analysing the cognitive effectiveness of the ucm visual

25
Analysing the Cognitive Effectiveness of the UCM Visual Notation of the UCM Visual Notation Nicolas Genon, Daniel Amyot, Patrick Heymans SAM 2010, [email protected]

Upload: others

Post on 08-Jan-2022

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Analysing the Cognitive Effectiveness of the UCM Visual

Analysingthe Cognitive Effectiveness of the UCM Visual Notationof the UCM Visual Notation

Nicolas Genon, Daniel Amyot, Patrick Heymans

SAM 2010, [email protected]

Page 2: Analysing the Cognitive Effectiveness of the UCM Visual

Why Visual Modelling?Why Visual Modelling?

Diagrams play a critical role in discussingDiagrams play a critical role in discussing, designing and documenting systems

The main reason for using diagrams is to facilitatediagrams is to facilitatecommunication

• assumed to be moreassumed to be more effective than textespecially for end users

2

Page 3: Analysing the Cognitive Effectiveness of the UCM Visual

What makes a visual notation “good”?What makes a visual notation  good ?

Cognitive Effectiveness = speed, ease and accuracy [Larkin-87]

3

Page 4: Analysing the Cognitive Effectiveness of the UCM Visual

ProblemProblem

When creating or evolving the visual notation of aWhen creating or evolving the visual notation of a modelling language, cognitive effectiveness is not taken into consideration in a systematic way!

• focus is often on abstract syntax and semanticsi l t ti i th “ i ” i t ti• visual notation is the “poor cousin” in notation design, and is designed in ad hoc ways

• concrete visual syntax is often thought of as a matter y gof mere aesthetics

(I’m as guilty as many of you!)4

Page 5: Analysing the Cognitive Effectiveness of the UCM Visual

Moreover...Moreover...

Users often rely (incorrectly) on intuition leading toUsers often rely (incorrectly) on intuition, leading to suboptimal communication and unintended interpretations

5

Page 6: Analysing the Cognitive Effectiveness of the UCM Visual

AgendaAgenda

• The Physics of Notations theory (PoN)The Physics of Notations theory (PoN)• Use Case Map (UCM) notation• Analysing UCM with the Physics of Notations 

• Illustration of several guidelines, with results and possible improvements

• More guidelines discussed in the SAM paperMore guidelines discussed in the SAM paper• Full analysis available as a technical report

• Related work• Observations about this theory• Conclusions and future work

6

Page 7: Analysing the Cognitive Effectiveness of the UCM Visual

Physics of Notations TheoryPhysics of Notations Theory

PerceptualpDiscriminability

GraphicCognitive pEconomy

SemanticT

Fit

SemioticCl it

CognitiveIntegration TransparencyClarity

VisualExpressiveness

Integration

ComplexityManagement Expressiveness

Dual Coding

[Moody-TSE-09]

7

Page 8: Analysing the Cognitive Effectiveness of the UCM Visual

Physics of Notations TheoryPhysics of Notations Theory

The principles synthesize knowledge andevidence coming from various disciplines:

• Cartography • Information visualizationg p y• Cognitive psychology• Diagrammatic reasoning• Graphic design

• Linguistics• Perceptual psychology• Semioticsp g

• HCI • Typography

Main contribution: defragmentationand some metrics defined

8

Page 9: Analysing the Cognitive Effectiveness of the UCM Visual

Visual Variables

Eight elementary visual variables that can be used to

Visual Variables

Eight elementary visual variables that can be used to graphically encode information [Bertin‐83]

10

Page 10: Analysing the Cognitive Effectiveness of the UCM Visual

Use Case MapsUse Case Maps

• Introduced by Buhr et al in the early 90’sIntroduced by Buhr et al. in the early 90 s

• Part of ITU‐T's User Requirements Notation• Rec Z 151 November 2008Rec. Z.151, November 2008• Goal modelling with GRL• Scenario modelling with UCM

• The standard includes• Metamodel

Vi l t ti• Visual notation• XML‐based interchange format

The full analysis is available in a technical report [Genon‐UCM] 11

Page 11: Analysing the Cognitive Effectiveness of the UCM Visual

Use Case MapsUse Case Maps

12

Page 12: Analysing the Cognitive Effectiveness of the UCM Visual

Use Case MapsUse Case Maps

13

Page 13: Analysing the Cognitive Effectiveness of the UCM Visual

PerceptualDiscriminabilityy

GraphicEconomy

CognitiveFit y

SemanticTransparency

SemioticClarity

CognitiveIntegration

VisualExpressiveness

ComplexityManagement

Dual Coding

14

Page 14: Analysing the Cognitive Effectiveness of the UCM Visual

Cognitive FitPerceptual

Discriminability

GraphicEconomy

SemanticTransparency

CognitiveFit

SemioticClarity

Visual

CognitiveIntegration

Complexity

Use different visual dialects when required.

