 146105) 4pp. b) Fang, C.,

(2015). Preparation of edible Opuntia dillenii, Zizyphus jujube vinegar by fermentation. Faming

Zhuanli Shenqing, CN 104854739 A 20150715. c) Jihai, N. (2014). External use Chinese

medicinal ointment for treating electric injury and its formulation. Faming Zhuanli Shenqing,

CN 104056122 A 20140924.

84 a) Ismail, M. O., Dar, A., Faizi, S., Abidi, L., (2010). Antidepressant like actions of opuntia

dillenii butanol fraction in rodents. Pak. J. Pharmacol., 27(2), 9-14. b) Targett, N. M., Kilcoyne,

J. P., Green, B. (1979). Vacuum liquid chromatography: an alternative to common

chromatographic methods. Org. Chem., 44(26), 4962-4964.

Page 285: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

278

85 a) Airong, S., Chen, Z., Xiaoyue, S., Fang, H., Wei, D. (2013). Isolation of acetophenone from

Phellinus. Faming Zhuanli Shenqing CN 103044228 A 20130417.

b) Mona, M. M., Tarik, A. M., Ahmed, E., Sayed, A. E.-T., Elamir, F. H. M. (2016). Phenolics

from Tanacetum sinaicum (Fresen.) Delile ex Bremer & Humphries (Asteraceae). Biochem. Sys.

Ecol., 65, 143-146. c) Yi-peng, L., Yu-zhi, Z., Gang, C., Yue-hu, P., Xue-mei, Q. (2014).

Isolation and identification of phenols from Cynanchum paniculatum. Shenyang Yaoke Daxue

Xuebao, 31(6), 444-447. d) Jun, H., Zhong, C., Ya-nan, Y., Jian-shuang, J., Zi-ming, F., Pei-

cheng, Z. (2014). Chemical constituents from aqueous extract of Carthamus tinctorius.

Zhongguo Yaoxue Zazhi, 49(6), 455-458.

86 a) Romanini, C. V., Ferreira, E. D. F., Soares, L. M., Santiago, A. N., Milani, H., Weffort, d. O.,

Rubia, M. (2015). 4-Hydroxy-3-methoxy-acetophenone-mediated long-lasting memory

recovery, hippocampal neuroprotection, and reduction of glial cell activation after transient

global cerebral ischemia in rats. J. Neurosci. Res., 93(8), 1240-1249. b) Tsai, I.-L., Chen, J.-H.,

Duh, C.-Y., Chen, I.-S. (2000). Chemical constituents from the leaves of formosan Ficus septic.

Chinese Pharm. J., 52(4), 195-201.

87 a) Ingemar, L., Klaus, M. (1964). Synthesis of 4-ethyldimethylbenzenetriols in relation to a new

phenolic metabolite of Penicillium Baarnense. Acta Chemica Scandinavica, 18(3), 638-42.

88 a) Eleni, M., Ioanna, C. (2011). Chemical constituents of selected unifloral Greek bee-honeys

with antimicrobial activity. Food Chem., 129(2), 284-290. b) Bogdan, T., Jacek, R., Piotr, S.

(1981). Studies on separation of di- and triethylene glycols from a polyglycol fraction. Przemysl

Chemiczny, 60(11-12), 538-40. c) Wenjian, Z., Huiqin, C., Xiaodong, L., Zhenhui, W., Haofu,

D., Jinhui, W. (2011). Chemical constituents of Ilex kudingcha leaves. Zhongcaoyao, 42(1), 18-

20. d) Xiao-juan, Y., Huo-ming, S., Guang-ying, C., Ming-hui, J., Jin-yue, D. (2014). Chemical

constituents from barks of Lannea coromandelica. Chinese Herb. Med., 6(1), 65-69. e) Feng-

xia, R., Ai-jun, Z., Yi-min, Z. (2008). Studies on chemical constituents of Pyrola calliantha H.

Andres II. Jiefangjun Yaoxue Xuebao, 24(4), 301-304. f) Mingwei, Z., Jinwen, Z., Yingda, Y.,

Zengwei, L., Guangmin, Y., Yonghui, Z. (2011). Chemical constituents of Daphne genkwa.

Zhongguo Yaoxue Zazhi, 46(22), 1704-1706. g) Chuan, L., Wannian, Z. (2011). Chemical

constituents of Opuntia milpa. Zhongcaoyao, 42(3), 437-439. h) Lu-jun, L., Jie, S., Li-bin, F.

