analog fundamentals of the ecg signal chain · 1 analog fundamentals of the ecg signal chain...

105
1 Analog Fundamentals of the ECG Signal Chain Prepared by Matthew Hann, Texas Instruments Precision Analog Applications Manager Presented by Jose Duenas, Precision Analog Product Marketing Engineer

Upload: truongkien

Post on 01-Jun-2019

254 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Analog Fundamentals of the ECG Signal Chain · 1 Analog Fundamentals of the ECG Signal Chain Prepared by Matthew Hann, Texas Instruments Precision Analog Applications Manager Presented

1

Analog Fundamentals of the ECG

Signal ChainPrepared by

Matthew Hann,

Texas Instruments

Precision Analog Applications Manager

Presented by

Jose Duenas,

Precision Analog Product Marketing Engineer

Page 2: Analog Fundamentals of the ECG Signal Chain · 1 Analog Fundamentals of the ECG Signal Chain Prepared by Matthew Hann, Texas Instruments Precision Analog Applications Manager Presented

2

Objectives

• Introduce Basic ECG Concepts

• Motivate the Need for TINA and SPICE

Simulation for ECG Analysis

• Introduce Discrete Analog Functions of

the ECG Signal Chain

• Motivate Need for Low Cost Integrated

ECG Conditioning System

• Introduce the ADS1298 and Its

Embedded ECG Circuitry and Functions

Page 3: Analog Fundamentals of the ECG Signal Chain · 1 Analog Fundamentals of the ECG Signal Chain Prepared by Matthew Hann, Texas Instruments Precision Analog Applications Manager Presented

3

Analog Fundamentals of the

ECG Signal Chain

• What is a Biopotential?

• What is ECG?

• The Einthoven Triangle

• Analog Lead Definitions, Derivations, and Purpose

• Modeling the Electrode Interface

• Input Filtering and Defibrillation Protection

• The INA front end

• AC vs. DC coupling

• Right Leg Drive (RLD) Amplifier Selection and Design

• The ECG Shield Drive

• Lead Off Detection

• PACE Detection

• INA post Gain + Analog Filtering

• A/D Conversion Options and Filtering

• ADS129x Introduction, Features, and Advantages

Page 4: Analog Fundamentals of the ECG Signal Chain · 1 Analog Fundamentals of the ECG Signal Chain Prepared by Matthew Hann, Texas Instruments Precision Analog Applications Manager Presented

41

What is a Biopotential?

Page 5: Analog Fundamentals of the ECG Signal Chain · 1 Analog Fundamentals of the ECG Signal Chain Prepared by Matthew Hann, Texas Instruments Precision Analog Applications Manager Presented

5

What is a BiopotentialAn electric potential measured between living cells

Page 6: Analog Fundamentals of the ECG Signal Chain · 1 Analog Fundamentals of the ECG Signal Chain Prepared by Matthew Hann, Texas Instruments Precision Analog Applications Manager Presented

6

What is a BiopotentialEvery cell is like a little battery

Intracellular medium/

Cytoplasmic fluid

Extracellular

medium/fluid Ion channels

(proteins)

Cell membrane

(lipids)

•Resting ion chs.

•Active ion pumps

•Gated ion chs.

Page 7: Analog Fundamentals of the ECG Signal Chain · 1 Analog Fundamentals of the ECG Signal Chain Prepared by Matthew Hann, Texas Instruments Precision Analog Applications Manager Presented

7

What is a BiopotentialEvery cell is like a little battery

K+ is 30 to 50x

higher @ rest

Na+ conc. is 10x

higher @ rest Ion channels

(proteins)

Cell membrane

(lipids)

•Resting ion chs.•Active ion pumps

•Gated ion chs.

Diffusional

force

Electrostatic

Force

Page 8: Analog Fundamentals of the ECG Signal Chain · 1 Analog Fundamentals of the ECG Signal Chain Prepared by Matthew Hann, Texas Instruments Precision Analog Applications Manager Presented

8

What is a BiopotentialEvery cell is like a little battery

Intracellular medium/

Cytoplasmic fluid

Extracellular

medium/fluid Ion channels

(proteins)

Cell membrane

(lipids)

•Resting ion chs.

•Active ion pumps

•Gated ion chs.

Neurotransmitter are

received at dendrites

Page 9: Analog Fundamentals of the ECG Signal Chain · 1 Analog Fundamentals of the ECG Signal Chain Prepared by Matthew Hann, Texas Instruments Precision Analog Applications Manager Presented

9

What is a BiopotentialBiopotentials from cells electrodes

Page 10: Analog Fundamentals of the ECG Signal Chain · 1 Analog Fundamentals of the ECG Signal Chain Prepared by Matthew Hann, Texas Instruments Precision Analog Applications Manager Presented

101

What is ECG?

Page 11: Analog Fundamentals of the ECG Signal Chain · 1 Analog Fundamentals of the ECG Signal Chain Prepared by Matthew Hann, Texas Instruments Precision Analog Applications Manager Presented

11

What is ECG?A measure of the electrical activity of the heart

Page 12: Analog Fundamentals of the ECG Signal Chain · 1 Analog Fundamentals of the ECG Signal Chain Prepared by Matthew Hann, Texas Instruments Precision Analog Applications Manager Presented

12

What is ECG?ECG and blood pressure waves

Page 13: Analog Fundamentals of the ECG Signal Chain · 1 Analog Fundamentals of the ECG Signal Chain Prepared by Matthew Hann, Texas Instruments Precision Analog Applications Manager Presented

13

What is ECG?Actual ECG-normal

Page 14: Analog Fundamentals of the ECG Signal Chain · 1 Analog Fundamentals of the ECG Signal Chain Prepared by Matthew Hann, Texas Instruments Precision Analog Applications Manager Presented

14

What is ECG?ECG irregular tracings due to external artifacts

Page 15: Analog Fundamentals of the ECG Signal Chain · 1 Analog Fundamentals of the ECG Signal Chain Prepared by Matthew Hann, Texas Instruments Precision Analog Applications Manager Presented

15

What is ECG?Modeling the electrode interface

Electrical characteristics include a DYNAMIC resistance,

capacitance, and offset voltage

Page 16: Analog Fundamentals of the ECG Signal Chain · 1 Analog Fundamentals of the ECG Signal Chain Prepared by Matthew Hann, Texas Instruments Precision Analog Applications Manager Presented

161

Analog Lead Derivation

Page 17: Analog Fundamentals of the ECG Signal Chain · 1 Analog Fundamentals of the ECG Signal Chain Prepared by Matthew Hann, Texas Instruments Precision Analog Applications Manager Presented

17

3 Body Electrodes, 3 Derived Leads = I, II, III

LEAD I = VLA-RL – VRA-RL

LEAD II = VLL-RL – VRA-RL

LEAD III = VLL-RL – VLA-RL

Einthoven’s Law

In electrocardiogram at any

given instant the potential of

any wave in Lead II is equal

to the sum of the potentials

in Lead I and III.

Right Leg

Reference,

RL

Analog Lead DerivationECG Einthoven Triangle, 1907

Page 18: Analog Fundamentals of the ECG Signal Chain · 1 Analog Fundamentals of the ECG Signal Chain Prepared by Matthew Hann, Texas Instruments Precision Analog Applications Manager Presented

18

*Drawing Taken From Bioelectromagnetism, Jaako Malmivuo and Robert Plonsey

WCT

RA LA LL

3

Assuming:

3WCT

RRA

RA LA LL

RRA

RRA = RLA = RLL

Then:

Analog Lead DerivationThe Wilson Central (WCT) Provides Chest Lead

Reference at Center of Einthoven Triangle

Page 19: Analog Fundamentals of the ECG Signal Chain · 1 Analog Fundamentals of the ECG Signal Chain Prepared by Matthew Hann, Texas Instruments Precision Analog Applications Manager Presented

19

The Wilson Central

is used to derive a

reference potential

for the Chest Leads,

V1 – V6

RRA

RLA

RLL

VOUT = V(1-6) - VWCT

Analog Lead DerivationThe Wilson Central is the AVERAGE potential

between RA, LA, and LL

Page 20: Analog Fundamentals of the ECG Signal Chain · 1 Analog Fundamentals of the ECG Signal Chain Prepared by Matthew Hann, Texas Instruments Precision Analog Applications Manager Presented

20

Different Chest Leads

Provide:

*Unique ECG Signature

*Enhanced Pattern

Recognition

*Isoelectric Point @ V3-V4

Analog Lead DerivationChest Lead Signals Provide Different Information at

Different Cross-Sectional Angles

Page 21: Analog Fundamentals of the ECG Signal Chain · 1 Analog Fundamentals of the ECG Signal Chain Prepared by Matthew Hann, Texas Instruments Precision Analog Applications Manager Presented

