anaerobic digestion of biomass for methane production a review

32
Pergamon Biomass and Biornergy Vol. 13, Nos. l/2, pp. 833114, 1997 mc 1997 Published by Elsevier Science Ltd. All rights reserved Printed in Great Britain PII: SO961-9534(97)00020-2 0961-9534/97 $17.00 + 0.00 ANAEROBIC DIGESTION OF BIOMASS FOR METHANE PRODUCTION: A REVIEW V. NALLATHAMBI GUNASEELAN Department of Zoology, PSG College of Arts and Science, Coimbatore, 641 014, India (Received 24 April 1996: revised 3 March 1997; awepred 31 Mnrch 1997) Abstract-Biological conversion of biomass to methane has received increasing attention in recent years. Hand- and mechanically-sorted municipal solid waste and nearly 100 genera of fruit and vegetable solid wastes, leaves, grasses, woods, weeds, marine and freshwater biomass have been explored for their anaerobic digestion potential to methane. In this review, the extensive literature data have been tabulated and ranked under various categories and the influence of several parameters on the methane potential of the feedstocks are presented. Almost all the land- and water-based species examined to date either have good digestion characteristics or can be pre-treated to promote digestion. This review emphasizes the urgent need for evaluating the inumerable unexplored genera of plants as potential sources for methane production. c 1997 Published by Elsevier Science Ltd Keywords-Biomass; methane yield; municipal solid waste; fruit and vegetable solid waste; grasses; woody biomass; weeds; aquatic biomass; anaerobic digestion; biochemical methane potential; renewable energy. anaerobic digesters 1. INTRODUCTION Biomass has been defined as contemporary plant matter formed by photosynthetic capture of solar energy and stored as chemical energy.’ The recent oil crisis and the consequent price rises have spawned considerable interest in the exploration of renewable energy sources. Bioen- ergy will be the most significant renewable energy source in the next few decades until solar or wind power production offers an economi- cally attractive large-scale alternative. The energy that biomass contains can be reclaimed by various methods.’ The criteria for selection of the conversion process and the advantages of anaerobic digestion (AD) are outlined by Chynoweth et al.’ This paper surveys the primary biomass sources for methane (CH,) production reported in the literature. Animal manures, sewage sludges and effluents from biomass-based industries, which are secondarily derived from the vegetation are outside the scope of this review. Most of the data reported do not contain any statistical information on variability, only the mean values. A few of the data from the literature lack homogeneity in conditions of measurement, units, etc. and, in some cases, the data given by individual research groups are inadequate and are not included in this outline. 2. AD PROCESSES FOR BIOMASS 2.1. Conventional single stage digestion 2.1.1. Continuully fed digesters. In these digesters, the rate of feeding should be continuous for maximum efficiency, but for practical reasons the digesters are usually fed intermittently; the most common period being once a day. In climatically-heated continuous digesters, there are temperature fluctuations between day and night or between days, resulting in poor performance. In the continu- ously stirred tank reactor (CSTR), an influent substrate concentration of 3-8% total solids (TS) is added daily and an equal amount of effluent is withdrawn. The digester is maintained constantly at mesophilic or thermophilic tem- perature. The addition of large amounts of water requires large reactor volume and high post-treatment costs for the digester residue. In semi-dry digestion. substrate concentration in the range of 16-22% TS is used. 2.1.2. High solids anaerobic digestion. This process takes place at a TS concentration of more than 25% and is also called “dry anaerobic fermentation”. Most of the high solids AD studies have been confined to municipal solid waste (MSW).” The Ref- COM, SOLCON, dry anaerobic cornposting (DRANCO), KWU-Fresenius, BIOCEL and 83

Upload: andresmilquez

Post on 14-Sep-2015

239 views

Category:

Documents


3 download

DESCRIPTION

Digestion anaerobia

TRANSCRIPT

  • Pergamon

    Biomass and Biornergy Vol. 13, Nos. l/2, pp. 833114, 1997 mc 1997 Published by Elsevier Science Ltd. All rights reserved

    Printed in Great Britain PII: SO961-9534(97)00020-2 0961-9534/97 $17.00 + 0.00

    ANAEROBIC DIGESTION OF BIOMASS FOR METHANE PRODUCTION: A REVIEW

    V. NALLATHAMBI GUNASEELAN Department of Zoology, PSG College of Arts and Science, Coimbatore, 641 014, India

    (Received 24 April 1996: revised 3 March 1997; awepred 31 Mnrch 1997)

    Abstract-Biological conversion of biomass to methane has received increasing attention in recent years. Hand- and mechanically-sorted municipal solid waste and nearly 100 genera of fruit and vegetable solid wastes, leaves, grasses, woods, weeds, marine and freshwater biomass have been explored for their anaerobic digestion potential to methane. In this review, the extensive literature data have been tabulated and ranked under various categories and the influence of several parameters on the methane potential of the feedstocks are presented. Almost all the land- and water-based species examined to date either have good digestion characteristics or can be pre-treated to promote digestion. This review emphasizes the urgent need for evaluating the inumerable unexplored genera of plants as potential sources for methane production. c 1997 Published by Elsevier Science Ltd

    Keywords-Biomass; methane yield; municipal solid waste; fruit and vegetable solid waste; grasses; woody biomass; weeds; aquatic biomass; anaerobic digestion; biochemical methane potential; renewable energy. anaerobic digesters

    1. INTRODUCTION

    Biomass has been defined as contemporary plant matter formed by photosynthetic capture of solar energy and stored as chemical energy. The recent oil crisis and the consequent price rises have spawned considerable interest in the exploration of renewable energy sources. Bioen- ergy will be the most significant renewable energy source in the next few decades until solar or wind power production offers an economi- cally attractive large-scale alternative. The energy that biomass contains can be reclaimed by various methods. The criteria for selection of the conversion process and the advantages of anaerobic digestion (AD) are outlined by Chynoweth et al. This paper surveys the primary biomass sources for methane (CH,) production reported in the literature. Animal manures, sewage sludges and effluents from biomass-based industries, which are secondarily derived from the vegetation are outside the scope of this review. Most of the data reported do not contain any statistical information on variability, only the mean values. A few of the data from the literature lack homogeneity in conditions of measurement, units, etc. and, in some cases, the data given by individual research groups are inadequate and are not included in this outline.

    2. AD PROCESSES FOR BIOMASS

    2.1. Conventional single stage digestion

    2.1.1. Continuully fed digesters. In these digesters, the rate of feeding should be continuous for maximum efficiency, but for practical reasons the digesters are usually fed intermittently; the most common period being once a day. In climatically-heated continuous digesters, there are temperature fluctuations between day and night or between days, resulting in poor performance. In the continu- ously stirred tank reactor (CSTR), an influent substrate concentration of 3-8% total solids (TS) is added daily and an equal amount of effluent is withdrawn. The digester is maintained constantly at mesophilic or thermophilic tem- perature. The addition of large amounts of water requires large reactor volume and high post-treatment costs for the digester residue. In semi-dry digestion. substrate concentration in the range of 16-22% TS is used.

    2.1.2. High solids anaerobic digestion. This process takes place at a TS concentration of more than 25% and is also called dry anaerobic fermentation. Most of the high solids AD studies have been confined to municipal solid waste (MSW). The Ref- COM, SOLCON, dry anaerobic cornposting (DRANCO), KWU-Fresenius, BIOCEL and

    83

  • 84 V. NALLATHAMBIGUNASEELAN

    sequenced batch anaerobic cornposting (SE- bacteria are attached to small glass spheres BAC) are the dry fermentation processes using which are freely suspended in the up-flowing MSW as the substrate, some of which were feed. discussed in a recent review.16 The SEBAC process have been developed at the University 2.2. Two-stage and two-phase digesters

    of Florida for conversion of organic fraction of In a two-stage digester, the residual substrates MSW (OF-MSW) to CH, and compost. It from the first stage can be reduced at the employs three stages for enhanced conversion of second-stage digester, carrying out the same MSW to CH,. The SEBAC system, a promising reactions as the first stage but running at a concept for the AD of MSW, is described different retention time. For quickly fer- elsewhere.?, I3 mentable wastes, a two-stage reactor can have a

    2.1.3. BIOGAS and BIOMETprocesses. The lower overall retention time than a single stage. BIOGAS process has been developed at the The second stage could be a stirred tank or a Institute of Gas Technology (IGT), U.S.A. This plug-flow digester or an anaerobic filter. concept combines the treatment of sewage A two-phase digester is a mechanically similar sludge (SEW) at 2-3% TS and solid wastes system of two stirred-tank digesters. In this (MSW at 55% TS) resulting in a substrate process, fermentation and methanogenesis are concentration of about 10% TS. A similar separated by using different retention times. co-digestion process called the BIOMET Liquefaction and acidification of the substrate is

    has been studied at pilot scale in Sweden. accomplished in a first reactor, while only

    2.1.4. BIOTIIERMGAS process. The BIO- methanogenesis takes place in the second

    THERMGAS process carried out by the IGT, reactor. It was first promoted by Ghosh et al.*

    U.S.A., combines biological and thermochemi- for the combined digestion of SEW and MSW.

    cal unit operations into a scheme that can The total digestion time was considerably lower

    convert the biomass efficiently (regardless of than the conventional single-stage digestion.

    moisture and nutrient contents) to CH, with Some kinetic considerations argue in favour of

    minimum process residues. Results of the the two-phase approach when optimal growth

    preliminary systems analyses using Bermuda conditions for hydrolytic and methanogenic

    grass and MSW as feedstocks indicate that this bacteria are considered.* Colleran et al.,**

    process is technically superior to either biologi- Verrier et a1.,23 Mata-Alvarez24 and Viturtia et

    cal or thermochemical processes and economi- a1.5 proposed this process for the digestion of

    cally feasible. agricultural solid wastes. Two-phase AD of

    2.1.5. Plug-Jlow digester. In tubular plug- OF-MSW was studied by Hofenk et a1.,26 who

    flow digester, a volume of the medium with a concluded that there was no difference in the

    suitable inoculum enters at one end of the tube biogas yields between single-stage and two-

    and, if the rate of passage of the medium is phase systems. Unless the hydrogen produced in

    correct, by the time the medium reaches the the fermentative phase can be collected and

    other end the digestion is completed. For transferred to the methanogenic phase, a loss of

    continuous operation, some of the digested potential CH, occurs. This process is techno-

    effluent flowing from the end of the tube logically feasible, but an assessment of the

    is separated and returned to the influent economic feasibility is more complex and has to

    substrate. be reviewed for any given situation.

    2.1.6. The anaerobic j3ter. This is primarily meant for digestion of easily fermentable 3. BIOCHEMICAL METHANE POTENTIAL (BMP)

    factory waste waters produced in large quan- ASSAY

    tities. Even a 6-day retention time would mean The BMP assay was developed to determine an impossibly large digester. Hence, in order to the ultimate CH, yield (B,) of organic substrates prevent washout, the bacteria are allowed to and for monitoring anaerobic toxicity.* B, of a attach to a solid support, such as stones packed variety of biomass were determined using a inside a tank and the waste water flows upward through the tank. This process requires a

    modified method of Owen et a1.28m33 The BMP is a valuable, quick and inexpensive method for

    retention time of only a few hours and the gas determination of the potential extent and rate of is collected from the top. In a fluidized-bed conversion of biomass and wastes to CH,. A digester, a modified form of anaerobic filter, the similar assay has otherwise been named as

  • Anaerobic digestion of biomass for methane production: a review 85

    anaerobic biogasification potential (ABP) as- say.34

    4. POTENTIAL SOURCES FOR METHANE

    A wide range of biomass have been considered as potential sources for CH, production (Fig. 1).