(2013). Chemical constituents in ethyl acetate fraction from roots of Dendropanax proteus.

Xiandai Yaowu Yu Linchuang, 28(2), 144-146. i) Ru-mei, L., Li-wei, P., Jian-hua, W., Zhen-

guo, Z. (2014). Chemical constituents of Gynostemma pentaphyllum. Zhongcaoyao, 45(19),

2757-2761.

Page 286: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

279

89 a)Chung-Yi, C., Fang-Rong, C., Che-Ming, T., Yang-Chang, W. (1999). Cheritamine, a new N-

fatty acyl tryptamine and other constituents from the stems of Annona cherimola. J. Chinese

Chem. Soc. (Taipei), 46(1), 77-86. b) Wen, C., Sheng-an, T., Nan, Q., Huiyuan, Z., Hongquan,

D. (2012). Antioxidant constituents from Smilax riparia. Zhongguo Zhongyao Zazhi, 37(6), 806-

810. c) McComb, E. A., Rendig, V. V. (1961). Isolation and identification of L-galacto-

heptulose from plants fed L-sorbose. Arch. Biochem. Biophys., 95, 316-19.

90 a)Takuo, O., Kunihiro, K. (1968). Coriose and related compounds. I. Isolation of coriose and

279o-occurring carbohydrates from leaf, stem, and fruit of Coriaria japonica. Yakugaku Zasshi,

88(10), 1329-32. b) Meitian, X., Jing, Y., Benbo, H., Ke, Z., Pengfei, T. (2011). Chemical

constituents of Artemisia lactiflora. Zhongguo Yaoxue Zazhi, 46(6), 414-417. c)Xianghong, L.,

Xiangdong, X., Hongwei, F., Bo, C., Jingkui, T., Lin, Z. (2012). Chemical constituents of Kochia

scoparia. Zhongguo Yaoxue Zazhi, 47(5), 338-342.

91 a) Akio, T., Akio, K., Tomotaro, T. (1971). Isolation of methyl ferulate from rice bran oil. J. Am.

Oil Chem. Soc., 48(3), 95-7 b) Muhammad, I. C., Saima, J. A., Muddasir, I., Atta-ur-Rahman.

(2006). Inhibition of respiratory burst in human neutrophils and lipoxygenase enzyme by

compounds from Haloxylon griffithii. Phytother. Res., 20(10), 840-843 c) Alexander, T., Kai,

M., Nils, T., et. al. (2015). A novel integrated downstream processing approach to recover sinapic

acid, phytic acid and proteins from rapeseed meal. J. Chem. Technol. Biotechnol., 90(11), 1999-

2006. d)Zheng, W., Ying-kun, Q. (2012). Chemical constituents from Opuntia dillenii.

Zhongcaoyao, 43(9), 1688-1690.

92 a) Kantor, L. I., Gordienko, V. S., et. al. (2010). Method for determining the duration of contact

between diesel fuel and water. Russ. RU 2395803 C1 20100727. b) Tsai, I. L., Hung, C. H., Duh,

C. Y., et. al. (2001). Cytotoxic butanolides from the stem bark of Formosan Lindera communis.

Planta Med., 67(9), 865-7. c) Landa, S., Romovacek, J., Romovackova, H. (1955). Composition

of low-temperature brown-coal tar. I. Paraffins. Chemicke Listy pro Vedu a Prumysl, 49, 313-

16. d) Gollis, M. H., Belenyessy, L. I., Gudzinowicz, B. J., et. al. (1960). Preparation and

evaluation of pure hydrocarbon fuels. Am. Chem. Soc., Div. Petrol. Chem., 5(4), C19-C29. e)

Din, E., Salah, R. A., et. al. (2006). New compounds from certain marine algae from Marsa

Alaam Red Sea Egypt with promising antimicrobial activity. New Egypt. J. Microbiol., 14, 215-

222. f) Tijiang, S., Jianglin, Z., et. al. (2010). Chemical composition and antibacterial activity of

the volatile oil from the endophytic fungus Dzf12 isolated from Dioscorea zingiberensis.

