an update on the novel genera and species and revised ... · february 2019 volume 57 issue 2...

21
An Update on the Novel Genera and Species and Revised Taxonomic Status of Bacterial Organisms Described in 2016 and 2017 Erik Munson, a Karen C. Carroll b a College of Health Sciences, Marquette University, Milwaukee, Wisconsin, USA b Division of Medical Microbiology, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA ABSTRACT Recognition and acknowledgment of novel bacterial taxonomy and no- menclature revisions can impact clinical practice, disease epidemiology, and routine clinical microbiology laboratory operations. The Journal of Clinical Microbiology (JCM) herein presents its biannual report summarizing such changes published in the years 2016 and 2017, as published and added by the International Journal of Systematic and Evolutionary Microbiology. Noteworthy discussion centers around descriptions of novel Corynebacteriaceae and an anaerobic mycolic acid-producing bacterium in the suborder Corynebacterineae; revisions within the Propionibacterium, Clostridium, Bor- relia, and Enterobacter genera; and a major reorganization of the family Enterobacte- riaceae. JCM intends to sustain this series of reports as advancements in molecular genetics, whole-genome sequencing, and studies of the human microbiome con- tinue to produce novel taxa and clearer understandings of bacterial relatedness. KEYWORDS bacteria, nomenclature, phylogenetics, taxonomy I n 2017, the Journal of Clinical Microbiology (JCM) published its first series of minire- views summarizing newly published novel microbial taxa and revisions to taxonomic nomenclature within the disciplines of bacteriology (1), parasitology (2), virology (3), mycology (4), and mycobacteriology (5). With respect to bacteriology, this itemization and discussion of novel taxa and changes to taxonomy are particularly relevant because these are often the by-products of human microbiome investigations and/or advance- ments in molecular genetics and genomic sequencing strategies. Applications of taxonomic changes can be broad ranging. The impact on clinical care includes appro- priate utilization of antimicrobial susceptibility testing standards in terms of test procurement and data interpretation (6) and a broader understanding of the patho- genesis and epidemiology of emerging pathogens (7, 8). In addition, nomenclature changes can directly impact a given clinical microbiology laboratory from an adminis- trative standpoint (conformity to accreditation checklist standards [9]). In a recent survey on the impact of taxonomic changes on clinical care sent to the American Society for Microbiology ClinMicroNet listserv, several respondents mentioned the challenge of trying to know when changes are made and how to efficiently implement and communicate their relevance to both the laboratory and clinicians (K. Carroll, unpublished data). As such, we add to the comprehensive capstone previously established (1, 10) by providing a (second) biannual update of novel prokaryotic taxa and bacterial nomen- clature revisions published in the years 2016 and 2017. Unless otherwise indicated, the presented organisms were derived from human clinical material and nomenclature designations have been published or added by the International Journal of Systematic and Evolutionary Microbiology (IJSEM). Citation Munson E, Carroll KC. 2019. An update on the novel genera and species and revised taxonomic status of bacterial organisms described in 2016 and 2017. J Clin Microbiol 57:e01181-18. https://doi.org/10.1128/JCM .01181-18. Editor Colleen Suzanne Kraft, Emory University Copyright © 2019 American Society for Microbiology. All Rights Reserved. Address correspondence to Karen C. Carroll, [email protected]. Accepted manuscript posted online 26 September 2018 Published MINIREVIEW crossm February 2019 Volume 57 Issue 2 e01181-18 jcm.asm.org 1 Journal of Clinical Microbiology 30 January 2019 on December 4, 2020 by guest http://jcm.asm.org/ Downloaded from

Upload: others

Post on 21-Aug-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: An Update on the Novel Genera and Species and Revised ... · February 2019 Volume 57 Issue 2 e01181-18 Journal of Clinical Microbiology jcm.asm.org 1 30 January 2019 on August 17,

An Update on the Novel Genera and Species and RevisedTaxonomic Status of Bacterial Organisms Described in 2016and 2017

Erik Munson,a Karen C. Carrollb

aCollege of Health Sciences, Marquette University, Milwaukee, Wisconsin, USAbDivision of Medical Microbiology, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA

ABSTRACT Recognition and acknowledgment of novel bacterial taxonomy and no-menclature revisions can impact clinical practice, disease epidemiology, and routineclinical microbiology laboratory operations. The Journal of Clinical Microbiology (JCM)herein presents its biannual report summarizing such changes published in the years2016 and 2017, as published and added by the International Journal of Systematicand Evolutionary Microbiology. Noteworthy discussion centers around descriptions ofnovel Corynebacteriaceae and an anaerobic mycolic acid-producing bacterium in thesuborder Corynebacterineae; revisions within the Propionibacterium, Clostridium, Bor-relia, and Enterobacter genera; and a major reorganization of the family Enterobacte-riaceae. JCM intends to sustain this series of reports as advancements in moleculargenetics, whole-genome sequencing, and studies of the human microbiome con-tinue to produce novel taxa and clearer understandings of bacterial relatedness.