21

Each lead provides

unique information about

the ECG Output Signal

Multiple Angles Give a

Better Than 2-D Picture

of the ECG Output

AVR, AVL, AVF derived

via midpoint of 2 limbs

(resistor divider) with

Respect to 3rd limb

Analog Lead DerivationAugmented Leads Derived via WCT to Provide

Enhanced Vector Information

Page 22: Analog Fundamentals of the ECG Signal Chain · 1 Analog Fundamentals of the ECG Signal Chain Prepared by Matthew Hann, Texas Instruments Precision Analog Applications Manager Presented

22

Standards Electrodes Needed

1 Lead LA, RA

3 Lead LA, RA, LL

6 Leads LA, RA, LL

12 Leads LA, RA, LL, V1-6

Analog Lead DerivationIEC60601-2-51—Diagnostic

Page 23: Analog Fundamentals of the ECG Signal Chain · 1 Analog Fundamentals of the ECG Signal Chain Prepared by Matthew Hann, Texas Instruments Precision Analog Applications Manager Presented

23

Analog Lead DerivationDifferent Lead Combinations Reveal Axis Deviation

+

=

and

QRS in LEAD I QRS in AVF Left Axis

Deviation

(LAD)

Mean QRS Vector Points Toward Area of Infarction (Damage)

Page 24: Analog Fundamentals of the ECG Signal Chain · 1 Analog Fundamentals of the ECG Signal Chain Prepared by Matthew Hann, Texas Instruments Precision Analog Applications Manager Presented

24

Analog Lead DerivationDifferent Lead Combinations Reveal Axis Deviation

LAD

Norm

alRAD

Ext

rem

e

RAD

I

AVF

I

AVF

I

AVF

I

AVF

Page 25: Analog Fundamentals of the ECG Signal Chain · 1 Analog Fundamentals of the ECG Signal Chain Prepared by Matthew Hann, Texas Instruments Precision Analog Applications Manager Presented

251

ECG Input Filtering, Defibrillation

Protection, and Isolation

Page 26: Analog Fundamentals of the ECG Signal Chain · 1 Analog Fundamentals of the ECG Signal Chain Prepared by Matthew Hann, Texas Instruments Precision Analog Applications Manager Presented

26

ECG Input Filtering and ProtectionExample: LEAD I Protection with Input Filtering

+Vs

+Vs

-Vs

-VsCdiff

CCM

CCMCF

CF

Rfilter1

Rfilter1

Rfilter2

Rfilter2

LA

RA

NE2H

NE2H

Protection

Diodes

Zener

Diode

Cdiff = 10 x CcmNe2H Lamps/TVS Protect

Against Defibrillation

Voltages

Series Resistance

Limits Input Current

CF, Ccm, and Cdiff +

Rfilter form LPF

RPatient

RPatient

Patient

Protection 10

-20k ohms

Page 27: Analog Fundamentals of the ECG Signal Chain · 1 Analog Fundamentals of the ECG Signal Chain Prepared by Matthew Hann, Texas Instruments Precision Analog Applications Manager Presented

271

System Block Diagram

Page 28: Analog Fundamentals of the ECG Signal Chain · 1 Analog Fundamentals of the ECG Signal Chain Prepared by Matthew Hann, Texas Instruments Precision Analog Applications Manager Presented

28

System Block Diagram

RA

LA

LL

RL

V1

V2

V3

V4

V5

V6

WilsonI

II

III

aVR

aVL

aVF

INA MUX

INA

WCT

Filter MUX

A/D

Isolation

dV/dt

QRS and PACE

Detect

DIO

Page 29: Analog Fundamentals of the ECG Signal Chain · 1 Analog Fundamentals of the ECG Signal Chain Prepared by Matthew Hann, Texas Instruments Precision Analog Applications Manager Presented

291

The INA Front End

Page 30: Analog Fundamentals of the ECG Signal Chain · 1 Analog Fundamentals of the ECG Signal Chain Prepared by Matthew Hann, Texas Instruments Precision Analog Applications Manager Presented

30

Input Bias Current

Input Impedance

Input Current Noise

Input Voltage Noise

Power Consumption

DC/AC CMRR

*Important*

Input Offset Voltage

Input Offset Voltage Drift

Gain Error

Nonlinearity

PSRR

Less Important

*DC Errors such as VOS are swamped out by the

Offsets Introduced by the Skin-Electrode Contacts

The INA Front EndKey Features of the INA Front End

Page 31: Analog Fundamentals of the ECG Signal Chain · 1 Analog Fundamentals of the ECG Signal Chain Prepared by Matthew Hann, Texas Instruments Precision Analog Applications Manager Presented

31

VrefVref

R21 1k

R25 1k

C6 100p

R14 100k

R19 1k

C7 47n

R20 1k

V4 0

C8 100p

R22 100k

R23 1k

C9 47n

R24 1k

V5 0

R1 63.4k R3 63.4k

C18 3

3p

C19 3

3p

R4 63.4k R5 63.4k

C10 3

3p

C12 3

3p

C20 3

30p

+

ECGp

-

+

-

+

INA 1

Vout

nV Vn12 Vnoise

fAIn12 In_fA

ECG + Skin

Impedance

Electrode

Impedance +

Offset

Input CM +

Differential

Filtering

Ideal INA

Front End

The INA Front EndIdeal Simulation Circuit with Current and Voltage Noise

Sources

Page 32: Analog Fundamentals of the ECG Signal Chain · 1 Analog Fundamentals of the ECG Signal Chain Prepared by Matthew Hann, Texas Instruments Precision Analog Applications Manager Presented

32

T

Frequency (Hz)

1.00 10.00 100.00 1.00k

To

tal

no

ise (

V)

0.00

4.00u

8.00u

12.00u

16.00u

20.00u

24.00u

28.00u

32.00u

The INA Front EndSimulation Showing Output-Referred Total RMS Noise

vs. Bandwidth (G = 1-10)

Noise may NOT necessarily

increase linearly with gain

(INA or PGA topology

dependent)50k

50k

150k

150k

Vout

Va1

Va2

-

+

A1

-

+ A2

Vin-

Vin+

Rg

1k

-

+

A3

+

+

+

VCM

-Vdif

2

Vdif

2

150k

150k

Page 33: Analog Fundamentals of the ECG Signal Chain · 1 Analog Fundamentals of the ECG Signal Chain Prepared by Matthew Hann, Texas Instruments Precision Analog Applications Manager Presented

33

T

Time (s)

8.37m 366.11m 723.85m

Voltage (

V)

2.50

2.50

2.51

Snapshot of R

Wave from

ECG Waveform

ECG Signal Varies

LINEARLY with

Increase in Gain

The INA Front EndTINA Simulations Showing Output-Referred ECG Signal

(G = 1-10)

Page 34: Analog Fundamentals of the ECG Signal Chain · 1 Analog Fundamentals of the ECG Signal Chain Prepared by Matthew Hann, Texas Instruments Precision Analog Applications Manager Presented

34

(1) (2)

(3)

(1) Electrode Offset MAX = +/- 300mV

(2) Swing of INA = V(+) – 50mV

(3) Integrator Compliance = (ECGp + ECGn +VOS + VOSelectrode)* Gain < VCC - Vref

Vref

Integrator Removes

Gained up DC offsets and

servos INA output to Vref

The INA Front EndWhat is the MAX gain on the INA When Using a DC

Removal Circuit?

Page 35: Analog Fundamentals of the ECG Signal Chain · 1 Analog Fundamentals of the ECG Signal Chain Prepared by Matthew Hann, Texas Instruments Precision Analog Applications Manager Presented

35

Vref

Vref

VCC

1k

1k

47n

52k

150m

47n

52k

-150m

63.4k 63.4k

33p

33p

63.4k 63.4k 33p 3

3p

330p

+

ECGp

Vout

100k

100n

+

ECGn +-

+

OPA333

-

+

-

+

VCVS1 1

OPA333 Used as Integrator

to Remove DC and Simulate

Real Response During

Saturation

The INA Front EndSimulation Circuit with Ideal INA and Vref = 2.5V as

Integrator Input

Page 36: Analog Fundamentals of the ECG Signal Chain · 1 Analog Fundamentals of the ECG Signal Chain Prepared by Matthew Hann, Texas Instruments Precision Analog Applications Manager Presented

36Time (s)

0.00 750.00m 1.50

Vout[G = 1]

2.50

2.50

Vout[G = 3]

2.50

2.50

Vout[G = 6]

2.50

2.50

Vout[G = 8]

2.49

2.50

Vout[G=9]

2.70

2.71

Vout[G=10]

3.00

3.01

As the output of the

Integrator Saturates from

Increased Gain, Vout of the

INA pulls away from Vref

The INA Front EndECG + Integrator Output of INA vs. Gain for Vref = 2.5V

Page 37: Analog Fundamentals of the ECG Signal Chain · 1 Analog Fundamentals of the ECG Signal Chain Prepared by Matthew Hann, Texas Instruments Precision Analog Applications Manager Presented

37

*AC Coupling Removes Electrode

Offsets so that Higher Gain Can Be

Used for Potentially Better SNR in the

Signal Chain Path

VCM + ECGp +

VOSelectrode1

VCM + ECGn +

VOSelectrode2

ECGp

ECGn

(ECGp –ECGn)*Gain

The INA Front EndIf it is Advantageous to Maximize Gain with a Low Noise

INA up Front, Why not AC Couple?