    4.1. Organic fraction of MSW

    4.1.1. MSW composition. MSW has been identified as a heterogeneous material in which the composition varies widely. The composition of MSW is affected by various factors, including regional differences, climate, extent of recycling, collection frequency, season, cultural practices, as well as changes in technology.35 The qualities of the OF-MSW are influenced not only by the sorting system but also by various methods used for quantifying the OF-MSW. According to Mata-Alvarez et al. in mechanically-sorted MSW (MS-MSW), large amounts of suspended, non-biodegradable solids and unavoidable small pieces of plastic, wood, paper, etc. are present. The mechanically-sorted organic frac- tion of MSW (MS-OF MSW) used to feed the

    I I

    WOODS

    GRASSES

    1 ORGANIC I

    digester in Treviso contained (on a TS basis) 50% putrescible fraction, 6% paper, 1% wood, 2% plastic and 36% inert fraction. The percentage of VS of the waste was 43%. These non-biodegradable solids are not present in the source-sorted organic fraction of MSW (SS-OF MSW) or hand-sorted organic fraction of MSW (HS-OF MSW) or in the organic fraction of MSW from a separated collection (SC-OF MSW). Consequently, the VS content of the waste was 88h.36 However, the MS-OF MSW from Sumter country contained (on a TS basis) 47% paper, 11% cardboard, 10% plastic, 6% yard waste and 23% miscellaneous and its VS content was 81h.2.3 The HS-OF MSW from Levy country contained (on a TS basis) 92% paper and the percentage of VS was 93%.,3 Rivard et a1.37 reported that most MSW processing technologies result in the separation and removal of the food and yard waste fraction to produce refuse-derived fuel (RDF). This results in the reduction of the nutrient value of the processed MSW as a feedstock for AD. Nevertheless, considering the percentages of VS of OF-MSW presented in Tables 1 and 2, two groups can be denoted. The first, with a VS

    -I FRESHWATER BIOMASS I I I

    MARINE BIOMASS

    1 AQUATIC

    Fig. 1. Selected types of methane yielding biomass

  • Feed

    MS-

    OF

    MSW

    C

    ont.

    = 30

    &35

    %

    TS

    Tabl

    e 1.

    Dig

    este

    r pe

    rform

    ance

    w

    ith

    mun

    icip

    al

    solid

    w

    aste

    fe

    eds

    at

    mes

    ophi

    lic

    tem

    pera

    ture

    s

    HR

    T O

    LR

    CH

    , yi

    eld?

    C

    H,

    PRP

    VSr

    Fe

    rmen

    ter

    Tem

    p.

    (C)

    (d

    ays)

    (k

    g V

    Sm-

    d -

    ) (m

    kg

    - V

    S,)

    (m

    rnm

    J d-

    )

    (%)

    Ref

    eren

    ce

    g

    3540

    16

    -21

    NR

    La

    bora

    tory

    pl

    ant

    0.03

    5 m

    D

    ranc

    o pr

    oces

    s

    [71

    MS-

    OF

    MSW

    C

    orm

    . =

    25-3

    5%

    TS

    Pilo

    t pl

    ant

    60 m

    3 D

    ranc

    o pr

    oces

    s

    3540

    14

    -21

    10.0

    12

    .1

    13.2

    15

    0.26

    0*

    0.26

    4*

    0.23

    5*

    0.18

    7*

    2.6

    3.2

    3.1

    2.8

    NR

    PI

    MS-

    OF

    MSW

    Pi

    lot

    plan

    t C

    ont.

    = 35

    %

    TS,

    500

    m

    VS

    = 58

    .6%

    TS

    V

    alor

    ga

    proc

    ess

    MS-

    OF

    MSW

    : SE

    W

    85:lS

    TS

    ba

    sis

    Con

    t. =

    7710

    %

    TS

    CST

    R

    20

    m

    BIO

    MET

    pr

    oces

    s

    HS-

    OF

    MSW

    C

    ont.

    = 3-

    5.6%

    TS

    V

    S =

    82-8

    7%

    TS

    CST

    R

    Labo

    rato

    ry

    plan

    t

    HS-

    OF

    MSW

    C

    ont.

    = 6.

    4%

    TS,

    VS

    = 89

    .9%

    TS

    C

    STR

    3

    m

    OF

    MSW

    (s

    imul

    ated

    ): SE

    W

    80:2

    0 TS

    ba

    sis

    Con

    t. =

    6.6%

    TS

    V

    S=91

    %

    TS

    CST

    R

    2.2

    m

    Proc

    esse

    d M

    SW

    (TR

    F):

    Yea

    st

    extra

    ct/m

    iner

    als.

    5.78

    : l(V

    S ba

    sis)

    CST

    R

    Sem

    i co

    ntin

    uous

    3.

    5 I

    TRF:

    pr

    edig

    este

    d SE

    W

    4.76

    :1

    (VS

    basi

    s)

    MS-

    OF

    MSW

    , Su

    mte

    r co

    untry

    FL

    Fr

    esh,

    V

    S =

    79.7

    %

    TS

    Drie

    d,

    VS

    = 84

    .1%

    TS

    CST

    R

    Sem

    i co

    ntin

    uous

    3.

    5 1

    BM

    P as

    say

    HS-

    OF

    MSW

    Le

    vy-l

    coun

    try

    FL

    VS

    = 92

    .5%

    TS

    Y

    ard

    was

    te

    sam

    ples

    G

    rass

    , V

    S =

    88.1

    %

    TS

    Leav

    es,

    VS

    = 95

    %

    TS

    Bra

    nche

    s, V

    S =

    93.9

    %

    TS

    Ble

    nd,

    VS

    = 92

    %

    TS

    BM

    P as

    say

    BM

    P as

    say

    37

    15

    13.7

    0.

    230

    2.6*

    45

    [9

    1

    3742

    19

    2.

    6 0.

    230

    0.58

    41

    21

    1.

    6 0.

    290

    0.46

    48

    I1

    81

    35

    33-3

    7

    33-3

    7

    37

    37

    35

    35

    35

    1442

    0

    9925

    I 0.

    390

    0.39

    1.

    5 0.

    360

    0.55

    2

    0.43

    0 0.

    87

    4 0.

    430

    1.70

    2.1-

    6.9

    0.39

    0 0X

    2-2.

    02*

    NR

    63-6

    9

    14

    3.9

    0.29

    0 1.

    59*

    70-7

    5

    20

    14

    20

    14

    NA

    NR

    0.

    324(

    0.04

    3)

    0.77

    (0.1

    8)*

    1.14

    (0.4

    0)*

    0.69

    (0.1

    7)*

    1.04

    (0.2

    3)*

    NA

    NR

    [381

    2 E 2;

    F

    [391

    8 6 2

    [401

    g R

    E

    [371

    0.33

    6(0.

    067)

    NR

    0.

    294(

    0.03

    8)

    0.30

    7(0.

    037)

    N

    R

    NA

    0.

    222(

    0.01

    4):

    0.21

    5(0.

    013)

    $ N

    R

    NA

    N

    A

    0.20

    5(0.

    01

    l)$

    NA

    N

    R

    NA

    N

    A

    0.20

    9(0.

    005)

    $ 0.

    123(

    0.00

    5)$

    0.13

    4(0.

    006)

    $ 0.

    143(

    0.00

    4)f

    NA

    N

    R

    [321

    f321

    [321

  • Anaerobic digestion of biomass for methane production: a review 87

    a

  • Tabl

    e 2.

    D

    iges

    ter

    perfo

    rman

    ce

    with

    m

    unic

    ipal

    so

    lid

    was

    te

    feed

    s at

    th

    erm

    ophi

    lic

    tem

    pera

    ture

    s g

    Feed

    Fe

    rmen

    ter

    Tem

    p.

    (C)

    H

    RT

    OLR

    C

    H,

    yiel

    d?

    CH

    , PR

    t V

    Sr

    (day

    s)

    (kg

    VSm

    -3d-

    )

    (m

    kg-

    VS,

    ) (m

    l m

    -l d-

    )

    (%)

    Ref

    eren

    ce

    MS-

    OF

    MSW

    C

    ont.

    = 3&

    35%

    TS

    La

    bora

    tory

    pl

    ant

    0.03

    5 m

    D

    ranc

    o pr

    oces

    s

    Pilo

    t pl

    ant

    0.06

    0 m

    SC

    -55

    16-2

    1 10

    .0

    0.28

    6*

    2.86

    * 12

    .1

    0.28

    2*

    3.41

    * 13

    .2

    0.28

    3*

    3.74

    * 14

    .9

    0.31

    0*

    4.62

    * 14

    .7

    0.13

    1*

    1.92

    11

    .8

    0.14

    7*

    1.74

    7.

    8 0.

    185*

    1.

    44

    3.9

    0.24

    6*

    0.96

    17

    .5

    0.13

    3*

    2.33

    14

    .0

    0.18

    0*

    2.52

    9.

    3 0.

    236*

    2.

    20

    4.7

    0.31

    9*

    1.50

    20

    .6

    0.14

    0*

    2.88

    16

    .5

    0.20

    2*

    3.34

    10

    .9

    0.24

    2*

    2.64

    5.

    4 0.

    289*

    1.

    56

    23.5

    o.

    ooo*

    0.

    00

    18.8

    0.

    128*

    2.

    40

    12.4

    0.

    160*

    I .

    98

    6.2

    0.27

    I *

    I .

    68

    18-2

    0 0.

    220

    3.64

    4.48

    * 16

    .5

    0.20

    0 3.

    3*

    NR

    MS-

    OF

    MSW

    C

    ont.

    = 25

    %

    TS

    VS

    = 47

    %

    TS

    55

    NR

    MS-

    OF

    MSW

    Pi

    lot

    plan

    t C

    ont.

    = 30

    %

    TS

    0.06

    0 m

    3 55

    N

    R

    MS-

    OF

    MSW

    Pi

    lot

    plan

    t C

    ont.

    = 35

    %

    TS

    0.06

    0 m

    55

    8 IO

    15

    30 8 10

    I5

    30 8 IO

    15

    30 8 IO

    15

    30 9 12

    NR

    MS-

    OF

    MSW

    Pi

    lot

    plan

    t C

    ont.

    = 40

    %

    TS

    0.06

    0 m

    55

    N

    R

    MS-

    OF

    MSW

    C

    ont.

    = 30

    %

    TS

    Labo

    rato

    ry

    plan

    t 0.

    015

    m1

    Val

    orga

    pr

    oces

    s

    60

    50

    46

    MS-

    OF

    MSW

    Su

    mte

    r co

    untry

    , V

    S =

    81%

    TS

    Pilo

    t pl

    ant

    SEB

    AC

    pr

    oces

    s 55

    42

    3.

    2 0.