KEYWORDS bacteria, nomenclature, phylogenetics, taxonomy

In 2017, the Journal of Clinical Microbiology (JCM) published its first series of minire-views summarizing newly published novel microbial taxa and revisions to taxonomic

nomenclature within the disciplines of bacteriology (1), parasitology (2), virology (3),mycology (4), and mycobacteriology (5). With respect to bacteriology, this itemizationand discussion of novel taxa and changes to taxonomy are particularly relevant becausethese are often the by-products of human microbiome investigations and/or advance-ments in molecular genetics and genomic sequencing strategies. Applications oftaxonomic changes can be broad ranging. The impact on clinical care includes appro-priate utilization of antimicrobial susceptibility testing standards in terms of testprocurement and data interpretation (6) and a broader understanding of the patho-genesis and epidemiology of emerging pathogens (7, 8). In addition, nomenclaturechanges can directly impact a given clinical microbiology laboratory from an adminis-trative standpoint (conformity to accreditation checklist standards [9]). In a recentsurvey on the impact of taxonomic changes on clinical care sent to the AmericanSociety for Microbiology ClinMicroNet listserv, several respondents mentioned thechallenge of trying to know when changes are made and how to efficiently implementand communicate their relevance to both the laboratory and clinicians (K. Carroll,unpublished data).

As such, we add to the comprehensive capstone previously established (1, 10) byproviding a (second) biannual update of novel prokaryotic taxa and bacterial nomen-clature revisions published in the years 2016 and 2017. Unless otherwise indicated, thepresented organisms were derived from human clinical material and nomenclaturedesignations have been published or added by the International Journal of Systematicand Evolutionary Microbiology (IJSEM).

Citation Munson E, Carroll KC. 2019. An updateon the novel genera and species and revisedtaxonomic status of bacterial organismsdescribed in 2016 and 2017. J Clin Microbiol57:e01181-18. https://doi.org/10.1128/JCM.01181-18.

Editor Colleen Suzanne Kraft, Emory University

Copyright © 2019 American Society forMicrobiology. All Rights Reserved.

Address correspondence to Karen C. Carroll,[email protected].

Accepted manuscript posted online 26September 2018Published

MINIREVIEW

crossm

February 2019 Volume 57 Issue 2 e01181-18 jcm.asm.org 1Journal of Clinical Microbiology

30 January 2019

on Decem

ber 4, 2020 by guesthttp://jcm

.asm.org/

Dow

nloaded from

Page 2: An Update on the Novel Genera and Species and Revised ... · February 2019 Volume 57 Issue 2 e01181-18 Journal of Clinical Microbiology jcm.asm.org 1 30 January 2019 on August 17,

METHODSValidly published novel and revised taxa pertinent to prokaryotic species must meet

one of two requirements: (i) they must be described in an original investigationpublished in IJSEM, or (ii) they must be described in a study published in an alternativejournal with later inclusion on an approved list in IJSEM. Journals that have publishedstudies providing an effective description of validly named new taxa which may berelevant to the practice of clinical microbiology include Anaerobe; Antonie Van Leeu-wenhoek; APMIS; Clinical Microbiology and Infection; Current Microbiology; DiagnosticMicrobiology and Infectious Disease; Emerging Microbes and Infections; Frontiers in Ge-netics; Frontiers in Microbiology; Infection, Genetics and Evolution; Journal of AntimicrobialChemotherapy; JCM; Journal of General and Applied Microbiology; Microbiology andImmunology; Microbiologyopen; New Microbes and New Infections; Research in Microbi-ology; Standards in Genomic Sciences; and Systematic and Applied Microbiology. Six timesper year, IJSEM publishes papers entitled “List of new names and new combinationspreviously effectively, but not validly, published” (an example is provided in reference11). To be considered for inclusion on this approved list, authors must submit a copyof the published article to the editorial office of IJSEM for confirmation that all elementsnecessary for valid publication have been met. In addition, type strains are to bedeposited into recognized culture collections in two separate countries. Taxa on theseapproved lists may be subject to reclassification on the basis of a synonym designationor transfer to another genus. Within this article, taxa that were previously and effec-tively described in journals outside of IJSEM are footnoted in such fashion.