Page 38: Analog Fundamentals of the ECG Signal Chain · 1 Analog Fundamentals of the ECG Signal Chain Prepared by Matthew Hann, Texas Instruments Precision Analog Applications Manager Presented

38

Vref

Vref

Vref

Vref

R13 10M

CCn 1u

C9 3

30p

C8 3

3p

C7 3

3p

R11 63.4kR10 63.4kC

6 3

3p

C5 3

3p

R9 63.4kR8 63.4k

V4 0

R7 52k

C4 47n

V3 0

R4 52k

C2 47n R14 10M

CCp 1u

+

ECGp

+

ECGn

-

+

-

+

INA 1

-

+

Vout

The INA Front EndTINA Simulation Circuit to Show AC-Coupled INA Gain

Sweep

Page 39: Analog Fundamentals of the ECG Signal Chain · 1 Analog Fundamentals of the ECG Signal Chain Prepared by Matthew Hann, Texas Instruments Precision Analog Applications Manager Presented

39Time (s)

723.18m 969.60m 1.22

Vo

lta

ge

(V

)

1.71

1.98

2.25

2.52

2.79

3.06

The INA Front EndINA Gain = 1-1000 with VREF = 2.5V AC Coupled

Page 40: Analog Fundamentals of the ECG Signal Chain · 1 Analog Fundamentals of the ECG Signal Chain Prepared by Matthew Hann, Texas Instruments Precision Analog Applications Manager Presented

40

ECGp

ECGn

VCM

Vout VOS Gain

CMRR 20 log10

V CM

V OS

20V CM Gain

V out

Vout ECGp ECGn VOSelectrode VOSOPAV CM

10

CMRR

20

Gain

Lower CMRR = More

Unwanted Output Signal

The INA Front EndWhat is CMRR? Why is it Important in ECG?

Page 41: Analog Fundamentals of the ECG Signal Chain · 1 Analog Fundamentals of the ECG Signal Chain Prepared by Matthew Hann, Texas Instruments Precision Analog Applications Manager Presented

41

The INA includes the

R and C and must be

considered in the

overall CMRR Analysis

Vdiff_actual Vinp

Rp12

Rp12 j

Cc1

2

Vinn

Rp22

Rp22 j

Cc2

2

•Mismatch in Rp and Cc

causes a differential

signal error

•Even a 1% tolerance

on Cc cause a 20dB

attenuation in CMRR

AmpAmp

The INA Front EndWhat is CMRR? Why is it Important in ECG?

CC1

CC2

RP1

RP2

ECGp

ECGn

VCM

Page 42: Analog Fundamentals of the ECG Signal Chain · 1 Analog Fundamentals of the ECG Signal Chain Prepared by Matthew Hann, Texas Instruments Precision Analog Applications Manager Presented

42

VCCVref

Vref

Vref

R13 10M

C12 1u

Vout

R14 10M

+

VCM

R1 2

0k

C2 47n

R4 52k

V3 0

C4 47n

R7 52k

V4 0

R8 63.4k R9 63.4k

C5 3

3p

C6 3

3p

R10 63.4k R11 63.4kC

7 3

3pC8 3

3p

C9 3

30p

C1 1u

RG

+

-V-

RefOut

V+RG

U1 INA333_C

CMR TINA Circuit Test By

Sweep of Mismatch of Input

Coupling Capacitors

The INA Front End50/60Hz Common Mode Simulation Circuit with 1µF

Coupling Capacitors Mismatched

Page 43: Analog Fundamentals of the ECG Signal Chain · 1 Analog Fundamentals of the ECG Signal Chain Prepared by Matthew Hann, Texas Instruments Precision Analog Applications Manager Presented

43

T

Frequency (Hz)

100.00m 1.00 10.00 100.00

Voltage (

V)

-100.00

-80.00

-60.00

-40.00

0% Mismatch

.5% Mismatch

The INA Front EndPlot of CMRR vs. Frequency for .01 - .5% Coupling

Capacitor Mismatch

Page 44: Analog Fundamentals of the ECG Signal Chain · 1 Analog Fundamentals of the ECG Signal Chain Prepared by Matthew Hann, Texas Instruments Precision Analog Applications Manager Presented

44

T

Time (s)

0.00 400.00m 800.00m

Voltage (

V)

2.50

2.51

Lower Frequency

Signals Couple

Directly Into the ECG

Signal to the Output

The INA Front EndPlot of ECG Response to 5Hz CM Input Signal (0%-

.5%) CC Mismatch

Page 45: Analog Fundamentals of the ECG Signal Chain · 1 Analog Fundamentals of the ECG Signal Chain Prepared by Matthew Hann, Texas Instruments Precision Analog Applications Manager Presented

45

T

Time (s)

0.00 400.00m 800.00m

Vout

2.50

2.51 •50/60Hz Noise Rejection is

Virtually Unaffected by AC

Coupling

•Dependent Primarily on the

Noise Magnitude and the

CMRR of the Front End INA

The INA Front EndPlot of ECG Response to 50/60 Hz CM Input Signal

Page 46: Analog Fundamentals of the ECG Signal Chain · 1 Analog Fundamentals of the ECG Signal Chain Prepared by Matthew Hann, Texas Instruments Precision Analog Applications Manager Presented

461

The Right Leg Drive Amplifier

Page 47: Analog Fundamentals of the ECG Signal Chain · 1 Analog Fundamentals of the ECG Signal Chain Prepared by Matthew Hann, Texas Instruments Precision Analog Applications Manager Presented

47

Average VCM is

Inverted and Fed

Back to RL;

Cancels 50/60Hz

noise

*Tapping off center of split gain

resistor feeds the following

voltage to the RL Drive Circuit

[(Vcm+ ECGP )+ (Vcm+ ECGn )]/ 2

= Vcm + (ECGp + ECGn )/2

CMnoise

CMnoise

ECGp

ECGn

The RL Drive AmplifierThe RL Drive Amplifier Serves 2 Purposes: (1)

Common Mode Bias (2) Noise Cancellation

Page 48: Analog Fundamentals of the ECG Signal Chain · 1 Analog Fundamentals of the ECG Signal Chain Prepared by Matthew Hann, Texas Instruments Precision Analog Applications Manager Presented

48

Vre

f

VCC

VCC

Vref

VCC

VC

C

Vref

Vout

RG

+

-V-

RefOut

V+RG

U3 INA333

RG1 10k

RG2 10k

R3 10k

R5 1M

R6 1kNS

NS1 2.5

R13 1

M

R14 1

M

NS

NS2 2.5

+

ECGn

+

ECGp

R15 1M

R12 1

M

NS

NS3 2.5

C10 1u

+

-

+

U1 OPA333

R2 1k

R1 1k

R7 1k

C4 47n

R4 1k

C2 47n

R8 63.4k R9 63.4k

C5 3

3p

C6 3

3p

R10 63.4k R11 63.4k

C7 3

3pC8 3

3p

C9 3

30p

+N

ois

e

+

-

+

U2 OPA333

+

-

+

U4 OPA333

R16 1

M

= Included for

TINA spice

Convergence

The RL Drive Amplifier Simulation Circuit for Response to 50/60 Hz CM Noise

Injection Source

Page 49: Analog Fundamentals of the ECG Signal Chain · 1 Analog Fundamentals of the ECG Signal Chain Prepared by Matthew Hann, Texas Instruments Precision Analog Applications Manager Presented

49

T

Time (s)

0.00 665.73m 1.33

ECGn

-150.00u

750.00u

ECGp

-150.00u

750.00u

Noise

-1.00

1.00

Vout

2.50

2.51

The RL Drive Amplifier TINA

Simulation with NO RL Drive; CM Noise is Coupled to

Output

Page 50: Analog Fundamentals of the ECG Signal Chain · 1 Analog Fundamentals of the ECG Signal Chain Prepared by Matthew Hann, Texas Instruments Precision Analog Applications Manager Presented

50

T

Time (s)

5.46m 282.16m 558.86m

ECGn

-150.00u

750.00u

ECGp

-150.00u

750.00u

Noise

-1.00

1.00

Vout

2.50

2.51

The RL Drive Amplifier TINA Simulation with RL Drive; Output Noise is

Reduced

Page 51: Analog Fundamentals of the ECG Signal Chain · 1 Analog Fundamentals of the ECG Signal Chain Prepared by Matthew Hann, Texas Instruments Precision Analog Applications Manager Presented