    190

    0.61

    49

    .7

    21

    6.4

    0.16

    0 I .

    02

    36.0

    HS-

    OF

    MSW

    Le

    vy

    Cou

    ntry

    , V

    S =

    93%

    TS

    Pilo

    t pl

    ant

    SEB

    AC

    pr

    oces

    s 55

    21

    6.

    4 0.

    190

    1.06

    40

    .6

    Yar

    d w

    aste

    Pi

    lot

    plan

    t SE

    BA

    C

    proc

    ess

    55

    42

    NR

    0.

    070(

    0.02

    ) N

    R

    19.0

    MS-

    OF

    MSW

    fr

    esh

    Pilo

    t pl

    ant

    3 m

    3 55

    .8

    5.7

    17.8

    0.

    192*

    3.

    35*

    Con

    t. =

    1622

    %

    TS

    Sem

    i-dry

    55

    .5

    7.4

    12.9

    0.

    215*

    3.

    01*

    VS

    = 44

    .8%

    TS

    fe

    rmen

    tatio

    n 56

    .2

    II.7

    9.

    7 0.

    179*

    1.

    73*

    NR

    [71

    UO

    I

    c z $ F 1 $ (1

    11

    0 2 %

    R

    [I31

    5

    [411

  • MS-

    OF

    MSW

    pr

    e-co

    mpo

    sed

    Con

    t. =

    1622

    %TS

    V

    S =

    44%

    TS

    Pilo

    t pl

    ant

    3 m

    Se

    mi-d

    ry

    ferm

    enta

    tion

    51.5

    6.

    1 19

    .9

    0.13

    1*

    2.68

    * N

    R

    54.6

    7.

    8 13

    .5

    0.15

    9*

    2.17

    * 54

    .8

    11.7

    6.

    9 0.

    254;

    1.

    73*

    MS-

    OF

    MSW

    C

    STR

    pilo

    t pl

    ant

    Con

    t. =

    17%

    TS;

    3

    m3

    sem

    i-dry

    V

    S =

    44%

    TS

    fe

    rmen

    tatio

    n

    55

    8.5

    13.4

    0.

    188*

    2.

    53*

    NR

    f4

    21

    MS-

    OF

    MSW

    : A

    lgae

    (9

    :l TS

    ba

    sis)

    C

    ont.

    20%

    TS

    CST

    R

    pilo

    t pl

    ant

    3 m

    3 se

    mi-d

    ry

    ferm

    enta

    tion

    55

    7.5

    13.4

    0.

    212*

    2.

    80*

    NR

    > I

    HR

    T =

    hydr

    aulic

    re

    tent

    ion

    time,

    O

    LR

    = or

    gani

    c lo

    adin

    g ra

    te,

    VS,

    = V

    S ad

    ded,

    C

    H,

    PR

    = m

    etha

    ne

    prod

    uctio

    n ra

    te,

    VS.

    , = V

    S re

    duct

    ion.

    M

    S-O

    FMSW

    =

    mec

    hani

    cally

    so

    rted

    orga

    nic

    fract

    ion

    of

    mun

    icip

    al

    solid

    w

    aste

    , H

    S-O

    FMSW

    =

    hand

    so

    rted

    orga

    nic

    fract

    ion

    of

    MSW

    , N

    A

    = no

    t ap

    plic

    able

    , N

    R

    = no

    t re

    porte

    d.

    5.

    0 *V

    alue

    s ca

    lcul

    ated

    fro

    m

    the

    data

    re

    porte

    d.

    a tV

    alue

    s in

    par

    enth

    eses

    ar

    e SD

    . 09

    Q

    g 2 r?

    ,

  • 90 V. NALLATHAMBI~UNASEELAN

    content of above 82% corresponds to the HS, SS, SC or simulated 0F-MSW.3,36,38 40 The second refers to most of the data for MS-OF MSW with VS content less than 60%.9~o~3~36.4.42 Given these characteristics, higher biodegrad- ability and consequently higher yields are expected from the AD of HS or SS-OF MSW.

    4.1.2. OF-MS W digestion at mesophilic tem- perature. Considering the biodegradation of OF-MSW in a CSTR-type digesters at 35C a maximum CH, yield ranging from 0.39 to 0.43 m3 kg- VS added was reported for HS-OF MSW without paper and wood36.3R.39 and VS reduction (VSr) ranged from 63 to 69% (Table 1). The methane yield of MS-OF MSW ranged from 0.11 to 0.16 m3 kg- VS added and VSr was around 30% due to its high ash value.36 The CH, yields reported for MS-OF MSW at high-solids (Table 1) ranged from 0.18 to 0.26 m3 kg- VS added with a VSr of 45%; 9 however, methane production rate (CH,PR) of 3.2 m3 mm3 d- was achieved at loading rate (OLR) of 12 kg VS mm3 d- and retention time (HRT) of 1621 days. The OLR applied in the Dranco process8 is the highest, whereas that applied by Pauss et a1.3X is the lowest. The potential of AD of OF-MSW increases in systems in which co-digestion of MSW and SEW is carried out.. 36.40

    4.1.3. OF-MS W digestion at thermophilic temperature. In the thermophilic high-solids digestion studies (Table 2) higher OLR and CH,PR could be achieved at reduced HRT as expected and the CH, yields of MS-OF MSW were around 0.2 m3 kg- VS added.. Despite the fact that the OF-MSW from Sumter and Levy countries were differently sorted and varied widely in content, their percentages of VS were above 81%. SEBAC of the Sumter and Levy sources of OF-MSW showed that for the 21-day runs, a CH, yield of 0.16 and 0.19 m kg- VS added and VSr of 36% and 41%, respectively were achieved.12,13 The data- base on extent and rates of the major biodegradable organic components of MSW32 (Table 1) showed that BMP of paper samples ranged from 0.08 to 0.37 m3 kg- VS added, but the types of paper that comprised the Sumter and Levy sources were not reported.2,3 The presence of high proportions of slowly biodegradable lignocellulosic material like paperI would have resulted in partial biodegra- dation in 21-day runs. The potential for further improvements by optimizing several operational

    parameters should make SEBAC a promising concept for AD of MSW.

    According to Mata-Alvarez et a1.4 the performance of the semi-dry process is very healthy and allows very high yields and production rates. CH, PR of 3.35 m3 m-3 d- at 6-day HRT is a very high figure for CSTR and it is quite comparable with those reported in the literature for dry digestion systems at ther- mophilic conditions (Table 2).

    It has been demonstrated that the algae from the Venice lagoon can be co-digested with the OF-MSW under semi-dry thermophilic con- ditions. This approach will contribute to the disposal of harvested algae from the lagoon of Venice.42

    Cecchi et af.43 proposed the step diffusional model to describe substrate utilization during AD of the SS-OF MSW. The new model is found to show a better fit to the experimental result than those obtained with other models.

    4.1.4. Partial cornposting prior to digestion, Ten Brummeler and Kosterls reported that the start-up of the dry anaerobic batch digestion (BIOCEL process) of the OF-MSW at 30C can be accelerated by partial aerobic cornposting for 2 weeks. A major drawback was a loss of 40% of the potential CH, yield during cornposting. A shorter partial cornposting period might be more feasible. According to Mata-Alvarez et a/.4 pre-cornposting process surely removes the easily degradable fraction of the organics in the MSW causing the lower digester performance. However, at the same time during the cornposting process some of the large molecules, which are difficult to degrade, are broken down making them more easily available for the anaerobic hydrolytic bacteria of the digester. Thus, at long HRT ( > 12 days) this effect is noticeable in the case of pre-composted MS-OF MSW, increasing the CH, yield, whereas at shorter HRT (68 days) there is no time to degrade the de-polymerized compounds and only the contrary effect is more heavily observed (Table 2). Further research is needed to test the validity of this hypothesis as it is reported that the methanogenic potential of the waste from the S. Giorgio di Nogaro plant, which was pre-composted aerobically, was considerably reduced (0.14 m3 kg- VS) when the reactor operated at 21-day HRT36 (Table 1).

    4.2. Sewage sludge and industrial efluent

    A considerable amount of information has been gathered over the performance of sewage

  • Anaerobic digestion of biomass for methane production: a review 91

    sludge digesters. Both primary and secondary sludges are fed into anaerobic digesters, mainly as a means of sludge reduction and gas production. Chynoweth et al. have reported a BMP of 0.59 m3 kg- VS for the primary sludge. Effluents from breweries and distilleries and palm-oil (oil produced from the palm tree, Elaeis guineensis) mill and solid waste from instant coffee industry have been tested on laboratory or large-scale anaerobic digesters. In most cases, pollution control is a major factor, along with, or to the exclusion of, gas energy production. For more detailed information on these aspects, the reader may consult the book44 and original papers. 49

    4.3. Fruit andz?egetahle solid waste (FVSW) and leaves

    4.3.1. FVS W. These wastes are characterised by high percentages of moisture ( > 80%) and VS ( > 95%) and have a very high biodegrad- ability. They are transported to municipal dump sites and Mata-Alvarez et al.76 have referred these wastes as SC-OF MSW. As can be seen in Table 3, the CH, yield of FVSW is very high. Data from the literature indicate the AD potential of FVSW, most of which refer to laboratory trials.

    According to Knol et a1.5o the maximum OLR for stable digestion of a variety of FVSW ranged from 0.8 to 1.6 kg VS mm3 d- with 32-days HRT. The French bean waste and the carrot waste were very well digested and the lower biodegradability of the asparagus peels could be due to their woody structure. For carbohydrate-rich substrates, like the apple- pulp, alkali addition and the use of mixed substrates have proved to be suitable correction measures.

    However, Lane found that recovery of settled solids from the discharged digester effluents and their return to the digester enables S&96% VS removal, provided adequate alka- linity levels are maintained. For balanced digestion, alkalinity (mg ll) of 0.7 x volatile fatty acids (VFA, mg ll) is required and it should not be less than 1500. The performance of digestion of asparagus waste was stable at OLR of 4.2 kg VS mm d- with 90% removal of vs.

    Inadequate alkalinity levels appear to have been the cause of digestion failure of peach waste at 3 kg mm3 d- with 20-days HRT in experiments reported by Hills and Roberts.5

    Radhika et a1.53 evaluated the AD potential of

    coconut pith (CP, the dust particles that fall away during the separation of fibres from coconut husk) and cattle manure (CM). Performance of several blends of the two feedstocks indicated that CP and CM mixture in the ratio 3 : 2 (dry wt. basis), respectively, showed enhanced biogas production with S&85% CH,.

    Yang et a1.54 examined at 30C biogasification of papaya processing wastes and found that with sludge recycling HRT was reduced, while maintaining effective anaerobic performance at OLR of 0.85-l .06 kg VS mm3 d- with SRT near 25 days.

    According to Gollakota and Meher, de- oiled (oil expelled) cake of non-edible oil seeds, such as castor (Ricinus communis) could be considered as substrate for biogas production at a loading rate of 8 kg TS me3 d-, 15-days HRT and 37C with intermittent mixing.

    Viturtia et a1.,2s studied at laboratory scale the performance of a two-phase AD of a mixture of FVSW in the mesophilic range using a hybrid up-flow anaerobic sludge bed-anaerobic filter (UASB-AF) reactor. When the systems were operated at hydrolyzer and methanizer HRT of 2.6 and 1 day, respectively, CH, yield as high as 0.51 m3 kg- VS was achieved.