All issues of IJSEM published from January 2016 through December 2017 weresearched for original articles describing new species taxonomy or accepted changes intaxonomic nomenclature. This audit was further filtered by organisms recovered fromhuman sources. When an initial organism reservoir could not be ascertained, PubMedprimary literature searches (U.S. National Library of Medicine and the National Institutesof Health) of the novel or revised taxon attempted to index subsequent case reports forfurther investigation; several of these case reports are referenced throughout thisarticle. A number of IJSEM publications simply identified isolates as being derived froma specific specimen source (including sterile body sites) but did not provide contextualclinical data. Therefore, in these scenarios (including for a number of novel taxa derivedfrom blood culture), the clinical significance of these taxa was interpreted as “notestablished” (examples are provided in references 12 to 21). (By way of PubMed primaryliterature searches, attempts were also made to investigate the uncertain clinicalsignificance of previously reported novel and revised taxa [1]). Additional studies maybe necessary to characterize the ultimate clinical significance of novel taxa (22).

Twice per year, IJSEM publishes papers entitled “Notification of changes in taxo-nomic opinion previously published outside the IJSEM.” The journal publicizes thesechanges in taxonomic opinion simply as a service to bacteriology, rather than state-ments of validly published or approved taxonomy. No such reports pertaining toisolates derived from human sources were found in searches of IJSEM literature from2016 and 2017; two such publications from 2014 and 2015 (23, 24) were noted in theprevious minireview (1). Future JCM taxonomy compendia will report pertinent findingsfrom such publications in an effort to subsequently ascertain either the true clinicalsignificance of isolates or determine if official taxonomic status has been granted.

RESULTS AND DISCUSSION

Table 1 is a compilation of novel taxa recovered from human sources stratified byGram reaction, cellular morphology, and oxygen requirement for growth. Table 2 liststaxonomic revisions for organisms recovered from human sources. Finally, Table 3, onthe basis of recent peer-reviewed publications, attempts to retrospectively ascribeclinical significance to a number of organisms whose clinical significance was notestablished in the previous taxonomy compendium or to add new knowledge fororganisms recovered from clinical infections (1). Those findings warranting emphasisare discussed below.

Minireview Journal of Clinical Microbiology

February 2019 Volume 57 Issue 2 e01181-18 jcm.asm.org 2

on Decem

ber 4, 2020 by guesthttp://jcm

.asm.org/

Dow

nloaded from

Page 3: An Update on the Novel Genera and Species and Revised ... · February 2019 Volume 57 Issue 2 e01181-18 Journal of Clinical Microbiology jcm.asm.org 1 30 January 2019 on August 17,

TAB

LE1

New

bac

teria

lsp

ecie

sre

cove

red

from

hum

ancl

inic

alm

ater

ial

rep

orte

dfr

omJa

nuar

y20

16th

roug

hD

ecem

ber

2017

Scie

nti

ficn

ame

Fam

ilySo

urce

Clin

ical

rele

van

ceG

row

thch

arac

teri

stic

sRe

fere

nce

(s)

Gra

m-p

ositi

veco

cci

Stre

ptoc

occu

sha

licho

eri

sub

sp.

hom

inis

sub

sp.n

ov.

Stre

ptoc

occa

ceae

Bloo

d,em

pye

ma,

sinu

sA

tle

ast

one

pat

ient

had

sep

sis

Gra

m-p

ositi

veco

cci

occu

rrin

gin

pai

rsor

chai

ns;n

on-s

por

efo

rmin

g;hy

drol

yzes

bile

escu

lin;

colo

nyde

scrip

tion

issi

mila

rto

the

spec

ies

desc

riptio

np

rovi

ded

inre

fere

nce

25;c

olon

ies

are

whi

te,n

onhe

mol

ytic

,and

umb

onat

e;La

ncefi

eld

grou

pB

25–2

7

Aur

icoc

cus

indi

cus

gen.

nov.

,sp

.nov

.St

aphy

loco

ccac

eae

Skin

Isol

ated

from

the

exte

rnal

ear

ofa

heal

thy

hum

anG

ram

-pos

itive

aero

bic

cocc

i,no

nmot

ile,n

on-s

por

efo

rmin

g;p

ositi

vefo

rca

tala

sean

dox

idas

e;gr

ows

bet

wee

n20

and

40°C

,with

optim

umgr

owth

at35

°C28

Gra

m-p

ositi

veb

acill

iTs

ukam

urel

laho

ngko

ngen

sis

sp.n

ov.