Tianran Chanwu Yanjiu Yu Kaifa, 22(6), 952-955, 975. g) Brunel, C., Tamarat, P., Lounis, B.,

Woehl, J. C., Orrit, M. (1999). Stark effect on single molecules of dibenzanthanthrene in a

naphthalene crystal and in a n-hexadecane Shpol'skii matrix. J. Phys. Chem. A, 103(14), 2429-

Page 287: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

280

2434. h) Yingkun, Q., Deqiang, D., Yuping, P., et. al. (2003). Isolation and identification of a

new α-pyrone from Opuntia dillenii. Yaoxue Xuebao, 38(7), 523-525. i) Trezzi, E., Calvi, C.,

Roma, P., Catapano, A. L. (1983). Subfractionation of human very low density lipoproteins by

heparin-Sepharose affinity chromatography. J. Lipid Res., 24(6), 790-5.

93 a) Igwe, O. U., Okwunodulu, F. U. (2014). Investigation of bioactive phytochemical compounds

from the chloroform extract of the leaves of Phyllanthus amarus by GC-MS technique. Int. J.

Chem. Pharm. Sci., 2(1), 554-560. b) Manandhar, M. D., Rajkarnikar, K. K., Suwal, P. N. (1982).

Preliminary investigation of Cheuri ghee (phulwara butter) and isolation of palmitic acid from

it. J. NPA, 9, 37-9. c) Nian-Yun, Y., Li, L., Wei-Wei, T., et. al. (2011). Antithrombotic lipids

from Semen Persicae. Nat. Prod. Res., 25(17), 1650-1656. d) Antonino, A., Michele, R., Maria,

C. N. (1966). β-Sitosterol from flowers of Opuntia ficus-indica (Cactaceae). Atti Accad. Sci.,

Lettere Arti Palermo, Pt. I, 25, 323-32. e) Yutao, G., Xiuwei, Y., Tiemin, A. (2005). GC-MS

analysis of fatty acids and fat-soluble components in Dicliptera chinensis. Zhongcaoyao, 36(12),

1778-1779. f) Mingying, S., Shaoqing, C., Wenhan, L., et. al. (2002). Studies on chemical

constituents from seeds of Trigonella foenum-graecum. Zhongguo Zhongyao Zazhi, 27(4), 277-

279. h) Jianmei, W., Lei, F., Haiwei, J., Miao, M. (2008). Analysis of chemical constituents of

the essential oil from duke blueberry fruits by gas chromatography-mass spectrometry. Jingxi

Huagong, 25(6), 580-582. i) Salem, M. Z. M., El-Shikh, M. S., Ali, H. M. (2014). Fatty acids

constituents of wood from Schinus terebinthifolius Raddi using GC analysis. J. Pure App.

Microbiol., 8(1), 205-209.

94 a)Jiexing, W., Suixu, X., Feng, Q., Guoyang, Z., Yenbo, M., Xinsheng, Y. (1992). Chemical

constituents of Taizishen. Zhongcaoyao, 23(6), 331, 336. b) Mbwambo, Z. H., Lee, S. K., Mshiu,

E. N., Pezzuto, J. M., Kinghorn, A. D. (1996). Constituents from the stem wood of Euphorbia

quinquecostata with phorbol dibutyrate receptor-binding inhibitory activity. J. Nat. Prod.,

59(11), 1051-1055. c) Paulke, A., Noeldner, M., Schubert-Zsilavecz, M., Wurglics, M. (2008).

St. John's wort flavonoids and their metabolites show antidepressant activity and accumulate in

brain after multiple oral doses. Pharmazie, 63(4), 296-302. d) Hyun, M. O., Byoung-Mog, K.,

et. al. (2005). Inhibitory activity of isorhamnetin from Persicaria thunbergii on Farnesyl Protein

Transferase. Arch. Pharm. Res., 28(2), 169-171.

95 Mass library search, Agilent Mass Hunter Qualitative Analysis (version B.04.00).

Page 288: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

281

List of publications

Page 289: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

282

1.Effect of cream containing Melia azedarach flowers on skin diseases in children, R. Saleem,

R. Rani, M. Ahmed, F. Sadaf, S. I. Ahmad, N. ul Zafar, S. S. Khan, B. S. Siddiqui, Lubna,

F. Ansari, S. A. khan, S. Faizi, Phytomedicine, 15(4), 2008, 231-236.

2. Antibacterial and antifungal activities of different parts of Tagetes patula: preparation of

patuletin derivatives, S. Faizi, H. Siddiqui, S. Bano, A. Naz, Lubna, K. Mazhar, S. Nasim,

T. Riaz, S. kamal, A. Ahmed and S. Ahmed, Pharmaceutical Biology, 46(5), 2008, 309-312.

3. Limited effectiveness of Melia azedarach cream in bacterial skin infection in children, R.

Saleem, R. Rani, M. Ahmed, F. Sadaf, S.I.Ahmad, N. ul Zafar, S. S. Khan, B. S. Siddiqui,

Lubna, F. Ansari, S. A. khan, S. Faizi, Focus on Alternative and Complementary Therapies

(FACT), 13(4),262- 263, 2008.