51

VoutA1

Vcm VECGp Vep Vcm VECGn Ven

RG

RG

2

VOSA1

ECGn

ECGp

Vep

Ven

VREF

RF

RI

RG/2

RG/2

RA

RA

VECGp + Vep + VCM

VECGn + Ven + VCM

VRL

Vref VoutA1 RI

RF Vref

•More Gain = Better CMRR

•Loop Corrects for

Electrode Offset, VOSA1,

and VOSRLD

The RL Drive Amplifier Analyzing the RLD Amplifier Loop

Page 52: Analog Fundamentals of the ECG Signal Chain · 1 Analog Fundamentals of the ECG Signal Chain Prepared by Matthew Hann, Texas Instruments Precision Analog Applications Manager Presented

52

The RL Drive Amplifier Simulation Circuit for CMRR of RLD Loop

Vre

f

VCC

VCC

Vref

VCC

VC

C

VCC

Vref

RG1 25k

RG2 25k

R3 10k

R14 1

00k

R7 52k

C4 47n

R4 52k

C2 47n

R8 63.4k R9 63.4k

C5 3

3p

C6 3

3p

R10 63.4k R11 63.4k

C7 3

3pC8 3

3p

C9 3

30p

+

-

+

U2 OPA333

+

-

+

U4 OPA333

RG

+

-V-

RefOut

V+RG

U3 INA333

R12 1

MC10 1u

+

-

+

U1 OPA333R15 1M

R13 1

00k

V3 0

V4 0

R2 100k

R16 1

0M

R_R

LD

52k

C_R

LD

47n R

17 1

M

V1 2.5

V2 2.5

NS

NS1 2.5

+

Vcm

Vout

RF 10k

Sweep Feedback

Resistor Gain to

show Effects of

CMRR @ 50/60Hz

Page 53: Analog Fundamentals of the ECG Signal Chain · 1 Analog Fundamentals of the ECG Signal Chain Prepared by Matthew Hann, Texas Instruments Precision Analog Applications Manager Presented

53

The RL Drive Amplifier CMRR Plots vs. Gain in RLD Loop

T

Frequency (Hz)

10.00 100.00

CM

RR

(d

B)

-120.00

-100.00

-80.00

RF = 10k

RF = 1M

RF = 100k

RF = 10M

Page 54: Analog Fundamentals of the ECG Signal Chain · 1 Analog Fundamentals of the ECG Signal Chain Prepared by Matthew Hann, Texas Instruments Precision Analog Applications Manager Presented

54

Electrode

Resistance Varies

With Contact and

Moisture, Presents

Problems for RLD

Stability

The RL Drive Amplifier RL Drive Stability Simulation Circuit

Local RLD Loop is

Broken to Ensure

Proper Phase Margin

Over Range of

Electrode Resistance

Vre

f

VCC

VCC

VrefVCC

VC

C

VCC

Vref

RG1 25k

RG2 25k

R3 10k

R14 1

00k

R7 52k

C4 47n

R4 52k

C2 47n

R8 63.4k R9 63.4k

C5 3

3p

C6 3

3p

R10 63.4k R11 63.4k

C7 3

3pC8 3

3p

C9 3

30p

+

-

+

U2 OPA333

+

-

+

U4 OPA333

RG

+

-V-

RefOut

V+RG

U3 INA333

+

Vin

C1 1

G

VoA

R12 1

MC10 1u

+

-

+

U1 OPA333R15 1M

V3 0

V4 0

R2 100kL1 1G

R_R

LD

52k

C_R

LD

47n

Vloop

R17 1

M

V1 2.5

V2 2.5

R5 10M

Page 55: Analog Fundamentals of the ECG Signal Chain · 1 Analog Fundamentals of the ECG Signal Chain Prepared by Matthew Hann, Texas Instruments Precision Analog Applications Manager Presented

55

T

Frequency (Hz)

1.00 10.00 100.00 1.00k 10.00k 100.00k 1.00M 10.00M

Gain

(dB

)

-20.00

0.00

20.00

40.00

60.00

80.00

100.00

120.00

1/Beta

AOL

The RL Drive Amplifier RL Drive Simulation Showing Instability in the RLD

Feedback Loop

> 20dB/dec ROC (Rate of

Closure) = INSTABILITY

Page 56: Analog Fundamentals of the ECG Signal Chain · 1 Analog Fundamentals of the ECG Signal Chain Prepared by Matthew Hann, Texas Instruments Precision Analog Applications Manager Presented

56

T

Frequency (Hz)

1.00 10.00 100.00 1.00k 10.00k 100.00k 1.00M 10.00M

Gain

(dB

)

-20.00

0.00

20.00

40.00

60.00

80.00

100.00

120.00

Feedback Comp

Placed vs. Worst

Case Electrode

Resistance and

RLD AOL

Intersection

of 1/ß and

AOL curve > -

40dB/dec

The RL Drive Amplifier Using RLD Simulation to Compensate for 1/Beta

Variation With Electrode Resistance

Page 57: Analog Fundamentals of the ECG Signal Chain · 1 Analog Fundamentals of the ECG Signal Chain Prepared by Matthew Hann, Texas Instruments Precision Analog Applications Manager Presented

57

Vre

f

VCC

VCC

Vref

VCC

VC

C

VCC

Vref

RG1 25k

RG2 25k

R3 10k

R14 1

00k

R7 52k

C4 47n

R4 52k

C2 47n

R8 63.4k R9 63.4k

C5 3

3p

C6 3

3p

R10 63.4k R11 63.4k

C7 3

3pC8 3

3p

C9 3

30p

+

-

+

U2 OPA333

+

-

+

U4 OPA333

RG

+

-V-

RefOut

V+RG

U3 INA333

+

Vin

C1 1

G

VoA

R12 1

MC10 1u

+

-

+

U1 OPA333R15 1M

R13 1

00k

V3 0

V4 0

R2 100k

R16 1

0M

L1 1GR_R

LD

52k

C_R

LD

47n

Vloop

R17 1

M

R18 1

0M

R19 10M

V1 2.5

V2 2.5

The RL Drive Amplifier RL Drive Stability Simulation Circuit of Feedback #1

Page 58: Analog Fundamentals of the ECG Signal Chain · 1 Analog Fundamentals of the ECG Signal Chain Prepared by Matthew Hann, Texas Instruments Precision Analog Applications Manager Presented

58

The RL Drive Amplifier RL Drive Stability Simulation Circuit of Feedback #2

Vre

f

VCC

VCC

Vref

VCC

VC

C

VCC

Vref

Vref

RG1 25k

RG2 25k

R3 10k

R14 1

00k

R7 52k

C4 47n

R4 52k

C2 47n

R8 63.4k R9 63.4k

C5 3

3p

C6 3

3p

R10 63.4k R11 63.4k

C7 3

3pC8 3

3p

C9 3

30p

+

-

+

U2 OPA333

+

-

+

U4 OPA333

RG

+

-V-

RefOut

V+RG

U3 INA333

+

Vin

C1 1

G

VoA

R12 1

MC10 1u

+

-

+

U1 OPA333R15 1M

R13 1

00k

V3 0

V4 0

R2 100k

R16 1

0M

L1 1GR_R

LD

52k

C_R

LD

47n

Vloop

R17 1

M

V1 2.5

V2 2.5

R1 10M

Page 59: Analog Fundamentals of the ECG Signal Chain · 1 Analog Fundamentals of the ECG Signal Chain Prepared by Matthew Hann, Texas Instruments Precision Analog Applications Manager Presented

59

Vre

f

VCC

VCC

Vref

VCC

VC

C

VCC

Vref

RG1 25k

RG2 25k

R3 10k

R14 1

00k

R7 52k

C4 47n

R4 52k

C2 47n

R8 63.4k R9 63.4k

C5 3

3p

C6 3

3p

R10 63.4k R11 63.4k

C7 3

3pC8 3

3p

C9 3

30p

+

-

+

U2 OPA333

+

-

+

U4 OPA333

RG

+

-V-

RefOut

V+RG

U3 INA333

R12 1

MC10 1u

+

-

+

U1 OPA333R15 1M

R13 1

00k

V3 0

V4 0

R2 100k

R16 1

0M

R_R

LD

52k

C_R

LD

47n R

17 1

M

V1 2.5

V2 2.5

C3 3.3nR1 10k

NS

NS1 2.5

+

Vcm

Vout

R5 10M

The RL Drive Amplifier RLD Stability Circuit with Compensated Amplifier

Page 60: Analog Fundamentals of the ECG Signal Chain · 1 Analog Fundamentals of the ECG Signal Chain Prepared by Matthew Hann, Texas Instruments Precision Analog Applications Manager Presented

60

T

Frequency (Hz)

1.00 10.00 100.00 1.00k 10.00k 100.00k 1.00M 10.00M

Gain

(dB

)

-20.00

0.00

20.00

40.00

60.00

80.00

100.00

120.00

RLD Local R

Feedback

AOL INA+ Electrode

Loop Feedback

Composite

Feedback

1/ß

The RL Drive Amplifier RL Drive Stability Simulation of Separate Feedback

Paths

Compensation

Feedback

Page 61: Analog Fundamentals of the ECG Signal Chain · 1 Analog Fundamentals of the ECG Signal Chain Prepared by Matthew Hann, Texas Instruments Precision Analog Applications Manager Presented