    Stewart et a1.s6 measured biogas yields from AD of banana (fruit and stem damaged by wind) and potato waste (peelings and rejects) in 20 1 continuous digesters at 35C. The high CH, yields obtained from the digested wastes resulted from almost complete destruction of the VS. For a HRT of 20 days with OLR 2.5 kg TS mm d-, the CH, yield for banana waste was 0.53 m kg- VS added at 100% VS conversion.

    Sharma et a1.57 demonstrated the AD potential of banana peeling (Musa paradisica). According to them, particle sizes of 0.088 and 0.4 mm produced an almost equal quantity of biogas, thus grinding below 0.4 mm would seem to be uneconomical.

    Ghanem et al.,5x examined the digestibility of beet pulp, a waste product from sugar industry and found that it could be utilized efficiently for biogas production when treated with 1% NaOH.

    The harvest of fruits and crops varies with season. In order to operate the digester throughout the year with any of the FVSW available, Viswanath et af.59 investigated the effect of successive addition of various FVSW on digester performance. Performance was stable at 16- and 20-day HRT with an OLR of

  • Tabl

    e 3.

    D

    iges

    ter

    perfo

    rman

    ce

    with

    fr

    uit,

    vege

    tabl

    e so

    lid

    was

    te

    and

    leaf

    fe

    eds

    (Tem

    p,

    tem

    pera

    ture

    ; H

    RT,

    hy

    drau

    lic

    rete

    ntio

    n tim

    e;

    OLR

    , or

    gani

    c lo

    adin

    g ra

    te;

    VS,

    , V

    S ad

    ded;

    C

    H,

    PR,

    met

    hane

    pr

    oduc

    tion

    rate

    ; V

    S,,

    VS

    redu

    ctio

    n;

    NA

    , no

    t ap

    plic

    able

    ; N

    R,

    not

    repo

    rted;

    *

    valu

    es

    calc

    ulat

    ed

    from

    th

    e da

    ta

    repo

    rted;

    b

    valu

    es

    in

    pare

    nthe

    ses

    are

    s.d.)

    E

    Feed

    Fe

    rmen

    ter

    Tem

    p.

    (C)

    H

    RT

    OLR

    C

    H,

    yiel

    d

    CH

    , PR

    h V

    Sr

    (day

    s)

    (kgV

    Sm-

    d-)

    (m

    kg

    - V

    S.,)

    (m

    m-j

    d-)

    (%

    ) R

    efer

    ence

    Spin

    ach-

    was

    te

    Asp

    arag

    us

    peel

    s Fr

    ench

    be

    an-w

    aste

    St

    raw

    berry

    -slu

    rry

    App

    le-p

    ulp

    App

    le-s

    lurry

    C

    arro

    t-was

    te

    Gre

    en

    pea-

    slurry

    Apr

    icot

    fib

    re

    Cor

    n co

    bs

    App

    le

    cake

    A

    pple

    w

    aste

    A

    spar

    agus

    w

    aste

    Su

    garb

    eet

    pulp

    Pi

    neap

    ple

    pres

    sing

    s

    Papa

    ya

    frui

    t pr

    oces

    sing

    was

    te

    With

    out

    slud

    ge

    With

    sl

    udge

    re

    cycl

    ing

    Frui

    t an

    d ve

    geta

    ble

    was

    tes

    mix

    ture

    (o

    rang

    e,

    caul

    iflow

    er,

    cucu

    mbe

    r, le

    ttuce

    , to

    mat

    o an

    d w

    ater

    -mel

    on

    mix

    ture

    )

    Frui

    t w

    aste

    s (to

    mat

    o,

    man

    go,

    oran

    ge

    peel

    w

    ith

    oil,

    deoi

    led

    oran

    ge,

    pine

    appl

    e,

    bana

    na

    and

    jack

    fr

    uit

    was

    tes

    in

    succ

    essi

    on)

    Tom

    ato

    proc

    essin

    g w

    aste

    CST

    R

    Sem

    i- co

    ntin

    uous

    1

    1 33

    32

    0.

    83-1

    .18

    0.74

    1.06

    0.

    961.

    15

    1.02

    -1.1

    5 1.

    02~1

    .60

    0.83

    -1.1

    5 0.

    80-0

    .90

    0.87

    -1.2

    5

    CST

    R

    Con

    tinuo

    us

    with

    so

    lids

    recy

    clin

    g 10

    I

    35-3

    7

    CST

    R

    Sem

    i- co

    ntin

    uous

    18

    81

    CST

    R

    Sem

    i- co

    ntin

    uous

    Up-

    flow

    an

    aero

    bic

    slud

    ge

    bed-

    an

    aero

    bic

    filte

    r re

    acto

    r; Tw

    o-

    phas

    e A

    D;

    Hyd

    roly

    zer

    (H)

    1.3

    1;

    met

    hani

    zer

    (M)

    0.5

    I

    CST

    R

    Sem

    i- co

    ntin

    uous

    60

    1

    CST

    R

    Sem

    i- co

    ntin

    uous

    60

    I

    CST

    R

    Sem

    i- co

    ntin

    uous

    5.

    5 1

    30

    30

    35

    28-3

    2

    28-3

    2

    35

    NR

    15

    2.61

    (0.5

    5)

    0.16

    9*

    15

    1.39

    (0.2

    4)

    0.24

    5*

    15

    0.81

    (0.2

    0)

    0.32

    1*

    15

    0.28

    (0.0

    7)

    0.35

    7*

    12

    0.85

    (0.0

    9)

    0.35

    3*

    9.6

    1.06

    (0.2

    1)

    0.25

    5*

    H-7

    .5

    M-3

    N

    R

    0.38

    3

    H-2

    .6

    M-l

    3.74

    * 0.

    286;

    N

    R

    96.3

    3.

    90*

    0.26

    7*

    95.7

    3.

    88*

    0.25

    2*

    93.4

    3.

    43*

    0.22

    8*

    88.1

    4.

    17*

    0.23

    0*

    89.7

    4.

    06*

    0.26

    3*

    95.2

    3.

    87*

    0.33

    5*

    93.2

    NR

    0.

    510

    NR

    98

    .5

    8 3.

    8 0.

    030

    0.13

    6*

    NR

    12

    3.

    8 0.

    090

    .0.2

    97*

    16

    3.8

    0.25

    0 0.

    557*

    20

    3.

    8 0.

    370

    0.70

    1*

    24

    3.8

    0.32

    0 0.

    502*

    16

    3.

    8 0.

    270

    0.63

    7*

    NR

    16

    5.

    7 0.

    190

    0.83

    5*

    16

    7.6

    0.11

    0 0.

    551*

    16

    9.

    5 0.

    040

    0.21

    8*

    24

    4.3

    0.42

    0 0.

    8 N

    R

    0.31

    6*

    NR

    70

    0.

    219*

    40

    0.

    343*

    70

    0.

    261*

    50

    0.

    308*

    40

    0.

    281*

    60

    0.

    417*

    75

    0.

    310*

    75

    0.44

    (0.1

    2)

    78.8

    0.

    34(0

    .09)

    64

    0.

    26(0

    .26)

    57

    .7

    0.10

    (0.0

    2)

    51.2

    0.30

    61

    .3

    0.27

    54

    .3

    NR

    90

    1501

    1511

    [541

    t251

    [591

    [601

  • Anaerobic digestion of biomass for methane production: a review 93

    2 2

  • Tabl

    e 3-

    Cont

    inue

    d

    Feed

    Fe

    rmen

    ter

    Tem

    p.

    (C)

    H

    RT

    OLR

    b (d

    ays)

    (k

    gVSm

    3 d

    -

    ) C

    H,

    yiel

    db

    CH

    , PR

    vs

    r (m

    kg

    - V

    S,)

    (m

    me3

    d-

    )

    (%)

    Ref

    eren

    ce

    ??

    Rhe

    um r

    hapo

    ntic

    um t

    ops

    (Rhu

    barb

    to

    ps)

    Fres

    h Si

    lage

    Sym

    phyt

    um

    aspe

    rum

    top

    s (C

    omfre

    y to

    ps)

    Fres

    h Si

    lage

    Hel

    ia H

    elia

    nthu

    s tu

    bero

    sus,

    stem

    +

    leav

    es

    (Jer

    usal

    em

    artic

    hoke

    , JA

    ) To

    pina

    nca

    varie

    ty,

    fres

    h en

    sile

    d

    Var

    iety

    N

    o.

    1168

    , fr

    esh

    ensi

    led

    Topi

    nanc

    a va

    riety

    , en

    sile

    d va

    riety

    N

    o.

    1168

    , en

    sile

    d

    JA

    tops

    Fr

    esh

    Sila

    ge

    Mir

    abili

    s ja

    lapa

    lea

    ves

    0.08

    8 m

    m

    size

    0.

    4 m

    m

    size

    1.

    0 m

    m

    size

    6.

    0 m

    m

    size

    30

    x 5

    0 m

    m

    size

    Ipom

    oea

    fistu

    losa

    lea

    ves

    0.08

    8 m

    m

    size

    0.

    4 m

    m

    size

    1.

    0 m

    m

    size

    6.

    0 m

    m

    size

    15

    0 x

    100

    mm

    si

    ze

    Ipom

    oea

    Jist

    ulos

    a st

    em

    (IFS

    ) IF

    S,

    0.4

    mm

    si

    ze

    IFS,

    40

    day

    s in

    cuba

    tion

    with

    w

    ater

    Glir

    icid

    ia m

    acul

    ata

    leav

    es

    Calo

    lrop

    is p

    roce

    ra

    leav

    es,

    CPL

    C

    PL

    Bat

    ch

    3 1

    35

    NA

    N

    A

    Bat

    ch

    3 1

    35

    NA

    N

    A

    CST

    R

    Sem

    i- co

    ntin

    uous

    10

    I

    37

    50

    59

    37

    46

    44

    21

    NA

    27

    N

    A

    35

    NA

    2.2

    0.25

    0*

    2.5

    0.26

    5*

    CST

    R

    Sem

    i- co

    ntin

    uous

    10

    I

    Bat

    ch

    3 1

    Bat

    ch

    3 I

    2.6

    2.5

    NA

    N

    A

    Bat

    ch

    3 I

    NA

    Bat

    ch

    5 I

    37

    NA

    N

    A

    0.31

    6 0.

    345

    NA

    N

    R

    1631

    NA

    N

    R

    [631

    NR

    N

    R

    67

    [621

    NR

    NA

    N

    A

    61

    66

    NR

    N

    R

    NA

    N

    R

    [621

    tz22

    ;

    [631

    NA

    45

    .0

    45.3

    43

    .7

    43.3

    38

    .5

    [571

    NA

    55

    .3

    55.0

    54

    .2

    53.1

    49

    .9

    1571

    NA

    50

    .7

    59.1

    [6

    41

    NA

    37

    .5

    NA

    64

    .5

    [651

    [661

    1671

    0.33

    4 0.

    323

    0.30

    7 0.

    28 1

    0.33

    8*

    0.35

    4*

    0.30

    9 0.

    301

    0.33

    9(0.

    002)

    0.

    341(

    0.00

    1)

    0.32

    9(0.

    001)

    0.

    327(

    0.00

    2)

    0.29

    0(0.

    004)

    Bat

    ch

    5 I

    31

    NA

    N

    A

    0.42

    9(0.