4. Specific deuteration in patuletin and related flavonoids via keto-enol tautomerism: solvent

and temperature dependent 1H-NMR studies, S. Faizi, H. Siddiqi, A. Naz, S. Bano and

Lubna. Helvetica Chimica Acta, 93, 2010, 466- 481.

5. Bioassay guided isolation of antioxidant agents with analgesic properties from flowers of

Tagetes patula, S. Faizi, A. Dar, H. Siddiqi, S. Naqvi, A. Naz, S. Bano and Lubna.

Pharmaceutical Biology, 49(5), 2011, 516-525.

6. Isolation of phytonematicidal compounds from Tagetes Patula L. yellow flowers: Structure

activity relationship studies against cyst nematode Heterodera zeae infective stage larvae. S.

Faizi, S. Fayyaz, S. Bano, E. Y. Iqbal, Lubna, H. Siddiqi and A. Naz, Journal of Agriculture

and Food Chemistry, 59 (17), 2011, 9080–9093.

7. Green synthesis and molecular recognition ability of patuletin coated gold nanoparticles.

Muhammad Ateeq, Muhammad Raza Shah, Noor ul Ain, Samina Bano, Itrat Anis, Lubna,

Shaheen Faizi, Massimo F. Bertino, Syeda Sohaila Naz. Biosensors and Bioelectronics,

63(1), 2015, 499-505.

8. Cytotoxic and antioxidant properties of phenolic compounds from Tagetes patula flower.

M. Kashif, S. Bano, S. Naqvi, S. Faizi, Lubna, M. A. Mesaik,K. S. Azeemi, A. Dar.

Pharmaceutical Biology, 2015, 53(5), 672-681.

9. Antibacterial activity of flower of Melia azedarach Linn. And identification of its

metabolites. Munira Taj Muhammad, Lubna, Nida Fayyaz, Saima Tauseef, Ummarah Razaq,

Muhammad Ali Versiani, Aqeel Ahmad, Shaheen Faizi, Munawwer Rasheed. Journal of the

Korean Society for Applied Biological Chemistry, 2015, 58(2), 219-227.

Page 290: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

283

10. Analgesic potential of Opuntia dillenii and its compounds opuntiol and opuntioside

against models in mice. Faheema Siddiqui, Lubna Abidi, Lubna,Ching Fidelis Poh, Sabira

Naqvi, Shaheen Faizi, Ahsana Farooq. Record Natural Product, 2016, 10(6), 721-734.

11. Opuntia dillenii cladode: opuntioside and opuntiol attenuates PGE2 and LTB4 mediated

inflammation. Faheema Siddiqui, Sabira Naqvi, Lubna Abidi, Shaheen Faizi, Lubna, Lubna

Avesi, Talat Mirza, Ahsana Farooq, Journal of Ethnopharmacology, 2016 182, 221–234.

12. Anti TNF-α and Anti-arthritic effect of Patuletin: A rare Flavonoid from Tagetes patula.

Almas Jabeen, Lubna, Samina Bano, Shabana U. Simjee, Shaheen Faizi and M. Ahmed

Mesaik. International Immunopharmacology, 2016, 36, 232-240.

13. Hypotensive and toxicological effect of methanolic extract of french marigold flowers its

fractions and pure constituents. F. Sadaf, R. Saleem, U. Ahmed, S. I. Ahmad, Lubna, S. Bano

and S. Faizi (In process, 2017).

US Patent

M. A. Mesaik, A. Jabeen, S. Faizi, S. U. Samjhee, S. Bano, Lubna. Patuletin, a potent Anti -

α and anti-arthritic compound from Tagetes patula. (United State Patent Office, 2013).

Pakistani Patent

S. Faizi, A.Dar. M. Kashif, Lubna, S. Bano, Anticancer activity of Tagetes patula flowers

extract, fractions and pure compounds. (Submitted 2015)

Proceedings

Presented at 1st International symposium and workshop-Cum-Training Course on molecular

Medicine and Drug Research held at the Dr. Panjwani Center for Molecular Medicine and

Drug Research (ICCBS, University of Karachi, Karachi-75270) held at Karachi, January 16-

30, 2007.