61

T

Frequency (Hz)

1.00 3.16k 10.00M

Gain

(dB

)

-20.00

0.00

20.00

40.00

60.00

80.00

100.00

120.00

The RL Drive Amplifier Compensated RLD Circuit Simulation of 1/Beta and

AOL Intersection

Intersection of 1/Beta and

AOL curve is 20dB/dec =

STABLE

Page 62: Analog Fundamentals of the ECG Signal Chain · 1 Analog Fundamentals of the ECG Signal Chain Prepared by Matthew Hann, Texas Instruments Precision Analog Applications Manager Presented

62

T

Ga

in (

dB

)

0.00

20.00

40.00

60.00

80.00

100.00

120.00

Frequency (Hz)

1.00 3.16k 10.00M

Ph

as

e [

de

g]

0.00

45.00

90.00

135.00

180.00

The RL Drive Amplifier Gain and Phase Margin Plots of Compensated RLD

Amplifier

Loop Gain Phase Margin

@ 0dB = 70 degrees

Page 63: Analog Fundamentals of the ECG Signal Chain · 1 Analog Fundamentals of the ECG Signal Chain Prepared by Matthew Hann, Texas Instruments Precision Analog Applications Manager Presented

63

The RL Drive Amplifier Step Response of RLD Amplifier and ECG Output

T

Time (s)

0.00 5.00m 10.00m

Vin

-100.00m

100.00m

VoA

2.45

2.55

Vout

2.20

2.80

Page 64: Analog Fundamentals of the ECG Signal Chain · 1 Analog Fundamentals of the ECG Signal Chain Prepared by Matthew Hann, Texas Instruments Precision Analog Applications Manager Presented

641

The ECG Shield Drive

Page 65: Analog Fundamentals of the ECG Signal Chain · 1 Analog Fundamentals of the ECG Signal Chain Prepared by Matthew Hann, Texas Instruments Precision Analog Applications Manager Presented

65

The ECG Shield DriveShield drive eliminates leakage to ECG Inputs

• Capacitance of cable can be 500 pF to 1.5 nF

• Isolation resistor Necessary for improved EMI/RFI filtering

• Shield is driven to

(VIN(+) — VIN(–)) /2

• Eliminates Leakage

from CP1 and CP2

+

–+

+

+

ECGP

ECGN

CP1

CP2

VCC/2

Page 66: Analog Fundamentals of the ECG Signal Chain · 1 Analog Fundamentals of the ECG Signal Chain Prepared by Matthew Hann, Texas Instruments Precision Analog Applications Manager Presented

66

Vref

Vre

f

VCC

VC

C

VC

C

VF1R1 10k

R2 10k

R15 1M

R12 1

M

NS

NS3 2.5

C10 1u

+

-

+

U1 OPA333

RG

+

-V-

RefOut

V+RG

U2 INA333

VF2

VF3

C9 3

30p

C8 3

3p

C7 3

3p

R11 63.4kR10 63.4k

C6 3

3p

C5 3

3p

R9 63.4kR8 63.4kC2 47n

R5 1k

C4 47n

R7 1k

R4 10k

R3 10k

+

-

+

U3 OPA333

C1 1

n

+

VG

1

C3 1

TVout

VinP

VFL1 1T

VinN

Effective

Cable Shield

Capacitance

The ECG Shield DriveAC Stability Simulation Circuit for OPA333 as Shield Driver

Page 67: Analog Fundamentals of the ECG Signal Chain · 1 Analog Fundamentals of the ECG Signal Chain Prepared by Matthew Hann, Texas Instruments Precision Analog Applications Manager Presented

67

Frequency (Hz)

1.00 10.00 100.00 1.00k 10.00k 100.00k 1.00M

Gain

(d

B)

-20.00

0.00

20.00

40.00

60.00

80.00

100.00

120.00

The ECG Shield DriveAOL + 1/Beta Response of OPA333 Shield Drive and 1nF

Cable Capacitance

-40dB/decade Intersection

of AOL and 1/Beta =

UNSTABLE

Page 68: Analog Fundamentals of the ECG Signal Chain · 1 Analog Fundamentals of the ECG Signal Chain Prepared by Matthew Hann, Texas Instruments Precision Analog Applications Manager Presented

68

Vref

Vre

f

VCC

VC

C

VC

C

VF1R1 10k

R2 10k

R15 1M

R12 1

M

NS

NS3 2.5

C10 1u

+

-

+

U1 OPA333

RG

+

-V-

RefOut

V+RG

U2 INA333

VF2

VF3

C9 3

30p

C8 3

3p

C7 3

3p

R11 63.4kR10 63.4k

C6 3

3p

C5 3

3p

R9 63.4kR8 63.4kC2 47n

R5 1k

C4 47n

R7 1k

R4 10k

R3 10k

+

-

+

U3 OPA333

C1 1

n +

VG1

C3 1T

Vout

VinP

VFL1 1T

R6 2k

R13 10k

C11 1nShield Drive

Compensation

Network

The ECG Shield DriveTINA Simulation Circuit for Stabilized OPA333 Shield Driver

Page 69: Analog Fundamentals of the ECG Signal Chain · 1 Analog Fundamentals of the ECG Signal Chain Prepared by Matthew Hann, Texas Instruments Precision Analog Applications Manager Presented

69

Ga

in (

dB

)

0.00

20.00

40.00

60.00

80.00

100.00

120.00

Frequency (Hz)

1.00 1.00k 1.00M

Ph

ase

[d

eg

]

-180.00

-135.00

-90.00

-45.00

0.00

The ECG Shield DriveTINA Simulation Shows > 45 Degrees Phase Margin for

OPA333 Shield Driver

Page 70: Analog Fundamentals of the ECG Signal Chain · 1 Analog Fundamentals of the ECG Signal Chain Prepared by Matthew Hann, Texas Instruments Precision Analog Applications Manager Presented

701

Lead Off Detection

Page 71: Analog Fundamentals of the ECG Signal Chain · 1 Analog Fundamentals of the ECG Signal Chain Prepared by Matthew Hann, Texas Instruments Precision Analog Applications Manager Presented

71

•Pull up Resistors Force +IN to Comparator High When Lead is Removed

•Comparator Voltage triggers ALERT

•Lead Off Indicative of ―Weak Lead‖

Lead Off DetectionLead Off Differentiates a Bad Lead from an Arrythmia

VTH

VTH

VCC

VREF

Body-Electrode

Model

Page 72: Analog Fundamentals of the ECG Signal Chain · 1 Analog Fundamentals of the ECG Signal Chain Prepared by Matthew Hann, Texas Instruments Precision Analog Applications Manager Presented

72

Lead Off DetectionTINA Simulation Circuit for Lead Off Detect

VCC Vref

VCC

VCC

VCC

VCC

VCC

VR

VR

VCC

VCC Vref

VS

VS

VS2

VS2

VoutRG1 10k

RG2 10k

R2 1k

R1 1k

R7 52k

C4 47n

R4 52k

C2 47n

R8 63.4k R9 63.4k

C5 3

3p

C6 3

3p

R10 63.4k R11 63.4k

C7 3

3pC8 3

3p

C9 3

30p

RG

+

-V-

RefOut

V+RG

U3 INA333

VF1

VF2

R15 1

0M

R12 1

M

R3 1

0M

+

-

+

U1 TLV3701R13 1

0M

R14 1

3.5

M

VF3

-

+

VM1

+

-

+

U2 TLV3701

-

+

VM2 R5 1

M

R6 1

M

+

-

+

U4 OPA348

+

-

+

U5 OPA348 R16 10k

R17 1M

C1 10nR

19 1

M

R20 1

M

R18 100kR21 52k

C3 47n R22 10k

NS

NS1 2.5

- +

SW

1 1

+

VG1

-+

SW

2 1

+

VG2

Voltage-Controlled

Switches Simulate

Disconnected Lead

Page 73: Analog Fundamentals of the ECG Signal Chain · 1 Analog Fundamentals of the ECG Signal Chain Prepared by Matthew Hann, Texas Instruments Precision Analog Applications Manager Presented

73

Lead Off DetectionTINA Simulation Results for Lead Off Detect

T

Time (s)

401.55u 559.69u 717.83u

Vswitch

0.00

2.00

VComparator

0.00

4.99

Page 74: Analog Fundamentals of the ECG Signal Chain · 1 Analog Fundamentals of the ECG Signal Chain Prepared by Matthew Hann, Texas Instruments Precision Analog Applications Manager Presented

741

Pace Detection

Page 75: Analog Fundamentals of the ECG Signal Chain · 1 Analog Fundamentals of the ECG Signal Chain Prepared by Matthew Hann, Texas Instruments Precision Analog Applications Manager Presented

75

ap = Amplitude (2-700mV)

ao = Overshoot

dp = Pulse Width (.1-100us)

t0 = Overshoot Time Constant (4-100ms)