    002)

    0.

    427(

    0.00

    1)

    0.42

    1(0.

    005)

    0.

    413(

    0.00

    1)

    0.38

    7(0.

    002)

    Bat

    ch

    5 1

    37

    NA

    N

    A

    0.36

    1 0.

    426

    Bat

    ch

    3 1

    29-3

    5 N

    A

    NA

    0.

    181(

    0.03

    4)

    Bat

    ch

    0.1

    I 35

    N

    A

    NA

    0.

    280

    Bat

    ch

    4 1

    30

    NA

    N

    A

    NR

    1.

    624(

    0.08

    7)

    NR

  • Anaerobic digestion of biomass for methane production: a review 95

    3.8 kg VS mm d-. The CH, yield was slightly leaves, such as Mirabilis, IpomoeaJistulosa, etc., lower for the 16-day HRT. entire leaves can also be used without shredding.

    Sarada and Joseph6 studied the influence of HRT, OLR and temperature on CH, PR and yield during AD of tomato-processing waste (TPW). For the 24-days HRT, 4.3 kg VS me- d- and 35C a CH, yield of 0.42 m kg- VS added and CH, PR of 0.8 m3 rn~- d- were achieved.

    Sarada and Joseph enumerated the microfl- ora that developed during the AD of TPW. In the batch process, the methanogen count decreased possibly due to the decrease in the pH of the slurry. In semi-continuous processes, the cellulolytics, xylanolytics, pectinolytics, prote- olytics, lipolytics and methanogens increased with increase in the HRT. The numbers of methanogens were almost proportional to the HRT and this seemed to be reflected in the CH, content of the biogas. The xylanolytics and lipolytics were predominant organisms.

    Mahamat et a1.j6 were of the opinion that the low CH, potential of Calotropis leaves may be due to the presence of some toxic compound, which may partly inhibit the digestion process. Calotropis is known to contain a strong cardiotonic, the inhibitory properties of which on AD is not known. Traore,67 however, by batch digestion experiments, showed that Calotropis is a good substrate for biogas production.

    Shyam and Sharma* conducted high-solids digestion experiments with mango leaves and CM in 1.2 m batch type digesters. The biogas yield of the blend was higher than CM alone.

    4.4. Grasses (gramineae)

    It is worthwhile including the unused parts of vegetable plants in this section as they are often seen among the FVSW. Gunnarson et a1.62 demonstrated that the biogas production was approximately equal for both fresh and ensiled Jerusalem artichoke (JA) and, thus, the crop can be stored as silage until used for AD. The variety No. 1168, a hybrid between JA and sunflower produced higher CH, yield than the Topinanca variety.

    Zubr had the same view that the yields and rates of biogas production from fresh and ensiled materials were not significantly different. The use of a separate ensiling followed by methanogenic fermentation would make pro- duction of biogas possible all the year round independent of the seasonal availability of raw materials.

    The literature base for evaluating AD potential of grasses (Table 4) showed that Napier grass3 energy cane (ball milled),33 Alemangrass-6A,33 turf grass (Floritum St. Aug),33 wheat straw,9,73 76 paddy straw, millet straw,33. oats crop, maize crop, corn stover29 and sorghum3?. 7R. l9 exhibited CH, yields as high as 0.3 m3 kg- VS added without pre-treatment. Jerger et al. observed the highest CH, yield of 0.4 m3 kg- VS added and VSr of 92% for sweet sorghum (Rio cultivar). Different plant parts,- harvesting frequency,33 plant age, clonal variations, nutrient addition,, particle size reductionS7. and alkali treatment74- . . a X2 have a substantial effect on CH, yield from grasses.

    4.3.2. Leafy biomass. It has been postulated that CH, yields and kinetics were generally higher in leaves than in stems. The data of Sharma et a1.57,h4 on AD of Ipomoea jistulosa leaves and stem also confirmed the above concept.

    According to Gunaseelanh5 Gliricidia leaves are used for green-leaf manuring in India. Consequently, the vast energy converted through photosynthesis is lost. AD of Gliricidia leaves resulted in a CH, yield of 0.18 m3 kg- VS added and a digester residue of high manurial value.

    4.4.1. Plant parts, harvest ,fi-equency, age, ensiling and clonal variations. In Napier grass, CH, yields and kinetics were generally higher in leaves than in stems. Substantial differences were observed in CH, yield and conversion kinetics within the same species (different clones). The BMP of the 551 variety was higher than PI 300086, N-51, N-75, S42, S44 varieties. Post-harvest conditions, such as ensiling or drying did not have a substantial effect on the BMP of energy cane, Napier grass and pearl millet. However, CH, yields and kinetics increased with harvest frequency with Napier grass. Age of Napier grass at harvest time influenced the CH, yield. Young tissues produced more methane than the old tissues, probably because younger tissues are less lignified.O

    Besides the required particle size of 0.4 mm for agricultural residues such as straw, Sharma et al. indicated that in the case of succulent

    4.4.2. Nutrient addition. Wilkie et al. Oy demonstrated that mesophilic AD of mature Napier grass (PI 300086) supplemented with nitrogen and phosphorus resulted in a low rate

  • Tabl

    e 4.

    D

    iges

    ter

    perfo

    rman

    ce

    with

    gr

    ass

    feed

    s (T

    emp,

    te

    mpe

    ratu

    re;

    HR

    T,

    hydr

    aulic

    re

    tent

    ion

    time;

    O

    LR,

    orga

    nic

    load

    ing

    rate

    ; V

    S,,

    VS

    adde

    d;

    CH

    , PR

    , m

    etha

    ne

    prod

    uctio

    n g

    rate

    ; V

    S,,

    VS

    redu

    ctio

    n;

    NA

    , no

    t ap

    plic

    able

    ; N

    R,

    not

    repo

    rted;

    *v

    alue

    s ca

    lcul

    ated

    fro

    m

    the

    data

    re

    porte

    d;

    b va

    lues

    in

    par

    enth

    eses

    ar

    e s.d

    .;

    ultim

    ate

    CH

    , yi

    eld)

    Feed

    Fe

    rmen

    ter

    Tem

    p.

    (C)

    H

    RT

    (day

    s)

    OLR

    C

    H,

    yiel

    d b

    CH

    dPR

    h

    VSr

    (k

    gVSm

    - d-

    )

    (m

    kg-

    VS,

    ) (m

    3 m

    - d-

    )

    (X)

    Ref

    eren

    ce

    Penn

    iset

    um p

    urpu

    reum

    (N

    apie

    r gr

    ass,

    NG

    ) A

    ge:

    120

    days

    18

    0 da

    ys

    330

    days

    N

    G

    tops

    B

    efor

    e m

    icro

    nutri

    ent

    addi

    tion

    Afte

    r m

    icro

    nutri

    ent

    addi

    tion

    NG

    , PI

    30

    0086

    N

    G,

    Fres

    h-R

    -3

    Fres

    h-R

    -2

    40%

    m

    oist

    ure-

    R-3

    20

    %

    moi

    stur

    e-R

    -5

    NG

    , Fr

    esh-

    PI

    3000

    86

    Ensi

    led-

    PI

    3000

    86

    NG

    , PI

    30

    0086

    , H

    arve

    st

    frequ

    ency

    3

    times

    /yea

    r 2

    times

    /yea

    r 1

    time/

    year

    N

    G,

    PI

    3000

    86

    who

    le

    plan

    t le

    aves

    st

    ems

    NG

    , N

    -75

    Who

    le

    plan

    t le

    aves

    st

    ems

    NG

    , S4

    4 w

    hole

    pl

    ant

    leav

    es

    stem

    s N

    G,

    551

    who

    le

    plan

    t N

    G,

    S42,

    w

    hole

    pl

    ant

    Ener

    gyca

    ne

    Bal

    l m

    illed

    0.

    8 m

    m

    parti

    cle

    size

    8.

    0 m

    m

    parti

    cle

    size

    En

    ergy

    cane

    , fr

    esh

    ensi

    led

    BM

    P as

    say

    35

    NA

    N

    A

    0.31

    0 0.

    260

    0.24

    0

    0.11

    3*

    0.15

    8*

    0.28

    8(0.

    004)

    0.

    274(

    0.01

    0)

    0.

    191(

    0.01

    4)

    0.

    255(

    0.01

    3)

    0.

    247(

    0.01

    4)

    0.

    260(

    0.01

    4)

    0.

    310(

    0.00

    8)

    0.29

    4(0.

    034)

    0.25

    8(0.

    020)

    0.23

    8(0.

    004)

    0.24

    3(0.

    002)

    0.26

    2(0.

    001)

    0.24

    2(0.

    001)

    0.29

    6(0.

    019)

    0.28

    4(0.

    026)

    0.29

    8(0.

    011)

    0.30

    4(0.

    014)

    0.30

    6(0.

    004)

    0.28

    7(0.

    022)

    0.34

    2(0.

    017)

    0.32

    2(0.

    026)

    0.32

    0

    0.24

    0

    0.29

    0

    0.24

    5(0.

    001)

    0.26

    5(0.

    007)

    NA

    N

    R

    1701

    0.13

    9 N

    R

    0.19

    4 N

    R

    NA

    N

    R

    NA

    N

    R

    1691

    NA

    N

    R

    NA

    N

    R

    NA

    N

    R

    NA

    N

    R

    NA

    N

    R

    NA

    N

    R

    NA

    N

    R

    NA

    N

    R

    CST

    R

    Sem

    i- co

    ntin

    uous

    4

    I B

    MP

    assa

    y B

    MP

    assa

    y

    35

    35

    35

    20

    1.23

    NA

    N

    A

    NA

    N

    A

    BM

    P as

    say

    35

    NA

    N

    A

    BM

    P as

    say

    35

    NA

    N

    A

    BM

    P as

    say

    35

    NA

    N

    A

    BM

    P as

    say

    35

    NA

    N

    A

    BM

    P as

    say

    35

    35

    35

    35

    NA

    N

    A

    NA

    N

    A

    NA

    N

    A

    NA

    N

    A

    BM

    P as

    say

    BM

    P as

    say

    BM

    P as

    say

  • Ener

    gyca

    ne,

    L79-

    100

    2 H

    arve

    st

    frequ

    ency

    3

    times

    /yr

    2 tim

    es/y

    r I

    time/

    yr

    Cyn

    odan

    da

    ctyl

    on

    (Ber

    mud

    a gr

    ass,

    BG

    )

    With

    out

    exte

    rnal

    nu

    trien

    ts

    With

    ex

    tern

    al

    nitro

    gen

    addi

    tion

    With

    ex

    tern

    al

    nitro

    gen

    and

    phos

    phor

    us

    addi

    tion

    BG

    , 0.

    088

    mm

    pa

    rticl

    e si

    ze

    0.4

    mm

    pa

    rticl

    e si

    ze

    1.0

    mm

    pa

    rticl

    e si

    ze

    6.0

    mm

    pa

    rticl

    e si

    ze

    30.0

    mm

    pa

    rticl

    e si

    ze

    BM

    P as

    say

    CST

    R

    Sem

    i- co

    ntin

    uous

    7

    I

    Bat

    ch

    5 I

    35

    NA

    N

    A

    0.29

    4(0.

    027)

    0.26

    1(0.

    016)

    0.24

    6(0.