S. Bano, S. Tauseef, A. Ahmed, Lubna, S. Firdous, A. Tahir, S. A. Khan, H. Siddiqi, A. Naz

and S. Faizi. Evaluation of antimicrobial activity of flowers of Tagetes erecta: Isolation of

quercetagetin as the antibacterial principle (First prize winning poster).

Page 291: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

284

Presented at Sixth International Biennial Conference of Pakistan Society for Microbiology

held at Islamabad, 18-21 March, 2007.

S. Tauseef, S. Bano, S. A. Khan, S. K. Khan, M. Sohail, A. Amyn, A. Naz, H. Siddiqi, Lubna,

A. Tahir, S. Firdous, S. Faizi and A. Ahmed. Studies on antimicrobial activity of extracts and

fractions of Tagetes erecta (First prize winning poster).

Presented at 1st International symposium and workshop-Cum-Training Course on Molecular

Medicine and Drug Research held at the Dr. Panjwani Center for Molecular Medicine and

Drug Research (ICCBS, University of Karachi, Karachi-75270) held at Karachi, January 16-

30, 2007.

M. Kashif, N. Kabir, S. Bano, Lubna, H. Siddiqi, A. Naz, S. Naqvi, S. Faizi and A. Dar, As

in vitro anti-cancer activity against skin melanoma by Tagetes patula flower.

Presented at 13th Annual Congress, held at Karachi, 16-18 February, 2007.

M. Kashif, N. Kabir, S. Bano, Lubna, H. Siddiqi, A. Naz, S. Naqvi, S. Faizi and A. Dar. An

in vitro anti-tublin activity against skin melanoma by Tagetes patula flower: A promising

source for anticancer agent(s).

Presented at 11th International symposium on Natural Product Chemistry (ICCBS, University

of Karachi, Karachi-75270) held at Karachi, October 29-November 01, 2008.

H. Siddiqi, S. Bano, Lubna, A. Naz and S. Faizi. Specific deuteration in patuletin and related

flavanoids via keto-enol tautomerism: solvent and temperature dependent 1H-NMR studies.

M. A. Khan, A. Dar, S. Faizi, L. Abidi, Lubna and N. I. Kabir. Chronic treatment of Opuntia

dillenii exhibits anti-depressant like properties in mice in a modified tail suspension test.

Page 292: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

285

S. Bano, S. Fayyaz, Lubna, E. Iqbal, H. Siddiqi, A. Naz and S. Faizi. Bioassay on

yellowflowers of Tagetes patula: structure-activity relationship studies against cyst nematode

Heterodera zeae.

M. Kashif, S. Bano, Lubna, H. Siddiqi, A. Naz, S. Naqvi, S. Faizi, N. Kabir and A. Dar.

Anticancer activity of methanolic extract of Tagetes patula flower against non-small cell lung

cancer cell line (NCI-H460).

Presented at 2nd International symposium Cum-Training Course on Molecular Medicine and

Drug Research held at the Dr. Panjwani Center for Molecular Medicine and Drug Research

(ICCBS, University of Karachi, Karachi-75270) held at Karachi, January 12-15, 2009.

1. S. Faizi, Lubna, S. S. Khan, S. K. Khan, R. Saleem, A. Ahmed, F. Ansari, R. Rani, M.

Ahmed, F. Sadaf, S.I.Ahmad, N. ul Zafar, B. S. Siddiqui, S. A. khan. Effective treatment of

bacterial skin infections by herbal cream containing extract of Melia azedarach flowers.

2.

Presented at “Development of network of women neuroscientists in Pakistan” jointly

organized by: Dr. Panjwani Center for Molecular Medicine and Drug Research, ICCBS,

University of Karachi, Karachi-75270 and Women in world neuroscience (WWN) held at

Karachi, July 1st and 2nd , 2010.

H. Ishaq, R. Saleem, Lubna, S. S. Khan, S. I. Ahmed, S. Faizi. Neuropharmacological

studies on methanolic extracts of different part of Melia azedarach.

Presented at 12th International symposium on Natural Product Chemistry (ICCBS, University

of Karachi, Karachi-75270) held at Karachi, November 22-25, 2010.

3. H. Ishaq, R. Saleem, S. I. Ahmad, Lubna, S. Faizi. Anti-depressant and Anxiolytic activity of

Melia azedarach Linn.

4.