3‐way fit:

VisualExpressiveness

ComplexityManagement

Dual Coding

3 way fit: 1. Audience (customers, users, domain experts)2. Representation medium (paper, whiteboard, computer)3 T k h t i ti3. Task characteristics

Cognitive Fit helps determine which audiences, media and tasks notation improvements will target

In our analysis of UCM, we consideredIn our analysis of UCM, we considered • notation experts …• … working mainly on computer tools, and sometimes on  

whiteboards and paperwhiteboards and paper…• … for modelling and discussing advanced scenarios

15

Page 15: Analysing the Cognitive Effectiveness of the UCM Visual

Semiotic Clarity PerceptualDiscriminability

GraphicEconomy

SemanticTransparency

CognitiveFit

SemioticClarity

CognitiveIntegration

There should be a 1:1 correspondence between semantic constructs and graphical symbols

VisualExpressiveness

ComplexityManagement

Dual Coding

UCM:‐ 55 semantic constructs55 semantic constructs‐ 28 symbols

Anomaly types Description UCM %

Symbol deficit Construct not represented by any symbol 23 42 %

Symbol overload Single symbol representing multiple constructs 3 7 %Symbol overload Single symbol representing multiple constructs 3 7 %

Symbol excess Single construct represented by multiple symbols

2 4 %

Symbol Symbol not representing any construct 1 2 %Symbol redundancy

Symbol not representing any construct 1 2 %

16

Page 16: Analysing the Cognitive Effectiveness of the UCM Visual

Semiotic Clarity PerceptualDiscriminability

GraphicEconomy

SemanticTransparency

CognitiveFit

SemioticClarity

CognitiveIntegration

There should be a 1:1 correspondence between semantic constructs and graphical symbols

VisualExpressiveness

ComplexityManagement

Dual Coding

Anomaly types Description UCM %

Symbol deficit Construct not represented by any symbol 23 42 %

(UCMMap) singletonClosedWorkload UnitComponentBindingComponentTypeConcernD d

OWPeriodic UnitOWPhaseType UnitOWPoisson UnitOWUniform UnitPassiveResourcePl i Bi di

UCM: Essentially:• Variable definitions

DemandEnumerationTypeExternalOperation UnitInBindingMetadataOutBinding

PluginBindingProcessingResource Disk UnitProcessingResource DSP UnitProcessingResource Processor UnitVariable BooleanVariable Enumeration

• Plug‐in bindings• Performance annotations• Others (concerns, singleton, metadata)

Variable Integer

• Associate symbols to these concepts• Choose not to represent and make it explicit in 

( , g , )

the standard• Remove these concepts 20

Page 17: Analysing the Cognitive Effectiveness of the UCM Visual

Perceptual DiscriminabilityPerceptual

Discriminability

GraphicEconomy

SemanticTransparency

CognitiveFit

SemioticClarity

CognitiveIntegration

Symbols should be clearly distinguishable.

Symbol discriminability in UCM

VisualExpressiveness

ComplexityManagement

Dual Coding

y y

• Shape• 50% of symbols are icons• the others use conventional shapes

• Grain (border style)

• Colour (black & white)

• Size

23

Page 18: Analysing the Cognitive Effectiveness of the UCM Visual

Perceptual DiscriminabilityPerceptual

Discriminability

GraphicEconomy

SemanticTransparency

CognitiveFit

SemioticClarity

CognitiveIntegration

Symbols should be clearly distinguishable.

Suggestions for improvement

VisualExpressiveness

ComplexityManagement

Dual Coding

Suggestions for improvement

1. Use multiple visual variables (especially colour)

Team Actor Agent Protectedcomponent

Process ObjectProcess Object (Static) Stub Dynamic Stub

24

Page 19: Analysing the Cognitive Effectiveness of the UCM Visual

Perceptual DiscriminabilityPerceptual

Discriminability

GraphicEconomy

SemanticTransparency

CognitiveFit

SemioticClarity

CognitiveIntegration

Symbols should be clearly distinguishable.