Rise Time = 100us

ap

ao

t0

dp

Pace DetectPace Maker Pulse Specifications

Page 76: Analog Fundamentals of the ECG Signal Chain · 1 Analog Fundamentals of the ECG Signal Chain Prepared by Matthew Hann, Texas Instruments Precision Analog Applications Manager Presented

76

VCC

VCC

VCCVCC

VCC

VCC

VCC Vref

VCC

VCC Vref

Vref

+

-

+

OPA348

10n

R1 1

00k

R2 1k

+

-

+

OPA348

R3 1

M

R4 100k

C2 100p

+

-

+

TLV3701

+

-

+

TLV3701

R5 2

MR

6 2

MR

7 2

MR

8 4

00k

Vout 1

0k

+

ECGn

+

ECGp

52k

47n

52k

47n

63.4k 3

3p

63.4k 33p

C9 3

30p

RG

+

-V-

RefOut

V+RG

U5 INA333

R17 1

M

+

-

+

U6 OPA348+

-

+

U7 OPA348 R18 10k

R20 100k

10n

100k

R22 1

M

R23 1

M

+

Vpace Pos

-

+

Vpace1

-

+Vpace2

VPDetect

VECG_block

+

Vpace Neg

10k

Pace DetectPace Detect Circuitry in Parallel with ECG Signal Path

•AC Coupled Input Blocks ECG

Signal and Retains the PACER

Pulse

•Window Comparator Triggers if

PACER Signal Detected

•Separate PACER Processing

Circuitry

Page 77: Analog Fundamentals of the ECG Signal Chain · 1 Analog Fundamentals of the ECG Signal Chain Prepared by Matthew Hann, Texas Instruments Precision Analog Applications Manager Presented

77

Time (s)

153.93m 209.78m 265.62m

Vout

2.50

2.51

Vpace Pos

0.00

1.00m

Pace DetectPACE Signal Extracted From PACE + ECG Waveform

Page 78: Analog Fundamentals of the ECG Signal Chain · 1 Analog Fundamentals of the ECG Signal Chain Prepared by Matthew Hann, Texas Instruments Precision Analog Applications Manager Presented

781

INA Post Gain and Filtering

Page 79: Analog Fundamentals of the ECG Signal Chain · 1 Analog Fundamentals of the ECG Signal Chain Prepared by Matthew Hann, Texas Instruments Precision Analog Applications Manager Presented

79

At

electrode

High Gain

with low noise

amplifiers

ADC

Noise

At

ADC

Amp

noise

Noise free

Dynamic range

Am

plitu

de

Signal Chain

At

electrode

Low gain At

ADC

Noise free

Dynamic range

Am

plitu

de

Signal Chain

a) Using a low resolution ADC b) Using a high resolution ADC

At

electrode

High Gain

with low noise

amplifiers

ADC

Noise

At

ADC

Amp

noise

Noise free

Dynamic range

Am

plitu

de

Signal Chain

At

electrode

Low gain At

ADC

Noise free

Dynamic range

Am

plitu

de

Signal Chain

a) Using a low resolution ADC b) Using a high resolution ADC

x200 x5

SAR + filter Option Results in Same Input-Referred Noise as

the DC Coupled Delta-Sigma, but at what COST?

INA Post Gain and FilteringChoice of High Gain + SAR ADC OR Low Gain + 24 bit Delta

Sigma ADC

Page 80: Analog Fundamentals of the ECG Signal Chain · 1 Analog Fundamentals of the ECG Signal Chain Prepared by Matthew Hann, Texas Instruments Precision Analog Applications Manager Presented

80

VCC

Vref

VCC

VCC

Vref

VCC

Vre

fVC

C

VoutRG1 10k

RG2 10k

R3 10k

R5 1M

R6 1kNS

NS1 2.5

R13 1

M

R14 1

MNS

NS2 2.5

+

ECGn

+

ECGp

R2 1k

R1 1k

R7 1k

C4 47n

R4 1k

C2 47n

R8 63.4k R9 63.4k

C5 3

3p

C6 3

3p

R10 63.4k R11 63.4kC

7 3

3pC8 3

3p

C9 3

30p

+

-

+

U2 OPA333

+

-

+

U4 OPA333

R16 1

M

+

-

+

U5 OPA333

R18 2M

R19 10k

VF1

R17 1

0M

NS

NS

4 2

.5

R12 1

M

+Noise

R15 2

M

R20 2

M

C1 1

0p

R21 2M

R22 1M

R23 1

M

NS

NS5 2.5

C10 1u

+

-

+

U1 OPA333

RG

+

-V-

RefOut

V+RG

U3 INA333

INA Post Gain and FilteringINA + Post Gain Amp With Differential Noise Source

Page 81: Analog Fundamentals of the ECG Signal Chain · 1 Analog Fundamentals of the ECG Signal Chain Prepared by Matthew Hann, Texas Instruments Precision Analog Applications Manager Presented

81

Time (s)

0.00 187.93m 375.86m

50/60Hz

-1.00

1.00

Vout

2.16

4.33

INA Post Gain and FilteringNoise Coupled Differentially Translates to Output

50/60 Hz Couples Differentially;

How Do We Get Rid of It?

Page 82: Analog Fundamentals of the ECG Signal Chain · 1 Analog Fundamentals of the ECG Signal Chain Prepared by Matthew Hann, Texas Instruments Precision Analog Applications Manager Presented

82

INA Post Gain and FilteringUse Filter Pro to Design a 50/60 Hz Notch

Page 83: Analog Fundamentals of the ECG Signal Chain · 1 Analog Fundamentals of the ECG Signal Chain Prepared by Matthew Hann, Texas Instruments Precision Analog Applications Manager Presented

83

VCC

Vref

VCC

VCC

Vref

VCC

VCC

VCC

Vref

VC

C

Vref

Vout

RG1 10k

RG2 10k

R3 10k

R5 1M

R6 1k

NS

NS1 2.5

R13 1

M

R14 1

M

+

ECGn

+

ECGp

R2 1k

R1 1k

R7 52k

C4 47n

R4 52k

C2 47n

R8 63.4k R9 63.4k

C5 3

3p

C6 3

3p

R10 63.4k R11 63.4k

C7 3

3pC8 3

3p

C9 3

30p

R16 1

M

R18 1MR19 10k

VF1

NS

NS

4 2

.5

R12 1

M

+Noise

R15 2

M

R20 2

M

C1 10p

R21 2M

C3 330n

R27 8

.06k

R28 8.06k

R24 64.9k

R25 6

4.9

k

R29 8

.06k

C12 330n

NS

NS3 2.5

R22 1

M

R23 1

M

VF2

+

-

+U6 OPA348

+

-

+U2 OPA348

C10 1n

+

-

+U1 OPA348

RG

+

-V-

RefOut

V+RG

U5 INA333_C

+

-

+

U4 OPA348

R26 8.06k

R17 1

M

+

-

+

U7 OPA378

+

-

+

U3 OPA333

C11 1u

R30 1

M

INA Post Gain and FilteringECG Circuit with Added 50/60Hz Notch + Post Gain

Page 84: Analog Fundamentals of the ECG Signal Chain · 1 Analog Fundamentals of the ECG Signal Chain Prepared by Matthew Hann, Texas Instruments Precision Analog Applications Manager Presented

84Time (s)

94.83m 237.76m 380.69m

Noise

-1.00

968.42m

Vout_Filter

2.37

3.40

Vout_PostGain

2.50

2.51

Vout_INA

2.50

2.51

INA Post Gain and FilteringPlots of ECG Output with Gain and 60Hz Notch

Page 85: Analog Fundamentals of the ECG Signal Chain · 1 Analog Fundamentals of the ECG Signal Chain Prepared by Matthew Hann, Texas Instruments Precision Analog Applications Manager Presented

85

Time (s)

400m 417m 433m 450m 467m 483m 500m 517m 533m 550m

EC

G (

V)

0.00

123.63m

247.25m

370.88m

494.51m

Time (s)

400m 417m 433m 450m 467m 483m 500m 517m 533m 550m

EC

G (

V)

0.00

123.63m

247.25m

370.88m

494.51m

Fsample (Hz) = n*(1/50Hz + 1/60Hz)-1 = n*(27.27) Hz

INA Post Gain and FilteringLine Cycle Sampling with SAR converter on ‘T’ Wave at

Common Frequency Multiples of 50/60Hz

Page 86: Analog Fundamentals of the ECG Signal Chain · 1 Analog Fundamentals of the ECG Signal Chain Prepared by Matthew Hann, Texas Instruments Precision Analog Applications Manager Presented