    004)

    NA

    N

    R

    0.19

    2*

    0.35

    1*

    0.35

    0;

    NR

    NA

    20

    37.5

    38.1

    30.0

    30

    .2

    28.4

    27

    .1

    18.2

    NR

    NA

    N

    R

    NA

    N

    R

    NR

    76

    0.37

    0*

    NR

    NA

    NR

    79

    91

    65

    35

    35

    35

    12

    12

    12

    1.6

    0.11

    2 1.

    6 0.

    219

    1.6

    0.21

    8

    37

    NA

    N

    A

    0.22

    6(0.

    004)

    0.

    228(

    0.00

    2)

    0.21

    4(0.

    005)

    0.

    205(

    0.00

    3)

    0.13

    7(0.

    003)

    0.29

    8(0.

    001)

    0.29

    3(0.

    006)

    0.24

    2(0.

    011)

    0.23

    8(0.

    009)

    0.28

    1(0.

    010)

    0.27

    7(0.

    028)

    0.26

    1(0.

    013)

    0.29

    2(0.

    005)

    0.25

    1(0.

    007)

    0.33

    2(0.

    025)

    0.24

    7(0.

    004)

    0.13

    6*

    0.19

    0*

    35

    NA

    N

    A

    Bio

    mas

    s gr

    own

    in

    flood

    ed

    soils

    A

    lem

    angr

    ass-

    6A

    Ale

    man

    gras

    s-7A

    Pa

    ragr

    ass-

    1 P

    Pa

    ragr

    ass-

    3P

    Sacc

    haru

    m

    robu

    stur

    n Su

    garc

    ane

    hybr

    ids:

    US

    72-1

    288

    US

    84-1

    008

    US

    84-1

    009

    US

    84-1

    018

    Turf

    gr

    ass

    Flor

    itum

    St

    . A

    ug.

    Sevi

    lle

    St.

    Aug

    . R

    ye

    gras

    s str

    aw

    (1-3

    cm

    si

    ze)

    Gra

    ss

    mix

    ture

    Tr

    iticu

    m

    aest

    ivum

    (W

    heat

    str

    aw,

    WS)

    20

    mm

    si

    ze

    0.5

    mm

    si

    ze

    WS,

    0.

    5 m

    m

    size

    BM

    P as

    say

    BM

    P as

    say

    CST

    R

    sem

    i- co

    ntin

    uous

    20

    1

    CST

    R

    35

    NA

    N

    A

    33-3

    7

    35

    20

    16

    2.02

    1.94

    *

    Bat

    ch

    1 1

    35-3

    9

    33-3

    7

    NA

    N

    A

    20

    2.36

    0.25

    5*

    0.32

    7*

    0.25

    9*

    CST

    R

    sem

    i- co

    ntin

    uous

    20

    I

    Con

    tinue

    d

  • Feed

    Fe

    rmen

    ter

    Tabl

    e &C

    ontin

    ued

    Tem

    p.

    (C)

    H

    RT

    (day

    s)

    OLR

    C

    H,

    yiel

    d b

    CH

    ,PR

    VSr

    (k

    gVSm

    - d-

    )

    (m3

    kg-

    VS,

    ) (m

    m

    m3

    d-)

    (X

    ) R

    efer

    ence

    NA

    59

    .4

    64.0

    65

    .0

    66.4

    55

    .7

    39.7

    [751

    NA

    56

    .8

    57.3

    [7

    51

    NA

    66

    .5

    70.7

    3.82

    (0.0

    3)

    50

    3.46

    (0.0

    6)

    48.6

    3.

    21(0

    .07)

    44

    .4

    3. I

    l(O.0

    7)

    38.4

    NA

    N

    R

    NA

    .':

    2 [7

    51

    [ 1 Q 2 [7

    61

    p k

    [571

    NA

    38.7

    38

    .5

    37.4

    35

    .2

    25.0

    N

    R

    NA

    55

    .6

    56.0

    54

    .6

    52.9

    36

    .8

    ~291

    [571

    NA

    63

    .0

    [661

    N

    A

    NR

    [3

    31

    WS,

    ba

    ll m

    illed

    ga

    mm

    a ra

    y irr

    adia

    tion

    0 M

    ra

    d 1

    M

    rad

    5 M

    ra

    d 10

    M

    rad

    50 M

    rad

    10

    0 M

    ra

    d N

    H,O

    H

    pret

    reat

    men

    t N

    H,

    OH

    -80

    C-2

    4 h

    0 g

    OH

    kg

    - V

    S 34

    g O

    H

    kg-

    VS

    NH

    ,OH

    Pr

    etre

    atm

    ent

    NaO

    H-9

    0C

    -1

    h O

    gOH

    kg-V

    S 34

    g O

    H

    kg-

    VS

    WS,

    ba

    ll m

    illed

    N

    aOH

    -34

    g O

    H

    kg-

    VS-

    95C

    -1

    h N

    aOH

    -34

    g O

    H

    kg-

    VS-

    95%

    I h

    Ca(

    OH

    ),-34

    g

    OH

    kg

    - V

    S-95

    C-1

    h

    Unt

    reat

    ed

    (con

    trol)

    WS,

    ba

    ll m

    illed

    . I/S

    ra

    tio

    (VS

    basi

    s)

    I/S

    ratio

    0.

    07

    I/S

    ratio

    0.

    16

    I/S

    ratio

    0.

    19

    I/S

    ratio

    0.

    25-1

    0.9

    WS,

    0.

    088

    mm

    si

    ze

    0.4

    mm

    si

    ze

    1.0

    mm

    si

    ze

    6.0

    mm

    si

    ze

    30 x

    5 m

    m

    size

    W

    S,

    No.

    1 W

    S,

    No.

    2 O

    ryza

    sa

    tiva

    (pad

    dy

    stra

    w)

    0.08

    8 m

    m

    size

    0.

    4 mm

    si

    ze

    1.0

    mm

    si

    ze

    6.0 m

    m

    size

    30

    x 5

    mm

    si

    ze

    Mill

    et

    straw

    , dr

    ied

    3 x

    3 m

    m

    size

    Pe

    arl

    mill

    et,

    fres

    h en

    sile

    d

    Bat

    ch

    4 dm

    54

    -56

    NA

    N

    A

    0.30

    4(0.

    001)

    0.31

    4(0.

    002)

    0.27

    8(0.

    001)

    0.3

    1 S(O

    .002

    )

    0.27

    5(0.

    005)

    0.21

    l(O

    .027

    )

    0.31

    8(0.

    008)

    0.36

    2(0.

    002)

    Bat

    ch

    4 dm

    3 54

    -56

    NA

    N

    A

    Bat

    ch

    4 dm

    54

    -56

    NA

    N

    A

    0.30

    0(0.

    020)

    0.38

    3(0.

    016)

    55

    5 N

    R

    NR

    Se

    mi-c

    ontin

    uous

    4

    dm3

    Bat

    ch 12

    0 m

    l 35

    N

    A

    NA

    0.

    013

    y 0.

    033

    u 0.

    018

    y 0.

    299-

    0.33

    1

    0.24

    9(0.

    001)

    0.

    248(

    0.00

    1)

    0.24

    1(0.

    001)

    0.

    227(

    0.00

    1)

    0.16

    2(0.

    003)

    0.

    302(

    0.00

    8)

    0.33

    3(0.

    006)

    0.36

    5(0.

    001)

    0.

    367(

    0.00

    1)

    0.35

    8(0.

    002)

    0.

    347(

    0.00

    2)

    0.24

    1(0.

    004)

    0.39

    0 0.

    257(

    0.01

    6)

    0.

    304(

    0.01

    3)

    Bat

    ch

    5 1

    37

    NA

    N

    A

    35

    37

    NA

    N

    A

    NA

    N

    A

    BM

    P as

    say

    Bat

    ch

    5 1

    Bat

    ch

    100

    ml

    BM

    P as

    say

    35

    NA

    N

    A

    35

    NA

    N

    A

  • Oat

    s cr

    op,

    20 m

    m

    size

    O

    ats

    crop

    , l-3

    cm

    si

    ze

    Mai

    ze

    crop

    , 20

    mm

    si

    ze

    Mai

    ze

    crop

    1-

    3 cm

    si

    ze

    Cor

    n st

    over

    So

    rghu

    m

    culti

    vars

    (i)

    H

    igh

    ener

    gy

    Atla

    s x

    RT

    x 43

    0 A

    T x

    623

    x W

    ray

    AT

    x 62

    3 x

    Rio

    (ii

    ) Sw

    eet

    BM

    R-1

    2 R

    io

    (iii)

    Gra

    in

    Giz

    a 11

    4 R

    S 61

    0 So

    rghu

    m-R

    io

    culti

    var

    Dai

    ly

    feed

    ing

    Dai

    ly

    feed

    ing

    Alte

    rnat

    e da

    y fe

    edin

    g

    Sorg

    hum

    hi

    colo

    r: al

    pha

    cellu

    lose

    (1

    : 1

    VS

    basi

    s)

    Dry

    fe

    rmen

    tatio

    n (2

    8%TS

    ) So

    rghu

    m

    bico

    lor :

    alph

    a ce

    llulo

    se

    Sorg

    hum

    So

    rghu

    m

    1.6

    mm

    pa

    rticl

    e si

    ze

    8.0

    mm

    pa

    rticl

    e si

    ze

    Sorg

    hum

    Bat

    ch

    I 1

    CST

    R

    sem

    i- co

    ntin

    uous

    20

    I

    Bat

    ch

    1 I

    CST

    R

    sem

    i- co

    ntin

    uous

    20

    I

    BM

    P as

    say

    BM

    P as

    say

    CST

    R

    3 1

    35

    28

    Non

    -mix

    ed

    verti

    cal

    flow

    re

    acto

    r 10

    1

    Occ

    asio

    nally

    st

    irred

    re

    acto

    r

    CST

    R

    20 1

    BM

    P as

    say

    BM

    P as

    say

    BM

    P as

    say

    35-3

    9 N

    A

    NA

    0.

    295*

    33

    -37

    20

    2.3

    0.27

    4*

    35-

    39

    33-3

    7

    35

    35

    NA

    N

    A

    0.34

    2;

    20

    2.3

    0.25

    3*

    NA

    N

    A

    0.36

    0(0.

    003)

    NA

    N

    A

    0.36

    0(0.

    001)

    0.

    340(

    0.00

    1)

    0.34

    0(0.

    006)

    35

    28

    55

    15

    55

    29.8

    21.7

    35

    35

    NA

    35

    NA

    NA

    35

    NA

    1.6

    3.2

    4.0

    3.2

    4.8

    0.37

    0(0.

    012)

    17.1

    0.

    320

    NR

    N

    R

    24.1

    0.

    310

    NA

    0.

    380

    NA

    90

    .7

    NA

    0.

    360

    NA

    82

    NA

    0.

    410

    0.

    420

    N

    A

    NR

    NA

    0.

    311(

    0.00

    8)

    N

    A

    NR

    0.35

    0(0.

    003)

    0.

    400(

    0.00

    1)

    0.28

    0(0.

    002)

    0.

    310(

    0.00

    3)

    0.26

    0(0.

    009)

    0.

    260(

    0.00

    8)

    0.25

    0(0.

    013)

    0.