Suggestions for improvement

VisualExpressiveness

ComplexityManagement

Dual Coding

2. Choose shapes from different families

Suggestions for improvement

Team

Process

Team

Start Point /Waiting Place AND Join Stub

Process

Object DynamicjEmpty Point AND Fork

DynamicStub

Quadrilaterals Ellipses Complex 3D 25

Page 20: Analysing the Cognitive Effectiveness of the UCM Visual

Visual ExpressivenessU th f ll d iti f i l i bl

PerceptualDiscriminability

GraphicEconomy

SemanticTransparency

CognitiveFit

SemioticClarity

CognitiveIntegration

Use the full range and capacities of visual variables

L ti ( )

VisualExpressiveness

ComplexityManagement

Dual Coding

Location (x,y)ShapeColour Brightness

PrimaryS dColour

GrainSize

BrightnessOrientation

notation Secondarynotation

26

Page 21: Analysing the Cognitive Effectiveness of the UCM Visual

Visual ExpressivenessU th f ll d iti f i l i bl

PerceptualDiscriminability

GraphicEconomy

SemanticTransparency

CognitiveFit

SemioticClarity

CognitiveIntegration

Use the full range and capacities of visual variables VisualExpressiveness

ComplexityManagement

Dual Coding

Check « if form follows content »

27

Page 22: Analysing the Cognitive Effectiveness of the UCM Visual

Related WorkRelated WorkCognitive Dimensions of Notations [Green et al., 2006]• 13 dimensions for cognitive artefacts [7]. 13 dimensions for cognitive artefacts [7]. • Not for visual notations, no guidelines, vague empirical 

foundation, not falsifiableSemiotic Quality (SEQUAL) Framework [Krogstie et al 2006]Semiotic Quality (SEQUAL) Framework [Krogstie et al., 2006]• Comprehensive ontology of quality concepts• Wider in scope, with similar limitations as above, but provides 

measurable criteria and guidelinesmeasurable criteria and guidelinesGuidelines of Modeling [Schuette et al., 2006]• Language quality framework with 6 principles

M b t i l ith l f th b• More about using languages, with rules of thumbsSeven Process Modelling Guidelines [Mendling et al., 2006]• At the instance (diagram) level. Complementary.Moody’s Framework used on ArchMate, UML, i*, and BPMN

28

Page 23: Analysing the Cognitive Effectiveness of the UCM Visual

Observations about the PoN TheoryObservations about the PoN Theory

• Time‐consuming exercise (~2 persons/month)g ( p / )• Training is essential• Availability of metrics is uneven

P t l Di i i bilit th i l di t b t– Perceptual Discriminability: the visual distance between symbols should be “large enough”

• Many principles represent conflicting goals– Need to understand the solution’s trade‐offs

• Finding the semantic constructs is key– Yet it is not straightforwardg– However, once they are known, PoN becomes the most accomplished theory to analyse and improve the cognitive effectiveness of visual modelling languagesg g g

29

Page 24: Analysing the Cognitive Effectiveness of the UCM Visual

Conclusions

• Be aware of the problem, and of the Physics 

Conclusions

p , yof Notations theory!

• Analysis of the strengths and weaknesses of  UCM, with a few ideas for improvements

• Applicable to new languages and extensionsUCM ti h dli ti t– UCM exception handling, time, aspects...

• Need for validation phase– Empirical experiments implicating real UCM usersEmpirical experiments implicating real UCM users

• Should this be standardized?– Rec. Z.111: Notations to define ITU‐T languages?g g

30

Page 25: Analysing the Cognitive Effectiveness of the UCM Visual

BibliographyBibliography[Moody‐TSE‐09] Moody, D.L.: The “Physics” of Notations: Towards a Scientific Basis for Constructing Visual Notations in Software Engineering. IEEE Transactions 

S f E i i 35 (2009) 756 779on Software Engineering 35 (2009) 756–779

[Larkin‐87] Larkin, J., Simon, H.: Why a Diagram Is (Sometimes)Worth Ten Thousand Words. Cognitive Science 11 (1987)g ( )

[Bertin‐83] Bertin, J.: Sémiologie graphique: Les diagrammes ‐ Les réseaux ‐Les cartes. Gauthier‐VillarsMouton & Cie (1983)

[URN] ITU‐T: Recommendation Z.151 (11/08) User Requirements Notation (URN) Language Definition. International Telecommunication Union. (November 2008)

[Z.111] ITU‐T: Recommendation Z.111 (11/08) Notations to define ITU‐T languages. International Telecommunication Union. (November 2008)

[Genon‐UCM] Genon N Amyot D Heymans P : Applying the Physics of[Genon UCM] Genon N., Amyot, D., Heymans, P.: Applying the Physics of Notations to (URN) Use Case Maps. Technical report, PReCISE ‐ University of Namur, http://www. info.fundp.ac.be/~nge/AnalysingUCMagainstPoN.pdf (2010)

31