86

`

Patient

Protection,

Lead

selection

INA

Elec 1

Elec 9

RL

x5 x320.05 Hz 100 Hz

ADCMUX

Elec 2

Elec 8 INA

High order

Anti aliasing

filter

16 bit,100KSps

DC blocking

HPF

Additional

gain DOUT

`

Patient

Protection,

Lead

selection

INA

Elec 1

Elec 9

RL

x5

ADCMUX

Elec 2

Elec 8INA

24 bit,100KSps

DOUTSimple RC filter

100 Hz

ADS1258

Using a low resolution ADC00

Using a high resolution ADC

INA Post Gain and FilteringComparison of Delta Sigma ADC vs. Lower

Resolution SAR ADC

•Reduced Hardware

•Filter Requirements Relaxed

•Lower Power

•Lower System Cost

•Electrode Offset Info

Retained

Page 87: Analog Fundamentals of the ECG Signal Chain · 1 Analog Fundamentals of the ECG Signal Chain Prepared by Matthew Hann, Texas Instruments Precision Analog Applications Manager Presented

87

`

Patient

Protection,

Lead

selection

INA

Elec 1

Elec 9

RL

x5

ADCMUX

Elec 2

Elec 8 INA

24 bit,

100KSps

DOUTSimple RC filter

100 Hz

ADS1258

`

Patient

Protection,

Lead

selection

INA

Elec 1

Elec 9

RL

x5

ADCMUX

Elec 2

Elec 8 INA

24 bit,

100KSps

DOUTSimple RC filter

100 Hz

ADS1258

INA Post Gain and FilteringBlock Diagram of INA Gain, Simple RC Filter, and ADS1258

A single ADC in the MUX approach does not

necessarily mean lower power due to the higher

speed needed to perform MUX switching

Page 88: Analog Fundamentals of the ECG Signal Chain · 1 Analog Fundamentals of the ECG Signal Chain Prepared by Matthew Hann, Texas Instruments Precision Analog Applications Manager Presented

881

ADS1298 Introduction

Page 89: Analog Fundamentals of the ECG Signal Chain · 1 Analog Fundamentals of the ECG Signal Chain Prepared by Matthew Hann, Texas Instruments Precision Analog Applications Manager Presented

89

The ADS129xThe All-In-One ECG Chip

Page 90: Analog Fundamentals of the ECG Signal Chain · 1 Analog Fundamentals of the ECG Signal Chain Prepared by Matthew Hann, Texas Instruments Precision Analog Applications Manager Presented

90

CMOS input PGA

High input impedance

Low input current noise

Rail to rail input

24-bit

Delta-Sigma

ADC

+

-

+

-

+

-

+

-

RLD

CH1P

CH1MPGA

PGA

BUF

BUF

ADS129xInput Amplifier Specifications for Single Channel AFE

•Low Input Voltage Noise

•Current Noise = 0.1pA√Hz Over Bandwidth

•No Output Phase Reversal

•100dB AOL @ 50/60 Hz

•90dB CMR @ 50/60 Hz

•IB = 150pA MAX vs. Temperature

•ZIN >100MΩ, CIN = 100pF max

Page 91: Analog Fundamentals of the ECG Signal Chain · 1 Analog Fundamentals of the ECG Signal Chain Prepared by Matthew Hann, Texas Instruments Precision Analog Applications Manager Presented

91

• Noise is optimized with amplifier gain=4

• The 4uV p-p includes the crest factor of 6.6 to convert rms to pk-pk

• Noise is referred to the input

CH1P

CH1M

AFE

+

ADC

ADS129xNoise Model for ECG AFE

Page 92: Analog Fundamentals of the ECG Signal Chain · 1 Analog Fundamentals of the ECG Signal Chain Prepared by Matthew Hann, Texas Instruments Precision Analog Applications Manager Presented

92

ADS129xProgrammable Data Rates for Low Power and High

Resolution Modes

Page 93: Analog Fundamentals of the ECG Signal Chain · 1 Analog Fundamentals of the ECG Signal Chain Prepared by Matthew Hann, Texas Instruments Precision Analog Applications Manager Presented

93

ADS129xMUX Selects Inputs to Front End PGA

• Normal Electrode

• Input Shorted

• RLD Input

• VDD

• TMP Sensor

• Input Test Signal

Page 94: Analog Fundamentals of the ECG Signal Chain · 1 Analog Fundamentals of the ECG Signal Chain Prepared by Matthew Hann, Texas Instruments Precision Analog Applications Manager Presented

94

0.333(RA+LA+LL)

0.5(RA+LA)

0.5(LA+LL)

0.5(RA+LL)

Wilson Central

Voltage

Augmented Lead

Voltages

*The Same Amplifiers Used to Derive the WCT Voltage Can be

Switched to Obtain the Augmented Leads

ADS129xWilson Central Terminal

Page 95: Analog Fundamentals of the ECG Signal Chain · 1 Analog Fundamentals of the ECG Signal Chain Prepared by Matthew Hann, Texas Instruments Precision Analog Applications Manager Presented

95

+/-VCM2 + VS

+/-VCM2 + VS

VO = VS(1+R2/R1) + VCM1 + (VCM2 – VCM1) x (R2/R1)

VCM1 = AVDD/2

+

-

AVDD

+

-

AVDD

+

-

AVDD

VO2

R1 R2

R1 R2

VO1

RLD Sum(Register set)

Right leg drive

Lead I configuration

RS

RS

RS

External R-C

ADC2

200K

200K100K

5M

ADS129xInput Amplifier and RLD Selection

*Compensation of RLD Amplifier is Based on the Gain Selected

and the Number of Amplifiers in the Loop

Page 96: Analog Fundamentals of the ECG Signal Chain · 1 Analog Fundamentals of the ECG Signal Chain Prepared by Matthew Hann, Texas Instruments Precision Analog Applications Manager Presented

96

All switches can be controlled

by register settings

CH1P

CH1N

CH3P

CH3N

CH2N

CH2N

CH4P

CH4N

50K

50K

50K

50K

50K

50K

50K

50K

220K

220K

220K

220K

220K

220K

220K

220K

RLDINV

RLDOUT

RLDREF

RLD

AMP

Rext10MCext

264pF

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-CH5P

CH5N

CH7P

CH7N

CH6P

CH6N

CH8P

CH8N

50K

50K

50K

50K

50K

50K

50K

50K

220K

220K

220K

220K

220K

220K

220K

220K

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

20K

20K

+

-

RLDP1

RLDP3

RLDP5

RLDP7

RLDP2

RLDP4

RLDP6

RLDP8

RLDM8

RLDM6

RLDM4

RLDM2

RLDM1

RLDM3

RLDM5

RLDM7

20K

20K

20K

20K

20K

20K

RLDREF_INT

ADS129x

RLD_INV

RLD_OUT

RLD_REF

RLD

AMP

REXT

2M

CEXT

264pF

+

-

/RLDREF_INT

RLDREF_INT

RLD

Electrode

220K

220K

CH1P

CH8M

RLIM

R1

R2

AVDD - AVSS2

AVDD - AVSS2

WCTWCT_TO_RLD

AVDD - AVSS2

AVDD - AVSS2

RLDREF_INTRLDREF_INT

ADS129xRLD Selection—8 Channel Case

*Multiple PGA Outputs Can Be Switched to

Derive Inverting RLD

Page 97: Analog Fundamentals of the ECG Signal Chain · 1 Analog Fundamentals of the ECG Signal Chain Prepared by Matthew Hann, Texas Instruments Precision Analog Applications Manager Presented

97

ADS129xRLD with Multiple Devices

Device 2

RLDINV

RLD OUT

VA1-8

RLD REF

RLD IN

+

-

Power Down

Device 1

RLDINV

RLD OUT

VA1-8

RLD REF

RLD IN

+

-

Device n

RLDINV

RLD OUT

VA1-8

RLD REF

RLD IN

+

-

Power Down

Device 2

RLDINV

RLD OUT

VA1-8

RLD REF

RLD IN

+

-

+

-

+

-

+

-

Power Down

Device 1

RLDINV

RLD OUT

VA1-8

RLD REF

RLD IN

+

-

+

-

+

-

+

-

Device n

RLDINV

RLD OUT

VA1-8

RLD REF

RLD IN

+

-

+

-

+

-

+

-

Power Down

To

Input

Mux

To

Input

Mux

To

Input

Mux

Device 1

RLDINV

RLD OUT

VA1-8

RLD REF

RLD IN

+

-

Device 1

RLDINV

RLD OUT

VA1-8

RLD REF

RLD IN

+

-

+

-

+

-

+

-

Device 2

RLDINV

RLD OUT

VA1-8

RLD REF

RLD IN

+

-

Device 1

RLDINV

RLD OUT

VA1-8

RLD REF

RLD IN

+

-

Power Down

Device 2

RLDINV

RLD OUT

VA1-8

RLD REF

RLD IN

+

-

+

-

+

-

+

-

Device 1

RLDINV

RLD OUT

VA1-8

RLD REF

RLD IN

+

-

+

-

+

-

+

-

Power Down

To

Input

Mux

To

Input

Mux

To

Input

Mux

*With Multiple Devices the RLD Output Becomes the

Amplified Difference Between RLD REF and the

Summation of Multiple Lead Outputs

Page 98: Analog Fundamentals of the ECG Signal Chain · 1 Analog Fundamentals of the ECG Signal Chain Prepared by Matthew Hann, Texas Instruments Precision Analog Applications Manager Presented