    360(

    0.00

    9)

    BM

    P as

    say

    NA

    N

    R

    NA

    N

    R

    NA

    NA

    0.40

    0.

    83

    0.96

    1.

    20

    1.80

    66.0

    55

    .0

    81.0

    80

    .0

    NR

    93.6

    92

    .8

    91.3

    92.3

    92

    .0

    73.8

    83

    .5

    NR

    NR

    NR

  • 100 V.NALLATHAMBIGUNASEELAN

    of CH, production and high VFA concen- trations. Daily addition of a solution containing nickel, cobalt, molybdenum, selenium and sulphate increased the CH, production by 40% and significantly decreased VFA concen- trations.

    Ghosh et al. reported that Bermuda grass (BG) is deficient in nitrogen and phosphorus. Accordingly, several mesophilic digestion runs were conducted with BG at HRT = 12 days and OLR = 1.6 kg VS m-3 d-l, with and without external nitrogen and phosphorus additions. It was found that supplementing the feed with NH, Cl increased the CH, yield by 96% and cellulose conversion by 33 %. Nitrogen addition appeared to decrease hemicellulose conversion and phosphorus addition had no effect on hemicellulose conversion or CH, production. It was speculated that the metabolism of the breakdown product (glucose) of cellulose requires the least investment of enzymes and energy. The CH,, yield from grass mixture* was higher than that of BG without external nutrient addition.

    4.4.3. Particle size reduction. Biodegradabil- ity can be increased by physical pre-treatment, which includes size reduction and pre-incu- bation with water. Particle size reduction provides high surface area for the cellulosic materials. Sharma et aZ.57 demonstrated that in BG, wheat straw and paddy straw, particle sizes of 0.088 and 0.40 mm produced an almost equal quantity of biogas and, thus, grinding below 0.40 mm would seem to be uneconomical. However, Chynoweth et a1.33 conducted tests with sorghum and energy cane and hypoth- esized that particle sizes in the millimetre to centimetre range would not significantly expose more surface area and would, thus, exhibit similar kinetics. Particle size reduction below 1 mm would also be uneconomical to obtain on a commercial basis.

    4.4.4. Alkali treatment. Pavlostathis and Gossett74 reported greater than 100% increase in CH, yield from wheat straw (WS) pre-treated with 500 g NaOH kg- TS for 24 h at room temperature (26 + 2C) compared with un- treated WS. They suggested a solids separation and filtrate recycle scheme to recover excess alkali for reuse. However, Hashimoto75 using laboratory-scale batch fermenters, evaluated the effects of pre-treating WS with y-ray irradiation, NH,OH and NaOH on CH, yield. Results showed that CH, yield increased as pre-treat- ment alkali concentration increased, with the

    highest yield being 37% over untreated straw for the pre-treatment consisting of NaOH dosage of 34 g OH- kg- VS at 90C for 1 h. NaOH is more effective than NH,OH in pre-treating straw, and y-ray irradiation had no significant effect on CH, yield. Semi-continuous fermentations of straw-manure mixtures confirmed the relative effectiveness of NaOH, and Ca(OH)2 pre-treatment had no beneficial effect on CH; PR.

    4.4.5. Inoculum/substrate (Z/S) ratio. For successful digestion, pH of the digester should be within the optimum range and be carefully monitored. This is tedious and-consequently it has been shown that with a large inoculum size, batch digestion can be successfully completed without pH adjustment and also CH, PR is accelerated. Batch fermentation experiments using WS showed that B,, was drastically lower at I/S ratios (on a VS basis) below 0.25. CH, PR increased at a decreasing rate up to an I/S ratio of 2, after which it remained relatively constant.76 The inoculum-to-feed ratio (I/F) on the standard BMP procedure is approximately 1 (VS basis). Chynoweth et af.33 determined the effect of increasing the I/F ratio on kinetics of CH, production from cellulose, Napier grass and energy cane in order to optimize rates of CH, production in the BMP assays. The data suggest that, for an estimate of the maximum rate of CH, production using the BMP, increasing the I/F ratio may be needed for some type of substrates. Chynoweth et a1.33 have, therefore, modified the I/F ratio of the BMP procedure to 2.

    4.4.6. Sorghum. Sorghum bicolor yielded 20-30 Mg ha- in the north temperate zones and the high biomass yield makes it attractive as potential feedstocks for CH, production.69 Jerger et al.* examined several sorghum cultivars including sweet, grain and high energy, to determine their anaerobic biodegradability using BMP assay. The highest CH, yield of 0.4 m kg- VS added was obtained from sweet sorghum cultivar, Rio. CH, yields from the other cultivars ranged from 0.27 to 0.36 m3 kg- VS added. Subsequently, experiments were conducted using the Rio cultivar in laboratory- scale CSTR, non-mixed vertical flow reactor (NMVFR) and occasionally-stirred reactor (OSR) to determine the operating conditions and reactor most suitable for large-scale digesters. A CH, yield of 0.36 m3 kg- VS added was achieved in NMVFR at a 3.2 kg VS mm3 d- loading, a 28day HRT and a 75-day SRT. This

  • Anaerobic digestion of biomass for methane production: a review 101

    represented a 36% increase in the CH, yield over a CSTR operated at the same loading and HRT. The CH, PR from a thermophilic OSR operated with 75day HRTjSRT and 4.8 kg VS m- d- was 1.8 m3 mm3 d- in comparison with a CH, PR of 1.2 m3 me3 d- from the mesophilic NMFVR.

    Richards et ~1.~ performed high-solids AD of sorghum (Sorghum bicolor) and sorghum and cellulose mixture (1 : 1 VS basis) using semi- continuous feed-and-mixed systems at 55C. CH, PR ranged from 5.7 to 7.5 1 kg- d- and is some of the highest reported volumetric productivity for biomass feedstocks.

    4.4.7. Manure-grass mixture. AD of several blends of manure and grasses has been carried out by several authors68,80 and all have reported enhanced CH, production.

    4.5. Woods

    Anaerobic digestion of woody biomass has not been considered technically feasible without pre-treatment. It has been proposed that many factors may influence the anaerobic biodegrad- ability of wood: low moisture content; relative lignin; cellulose and hemicellulose content; proportion of structural and non-structural carbohydrates; cellulose crystallinity; degree of association between lignin and carbohydrates; particle size; wood-to-bark ratio; and toxic components.29~88~93 An inverse linear relationship between VS reduction and lignin content was showed in the anaerobic biodegradability of woody speciesa The anaerobic biodegradability of several woody species was determined using BMP assay. The highest CH, yield of 0.32 m3 kg- VS added was achieved from hybrid poplar and sycamore9j (Table 5), whereas eucalyptus, loblolly pine and white fir exhibited poor degradability29,93 with CH, yields of 0.014, 0.063 and 0.042 ms kg- VS added, respectively. These results were attributed to long-term fermentation of feedstock solids and adaptation of a wood-degrading inoculum. However, Turick et ~1.~ have demonstrated high rates, and B, used BMP in a study to evaluate the biodegradability of 32 woody samples from 15 biomass species without pre-treatment other than particle size reduction. Approximately two-thirds of the samples tested gave biphasic curves of CH, production, indicating that BMP assays of woody biomass conducted for less than 50 days may underestimate B,. Genetic (clonal) differences, environmental growth con- ditions, harvest age and year of harvest may

    influence the BMP of woody biomass.1*.3 Willow and poplar clones represent an excellent choice for commercial CH, production (Table 5). Jimenez et ~1.~~ reported an estimated 700 000 t of vine shoots produced annually in Spain. The crude vine shoots had a lignin content of 21%. Lignin was removed by 1% sodium chlorite treatment at 80C for 3 h. Anaerobic digestion using CSTR at 35C 20-day HRT and OLR of 1 g VS 1-l d- produced 0.154 and 0.273 m CH, kg-- VS added for crude and treated vine shoots, respectively. Sharma et ~1.~ found that 0.4mm particles of Ipomoea $stulosa (IFS) stem produced 98% more CH, than the 6 mm particles. When IFS was pre-incubated in water for 40 days, the CH, yield was 0.426 m3 kg- VS.

    4.6. Terrestrial weeds

    The use of weedy plants as a potential source of biomass is a rather recent concept. These non-conventional crops on wastelands can be considered as potential biomass and used as feedstocks for biogas digesters, because:

    ?? Weeds have ability to trap a significant amount of solar energy.

    ?? Weeds are capable of growing on soils generally unsuitable for conventional crop production.

    ?? The genetic base of weeds is such that many can grow under a wide range of cultural and climatic conditions.

    ?? Weeds have a few serious known pests. ?? Weeds grow in natural stands without

    inputs and irrigation. ?? Large-scale utilization is one of the best

    strategies for weed management.

    Parthenium hysterophorus,h8. . 95.9h Lantana camera,% Cannabis sativa, Eupatorium odoratum, Ageratum are some of the weeds studied as sources for CH, production (Table 6).

    Parthenium hysterophorus L. is a minor weed in tropical North and South America, South Africa, Indo China and is a major problem in India as well as Australia. It is an aggressive, invasive weed of sugar-cane and sunflower cropland, wasteland and over- grazed pasture. Approximately 2 000 000 ha of land in India have been infested with this weed.96 Gunaseelan95 reported that anaerobic digestion of mixtures of CM and Parthenium (flowering stage) enhanced CH, production in batch digesters. Anaerobic digestion of Parthenium in CSTR at 30C IO-day HRT and

  • Feed

    Fe

    rmen

    ter

    Tabl

    e 5.

    D

    iges

    ter

    perfo

    rman

    ce

    with

    w

    oody

    bi

    omas

    s fe

    eds

    Tem

    pera

    ture

    (

    C)

    HR

    T (d

    ays)

    O

    LR

    (kg

    VS

    mm

    3 d-

    )

    CH

    , yi

    eld*

    (m

    kg

    - V

    S,)

    VSr

    (%

    ) R

    efer

    ence

    Popu

    lus

    delto

    ides

    (c

    otto

    n w

    ood)

    Po

    pulu

    s sp

    . (H

    ybrid

    po

    plar

    ) Pl

    atan

    us

    occi

    dent

    alis

    (S

    ycam

    ore)

    Pi

    nus

    taed

    a (L

    oblo

    lly

    pine

    ) Eu

    caly

    ptus

    sp

    . B

    lack

    al

    der

    Red

    al

    der

    Abie

    s co

    ncol

    or

    (Whi

    te

    fir)

    All

    Salix

    sp

    . (W

    illow

    ) St

    em

    and

    bark

    0.

    8 m

    m

    parti

    cle

    size

    A

    ll Po

    pulu

    s sp

    . (P

    opla

    r)

    stem

    an

    d ba

    rk

    0.8

    mm

    pa

    rticl

    e si

    ze

    Liyu

    idam

    bar

    styr

    ac$u

    a (S

    wee

    t gu

    m)

    Popl

    ar

    woo

    d 0.

    003

    mm

    si

    ze

    0.8

    mm

    si

    ze

    8.0

    mm

    si

    ze

    Vin

    e sh

    oots

    , un

    treat

    ed

    BM

    P as

    say

    35

    NA

    N

    A

    0.22

    0 32

    .3

    [931

    BM

    P as

    say

    0.32

    0 0.

    320

    0.06

    3 0.

    014

    0.24

    0 0.