Page 293: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

286

5. N. Noureen, Lubna, S. Bano, H. Siddiqi, A. Naz, S. Tauseef, A. Irshad, A. Ahmed, E. Iqbal,

S. Fayyaz and S. Faizi. Bioassay-guided Isolation of Antioxidant and Nematicidal

Constituents from the Extract of Yellow Flowers of Tagetes erecta.

6.

Lubna, S. Sumbul, R. Saleem, N. Noureen, A. Sana and S. Faizi. Nasimizine: A Rare and

New Fluorinated Pyrazine from Root of Moringa oleifera.

F. Sadaf, R. Saleem, U. Ahmed, S. I. Ahmad, Lubna, S. Bano and S. Faizi. Hypotensive and

Toxicological Effect of Methanolic Extract of French Marigold Fowers its Fractions and

Pure Constituents.

Presented at 3rd International symposium Cum-Training Course on Molecular Medicine and

Drug Research held at the Dr.Panjwani Center for Molecular Medicine and Drug Research

(ICCBS, University of Karachi, Karachi-75270) held at Karachi, January 3-6, 2011.

S. Tauseef, M. A. Mesaik, S. Faizi, S. Bano, Lubna, H. Siddiqi, B. Fatima, S. A. Khan and

A. Ahmad. Immunomodulatory Studies on potential of some natural flavonoids of Tagetes

patula.

Presented at 13th International symposium on Natural Product Chemistry (ICCBS University

of Karachi, Karachi-75270) held at Karachi, September 21-24, 2011.

S. Z. Ur Rehman, S. Fayyaz, Lubna, S. Bano, E. Y. iqbal and S. Faizi. Nematicidal Activity

of flavonoids against the root-knot nematode Meloidogyne incognita: Structure Activity

Relationship Studies.

Presented at 14th Asian symposium on Medicinal plants, Species and Other Natural Products

(ICCBS, University of Karachi, Karachi-75270) held at Karachi, December 07-10, 2013.

A. Jabeen, M. A. Mesaik, S. Faizi, S. Bano, Lubna and S. U. Simjee. Anti TNF-α and Anti

arthritic effect of Patuletin: a Flavonoid from Tagetes Patula.

Page 294: Analysis and quantification of medicinally important essential oil …prr.hec.gov.pk/jspui/bitstream/123456789/9459/1/Lubna... · 2019-12-31 · polyantha, I. chinensis, Ipomoea batata

287

T. Roome, S. Khan, A. Razzak, A. Noorani, R. Khanani, A. Dar, S. Faizi, L. Abidi, Lubna,

and M. Cathcart. Opuntiol and Opuntioside-I an anti-atherogenic agent interfering with

Chemotaxis via iPLA2β- dependent F-actin polymerization in human monocyte.

F. Siddiqui, S Naqvi, L Abidi, Lubna and A Dar. Anti-inflammatory activity of

Opuntiadillenii via inhibition of inflammatory mediators PGE2 and LTB4.

Mudassar, A. Dar Farooq, S. Haque, Lubna, S. Bano, S. Faizi. Evaluation of T. patula

methanol extract and pure compound, patuletin for their genotoxic actions.

P. Ali, S. Aziz, A. Razzak, T. Roome, S. Khan, F. Siddiqui, A. Dar, S. Faizi, L. Abidi, Lubna.

Inhibitory effect of Opuntiol/ Opuntioside-I against the expression of cytokine and chemokine

in carrageenan and zymosan induced mouse inflammatory model.

P. Ali, S. Aziz, A. Razzak, T. Roome, S. Khan, F. Siddiqui, A. Dar, S. Faizi, L. Abidi, Lubna.

Inhibitory effect of Opuntiol/ Opuntioside-I against the expression of cytokine and chemokine

in carrageenan and zymosan induced mouse inflammatory model.

A. Jabeen, M. A. Mesaik, S. Faizi, S. Bano, Lubna and S. U. Simjee. Patuletin: A flavonoid

from Tagetes patula as TNF-a and rheumatoid arthritis inhibitor.

Presented at 4th Pak-France Bi-national Workshop on Drug Discovery and Molecular

Medicine October 12 -14, 2015, Karachi, Pakistan.

Faheema Siddiqui, Sabira Naqvi, Lubna Abidi, Lubna, Shaheen Faizi and Ahsana Dar

Farooq.Anti-inflammatory and Antinociceptive Properties of Opuntia dillenii and its Pure

Compounds: Opuntiol and Opuntioside.