98

>From CH1P

>From CH1N

>From CH3P

>From CH3N

From CH2P<

From CH2N<

From CH4P<

From CH4N<

50K

50K

50K

50K

50K

50K

50K

50K

500K

500K

500K

500K

500K

500K

500K

500K

TESTN_PACE_OUT2PACEAMP

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

->From CH5P

>From CH5N

>From CH7P

>From CH7N

From CH6P<

From CH6N<

From CH8P<

From CH8N<

50K

50K

50K

50K

50K

50K

50K

50K

500K

500K

500K

500K

500K

500K

500K

+

-+

-

+

-

+

-

+

-

+

-

+

-

+

-

20K

20K-+

00xx

01xx

10xx

11xx

xx00

xx01

xx10

xx11

xx11

xx10

xx01

xx00

00xx

01xx

10xx

11xx

20K

20K

20K

20K

20K

20K

PDB_PACE

PACE_ODD [4:1]

100K

100K

VREFCM

PACE_IN(GPIO1)GPIO1

TESTP_PACE_OUT1 PACEAMP

-+PDB_PACE

200K

200K

(AVDD-AVSS)/2

500K

*Separate Pace Amplifiers Allow

External Processing of Pace

Signal; All Channels do Not Have

to Operate at Higher Data Rates

ADS129xPace Detect

PACE_OUT2PACE_OUT2

PACE_OUT1PACE_OUT1

1

x

0

x

1

x

0

x

PACEO0

1

x

1

x

0

x

0

x

PACEO1

PACE ODD

x

1

x

1

x

0

x

0

PACEE1

PACE EVEN

x

1

x

0

x

1

x

0

PACEE0

Channel #8

Channel #7

Channel #6

Channel #5

Channel #4

Channel #3

Channel #2

Channel #1

CHANNEL

SELECTED

1

x

0

x

1

x

0

x

PACEO0

1

x

1

x

0

x

0

x

PACEO1

PACE ODD

x

1

x

1

x

0

x

0

PACEE1

PACE EVEN

x

1

x

0

x

1

x

0

PACEE0

Channel #8

Channel #7

Channel #6

Channel #5

Channel #4

Channel #3

Channel #2

Channel #1

CHANNEL

SELECTED

PACE

AMP -

+

250K

250K

CH2P

CH2M

PDB_PACE_EVEN

PACE_EVEN[0:1]

100K

CH8P

CH8M250K

250K

100K

VREFCM

PACE

AMP -

+

250K

250K

CH2P

CH2M

PDB_PACE_EVEN

PACE_EVEN[0:1]

100K

CH8P

CH8M250K

250K

100K

VREFCM

ADS129x

PACE

AMP -

+

250K

250K

CH1P

CH1M

PDB_PACE_ODD

PACE_ODD[0:1]

100K

CH7P

CH7M250K

250K

100K

VREFCM

PACE

AMP -

+

250K

250K

CH1P

CH1M

PDB_PACE_ODD

PACE_ODD[0:1]

100K

CH7P

CH7M250K

250K

100K

VREFCM

Page 99: Analog Fundamentals of the ECG Signal Chain · 1 Analog Fundamentals of the ECG Signal Chain Prepared by Matthew Hann, Texas Instruments Precision Analog Applications Manager Presented

99

AVDDAVDD

R2

AVSSAVSS

AVDDAVDD AVSSAVSS

+

-

+

-

LOFF_STATP

LOFF_STATM

To ADCR2

R3

Z1

Z2

Z3

51K

25, 17.275, 12.5, &

6.25nA

51K

47nF

51K

47nF

100K

100K

100KRLD OUT

Patient Skin – Electrode

Contact Model

Patient

Protection

ResistorAnti-Aliasing Filter

<512KHz

FREQ = DC, FDR/2 or FDR/4

< R

1 ~

10M

>

4-bit

DACCOMP_TH[2:0]

VINP

VINM

VX

LOFF_SENSP

& VLEAD_OFF_EN

LOFF_SENSP

& VLEAD_OFF_EN

LOFF_SENSP

& VLEAD_OFF_ENLOFF_SENSM

& VLEAD_OFF_EN

LOFF_SENSM

& VLEAD_OFF_EN

LOFF_SENSM

& VLEAD_OFF_EN

LOFF_FLIPLOFF_FLIP

ILEAD_OFF[0:1]

FLEAD_OFF[0:1]

FLEAD_OFF[[1:0]FLEAD_OFF[[1:0]

LOFF_FLIPLOFF_FLIP

EMI

Filter

EMI

Filter

ADS129xLead Off Detection

Page 100: Analog Fundamentals of the ECG Signal Chain · 1 Analog Fundamentals of the ECG Signal Chain Prepared by Matthew Hann, Texas Instruments Precision Analog Applications Manager Presented

100

V

RPROTEC

T

RPROTEC

T

RPROTEC

T

RPROTEC

T

ADS129x

RT

HO

RA

X

100K

100K

100K

100K

E1

E2

E3

E4

PATIENT’

S CHEST

64KHz

V

RPROTEC

T

RPROTEC

T

ADS129x

RT

HO

RA

X

100K

100KE1

E2

PATIENT’

S CHEST

64KHz

*AC Current is injected into the

Patient’s Thorax and the Change

in Voltage is Measured to

Calculate Change in Impedance

ADS129x Respiration Testing Measures the Change in Thoracic

Impedance with Inhalation of O2

Page 101: Analog Fundamentals of the ECG Signal Chain · 1 Analog Fundamentals of the ECG Signal Chain Prepared by Matthew Hann, Texas Instruments Precision Analog Applications Manager Presented

101

ADS129x

GPIO3/

RESP_OUT

RESP_MODE

RESP_PH [4:2]

GPIO4/

RESP_PH_OUT RE

SP

IRA

TIO

NG

PIO

GPIO1

GPIO2

180 Deg111

157.5 Deg011

135 Deg101

112.5 Deg001

90 Deg110

67.5 Deg010

45 Deg100

22.5 Deg000

PHASE

SELECTEDRESP_P

H0

RESP_

PH1

RESP_

PH2

RESP_PH[4:2] bit CODE

ADS129xRespiration Functions

Changing Phase Allows

Measurement/Compensation for

Complex Impedance Phase Shifts

Between Modulator and

Demodulator

Page 102: Analog Fundamentals of the ECG Signal Chain · 1 Analog Fundamentals of the ECG Signal Chain Prepared by Matthew Hann, Texas Instruments Precision Analog Applications Manager Presented

102

Simplified ADS129x internal reference block diagram

ADS129xInternal Voltage Reference

The Internal Band Gap Accuracy = 1%

Internal REF can be Powered Down

VREFP Can Be Supplied Externally

Page 103: Analog Fundamentals of the ECG Signal Chain · 1 Analog Fundamentals of the ECG Signal Chain Prepared by Matthew Hann, Texas Instruments Precision Analog Applications Manager Presented

103

Thank You

Contact Information:

[email protected]

Page 104: Analog Fundamentals of the ECG Signal Chain · 1 Analog Fundamentals of the ECG Signal Chain Prepared by Matthew Hann, Texas Instruments Precision Analog Applications Manager Presented

1041

Questions?

Page 105: Analog Fundamentals of the ECG Signal Chain · 1 Analog Fundamentals of the ECG Signal Chain Prepared by Matthew Hann, Texas Instruments Precision Analog Applications Manager Presented

105

Acknowledgements

• Beraducci, Mark and Soundarapandian, Karthik. Sbaa160, Application Report: Analog Front End Design of ECG Systems Using Delta-Sigma ADCs. March 2009.

• Brown, John --Burr Brown Strategic Marketer, general information

• Brown, John and Joseph Carr. Introduction to Biomedical Equipment Technology. Prentice Hall Inc. New Jersey. 1981, 1993.

• Dubin, Dale. Rapid Interpretation of EKG’s. Cover Publishing Company. Fort Myers. 2000.

• Fraden, Jacob. Handbook of Modern Sensors—Physics, Designs, and Applications.Advanced Monitors Corporation. San Diego. 2004.

• Franco, Sergio. Design with Operational Amplifiers. McGraw-Hill Inc. NY. 1988.

• Fredericksen, Thomas M. Intuitive Operational Amplifiers. McGraw-Hill Inc. 1988.

• Graeme, Toby, Huelsman. Operational Amplifiers—Design and Applications. McGraw-Hill Publishing Company. New York. 1971.

• Gray, Paul R. and Meyer, Robert G. Analysis and Design of Analog Integrated Circuits. John Wiley & Sons. New York. 1977

• Green, Timothy - Linear Applications Manager, general information

• Kuehl, Thomas--Linear Applications Engineer, general information

• Norton, Harry N. Sensor and Analyzer Handbook. Prentice Hall Inc. New Jersey. 1982.

• Soundarapandian, Karthik--Over sampling Manager, general information