    280

    0.04

    2 (0

    .003

    )

    0.14

    0 (O

    .Ol)-

    0.

    310

    (O.O

    l).t

    0.22

    0 (0

    .020

    ) 0.

    290

    (O.O

    l)?

    0.21

    0 (o

    .olo

    )t

    53.8

    56

    .7

    3.6

    1.0

    32.5

    48

    .4

    NR

    NR

    ~291

    [28,

    331

    NR

    NR

    NR

    [3

    31

    NR

    [9

    41

    NR

    [9

    41

    NA

    N

    A

    0.36

    1 50

    .7

    0.18

    2 25

    .6

    0.42

    6 59

    .1

    1641

    35

    NA

    N

    A

    35

    NA

    N

    A

    35

    NA

    N

    A

    35

    NA

    N

    A

    BM

    P as

    say

    BM

    P as

    say

    BM

    P as

    say

    BM

    P as

    say

    35

    NA

    N

    A

    0.33

    0t

    0.33

    0t

    0.30

    0t

    0.10

    9 0.

    154

    0.16

    4 0.

    193

    0.18

    0 0.

    273

    0.28

    3 0.

    315

    CST

    R

    sem

    i-con

    tinuo

    us

    21

    CST

    R

    sem

    i-con

    tinuo

    us

    21

    25

    35

    45

    55

    25

    35

    45

    55

    37

    20

    1.0

    Vin

    e sh

    oots

    , so

    dium

    ch

    lorit

    e tre

    ated

    20

    I .o

    Ipom

    oea

    Jist

    ulos

    a St

    em

    (IFS

    ) IF

    S,

    0.4

    mm

    si

    ze

    IFS,

    6m

    m

    size

    IF

    S.

    40 d

    ays

    incu

    batio

    n w

    ith

    wat

    er

    Bat

    ch

    5 I

    HR

    T =

    hydr

    aulic

    re

    tent

    ion

    time,

    O

    LR

    = or

    gani

    c lo

    adin

    g ra

    te,

    VS,

    =

    VS

    adde

    d,

    VS,

    = V

    S re

    duct

    ion,

    N

    A

    = no

    t ap

    plic

    able

    , N

    R

    = no

    t re

    porte

    d.

    *Val

    ues

    in p

    aren

    thes

    es

    are

    SD,

    tulti

    mat

    e C

    H,

    yiel

    d.

  • Feed

    Fe

    rmen

    ter

    Tabl

    e 6.

    D

    iges

    ter

    perfo

    rman

    ce

    with

    te

    rres

    trial

    w

    eed

    feed

    s

    Tem

    pera

    ture

    (

    C)

    HR

    T (d

    ays)

    O

    LR

    (kgV

    S m

    - d-

    )

    CH

    , yi

    eldt

    (r

    n k

    g-

    VS,

    ) C

    H,

    PRt

    (rn

    m_W

    ) V

    Sr

    (%)

    Ref

    eren

    ce

    Part

    heni

    um h

    yste

    roph

    orus

    (P

    H)

    Sem

    i- PH

    , un

    treat

    ed,

    daily

    co

    ntin

    uous

    fe

    edin

    g C

    STR

    31

    PH,

    untre

    ated

    , al

    tern

    ate

    day

    feed

    ing

    PH,

    NaO

    H

    treat

    ed,

    daily

    fe

    edin

    g

    PH,

    NaO

    H

    treat

    ed,

    alte

    rnat

    e da

    y fe

    edin

    g

    PH,

    Unt

    reat

    ed,

    I/S =

    67

    (vol

    /vs)

    Fr

    esh

    Drie

    d PH

    , dr

    ied,

    he

    at

    treat

    ed

    PH,

    drie

    d,

    HC

    I tre

    ated

    PH

    , dr

    ied,

    N

    aOH

    tre

    ated

    La

    ntan

    a ca

    mer

    a,

    NaO

    H

    treat

    ed

    t C

    M

    (50:

    50

    w/w

    ) A

    gera

    tum

    , pa

    rtial

    ly

    deco

    mpo

    sed

    Sem

    i- co

    ntin

    uous

    C

    STR

    3

    1 Se

    mi-

    cont

    inuo

    us

    CST

    R

    3 1

    Bat

    ch

    2 I

    24-2

    8 N

    A

    NA

    Bat

    ch

    3 1

    28-3

    1 N

    A

    NA

    0.09

    5 (0

    .002

    ) 0.

    172

    (0.0

    02)

    0.21

    4 (0

    .004

    ) 0.

    060

    (0.0

    01)

    0.17

    3 (0

    .003

    ) 0.

    202

    (0.0

    03)

    0.21

    4 (0

    .007

    ) 0.

    112

    (0.0

    03)

    0.14

    7 (0

    .012

    ) 0.

    140

    (0.0

    08)

    0.15

    7 (0

    .015

    ) 0.

    203

    (0.0

    09)

    0.23

    6 (0

    .008

    ) 0.

    236*

    N

    A

    Bat

    ch

    3 I

    29-3

    1

    NA

    N

    A

    0.24

    1*

    NA

    28-3

    2

    28-3

    2 22

    -26

    22-2

    6

    22-2

    6 10

    4.

    12

    35

    10

    4.12

    40

    10

    4.

    12

    45

    10

    4.12

    22

    -26

    20

    2.06

    35

    20

    2.

    06

    40

    20

    2.06

    45

    20

    2.

    06

    5 IO

    20

    40

    10

    10

    20

    4.95

    0.

    034

    (0.0

    02)

    0.16

    7 (0

    .012

    ) 2.

    48

    0.11

    7 (0

    .005

    ) 0.

    290

    (0.0

    11)

    1.24

    0.

    115

    (0.0

    01)

    0.14

    3 (0

    .014

    ) 0.

    62

    0.10

    1 (0

    .011

    ) 0.

    062

    (0.0

    07)

    4.12

    0.

    110

    (0.0

    05)

    0.45

    6 (0

    .02)

    4.

    12

    0.03

    9 (0

    .002

    ) 0.

    160

    (0.0

    09)

    2.06

    0.

    086

    (0.0

    05)

    0.17

    9 (0

    .011

    )

    0.39

    3 (0

    .006

    ) 0.

    709

    (0.0

    06)

    0.88

    3 (0

    .014

    ) 0.

    248

    (0.0

    03)

    0.35

    7 (0

    .006

    ) 0.

    417

    (0.0

    05)

    0.44

    2 (0

    .015

    ) 0.

    232

    (0.0

    01)

    NA

    25.9

    [9

    61

    42.9

    >

    42.1

    N

    R

    E

    45.7

    a

    17.9

    _$

    35.5

    a B 8.

    s 35

    .3

    62.6

    %

    s

    65.1

    N

    R

    z 62

    .4

    I

    65.8

    z

    66.7

    3

    NR

    P 5

    39.8

    [7

    71

    36.4

    5 ;:

    42.8

    60

    .3

    $ ,c.

    65.9

    $

    NR

    WI

    P,

    x2

    N

    R

    1991

    2.

    HR

    T =

    hydr

    aulic

    re

    tent

    ion

    time,

    O

    LR

    = or

    gani

    c lo

    adin

    g ra

    te,

    VS,

    =

    VS

    adde

    d,

    CH

    ,PR

    =

    met

    hane

    pr

    oduc

    tion

    rate

    , V

    S, =

    VS

    redu

    ctio

    n,

    NA

    =

    not

    appl

    icab

    le,

    NR

    =

    not

    repo

    rted.

    *V

    alue

    s ca

    lcul

    ated

    fro

    m

    the

    data

    re

    porte

    d.

    tVal

    ues

    in p

    aren

    thes

    es

    are

    SD.

  • 104 V. NALLATHAMBIGUNASEELAN

    4.13 kg VS m-3 d- produced CH, yield of 0.11 m3 kg- VS added and volumetric CH, productivity of 0.46 m3 me3 d-.y6 Results on pre-treatment showed greater than 95% in- crease in CH, production from NaOH-treated Parthenium than untreated Parthenium. It has been postulated that at low room temperature feeding could be performed on alternate days, which established a HRT of 20 days, and OLR of 2.06 kg VS m- d-. At 35 and 40C feeding should be daily at a HRT of 10 days and OLR of 4.13 kg VS m--3 d-. The estimated energetic analysis indicate anaerobic digestion of Parthe- nium to be technically feasible.96 It has been shown that batch digestion of fresh Parthenium for 35 days at 26 f 2C at an I/S ratio (on a volume/VS basis) of 67, produced 0.147 f 0.012 m3 CH, kg- VS added and that of dried Parthenium at the same operating conditions produced 0.140 f 0.008 m CH, kg- VS added. At I/S ratios below 67, the yields were drastically low. A high volume of inoculum accelerated the rate of biogas pro- duction, leading to the possibility of short-term batch fermentation of Parthenium. Batch digestion of Parthenium confirmed the relative effectiveness of Na OH pre-treatment.

    Lantana camera, a weed growing abundantly on the Himalayan slope, India, was treated with NaOH and mixed with CM to feed batch digesters. AD for 37 days at 28-31C produced 62% higher CH, yield than CM alone.*

    Cannabis sativa was used as an additive with poultry litter and CM for biogas production. Use of fresh Cannabis at 31% of the mixture completely stopped gas production, probably due to the presence of high amounts of alkaloids.97

    According to Jagadeesh et a1.,98 fresh Eupatorium odoratum L. contains methanogenic inhibitors and pre-treatment in slaked lime for 24 h, leaching and partial aerobic decompo- sition for 6 days make Eupatorium a fit candidate for biogas production.

    Partially decomposed Ageratum under aerobic conditions for 5 days can be used as a substrate with and without CM for biogas production. The 56-days CH, yield from Ageratum alone was calculated to be 0.24 m3 kg- VS added in batch digesters at 30 f lC.99

    4.7. Aquatic biomass

    The potential of aquatic biomass production may be greater than that of land on the basis of

    the vast areas available for growth and the availability of water may not limit growth rates, suggesting the possibility of obtaining high productivity. Moreover, terrestrial biomass production is only two-dimensional, which includes production along length and breadth. Aquatic biomass production is three-dimen- sional, where the height element is also added.

    4.7.1. Marine biomass. Recent studies on bioconversion of marine macroalgae as potential sources for CH, include brown algae Macrocystis pJ@era, Sargassum, Lami- naria and Ascophyllum, green algae Ulva, Cladophora and Chaetomorpha and red algae Gracilaria (Table 7).33.42,7, oo~08 Macrocystis pyrifera (California giant brown kelp) is a perennial floating plant and can grow to a length of up to 61 m. It is a primary producer of organic matter and over 2000 species of marine flora and fauna are associated with kelp beds along the central and southern Californian coast. It was selected for IGTs work on Marine Biomass Program sponsored by the Gas Research Institute (GRI) and the U.S. Department of Energy (DOE). The results of kelp digestion studies conducted at the IGToo~o are summarized below:

    ?? Kelp has high water and ash content. Elemental analysis showed that nitrogen content varied from 0.96 to 2.2 wt%, corresponding to a C/N range of 2414, respectively and C/P ratio of 83. The major organic components are mannitol, protein and cellulose and minor components are laminarin and fucoidin. Kelp should be highly biodegradable because it does not contain the refractory lignocellulos