Tsuk

amur

ella

ceae

Cor

neal

scra

pin

g;b

lood

cult

ure

Isol

ated

from

ap

atie

ntw

hoha

dke

ratit

isan

da

seco

ndp

atie

ntw

ithca

thet

er-r

elat

edb

acte

rem

ia;b

oth

pat

ient

sw

ere

from

Hon

gKo

ng

Aer

obic

,Gra

m-p

ositi

ve,n

onm

otile

,non

-sp

ore-

form

ing

bac

illus

;cat

alas

ep

ositi

ve;g

row

sb

est

onC

olum

bia

agar

with

5%de

fibrin

ated

shee

pb

lood

agar

;col

onie

sar

eor

ange

tore

d,dr

y,an

dro

ugh

afte

r48

hof

incu

bat

ion

at37

°C

29

Tsuk

amur

ella

sine

nsis

sp. n

ov.

Tsuk

amur

ella

ceae

Con

junc

tival

swab

Isol

ated

from

ap

atie

ntin

Hon

gKo

ngw

ithco

njun

ctiv

itis

Aer

obic

,Gra

m-p

ositi

ve,n

onm

otile

,non

-sp

ore-

form

ing

rod;

cata

lase

pos

itive

;gro

ws

bes

ton

Col

umb

iaag

arw

ith5%

defib

rinat

edsh

eep

blo

odag

ar;c

olon

ies

are

whi

te,d

ry,a

ndro

ugh

afte

r48

hof

incu

bat

ion

at37

°C

29

Der

mab

acte

rva

gina

lissp

. nov

.D

erm

abac

tera

ceae

Vagi

nal

fluid

Not

esta

blis

hed;

isol

ated

from

vagi

nal

fluid

ofa

Kore

anfe

mal

e

Facu

ltat

ive

anae

rob

ic,G

ram

-pos

itive

,sho

rtb

acill

us;n

on-s

por

efo

rmin

g,no

nmot

ile,c

atal

ase

pos

itive

,oxi

dase

nega

tive;

crea

my

whi

teco

loni

esth

atgr

owop

timal

lyat

37°C

30

Der

mab

acte

rjin

juen

sis

sp. n

ov.

Der

mab

acte

race

aePu

sfr

oma

finge

rw

ound

Patie

ntin

aho

spita

lin

Jinj

u,So

uth

Kore

a,w

ithfin

ger

necr

osis

Cel

lsar

eG

ram

-pos

itive

cory

nefo

rm-li

keco

ccob

acill

i;on

shee

pb

lood

agar

,col

onie

sar

egr

ay-w

hite

,rou

nd,a

nd0.

5–1

mm

;gro

wth

isop

timum

at30

–40°

C;c

ells

grow

unde

ran

aero

bic

cond

ition

san

dca

nto

lera

teN

aCl

upto

6%;p

yrro

lidon

ylar

ylam

idas

ep

ositi

ve;

acid

isp

rodu

ced

from

ava

riety

ofca

rboh

ydra

tes

31

Cory

neba

cter

ium

low

iisp

. nov

.Co

ryne

bact

eria

ceae

Eye

Ass

ocia

ted

with

ocul

arin

fect

ions

Shor

tto

med

ium

-leng

thG

ram

-pos

itive

bac

illi

that

occu

rsi

ngly

orin

pal

isad

es,p

airs

,or

Vsh

apes

;col

onie

sar

esl

owgr

owin

g(7

2h)

,con

vex

smoo

thgr

ay-w

hite

orlig

htb

eige

,no

nhem

olyt

ic;g

row

sin

air,

in5%

CO

2,a

ndun

der

anae

rob

icco

nditi

ons

at37

°Cor

42°C

but

not

at25

°C;c

atal

ase

pos

itive

,oxi

dase

nega

tive,

nonm

otile

,lip

ophi

lic,u

reas

ep

ositi

ve,n

itrat

ene

gativ

e

32

Cory

neba

cter

ium

ocul

isp

. nov

.Co

ryne

bact

eria

ceae

Eye

Ass

ocia

ted

with

ocul

arin

fect

ions

Shor

tto

med

ium

-leng

thG

ram

-pos

itive

bac

illi

that

occu

rsi

ngly

orin

pal

isad

es,p

airs

,or

Vsh

apes

;col

onie

sar

esl

owgr

owin

g(7

2h)

,con

vex

smoo

thgr

ay-w

hite

orlig

htb

eige

,no

nhem

olyt

ic;g

row

sin

air,

in5%

CO

2,a

ndun

der

anae

rob

icco

nditi

ons

at37

°Can

d42

°Cb

utno

tat

25°C

;cat

alas

ep

ositi

ve,o

xida

sene

gativ

e,no

nmot

ile,l

ipop

hilic

,ure

ase

pos

itive

,nitr

ate

nega

tive

32

Law

sone

llacl

evel

ande

nsis

gen.

nov.

, sp

.nov

.Su

bor

der

Cory

neba

cter

inea

e;no

fam

ilyas

sign

men

t

Ab

sces

ses

Ass

ocia

ted

with

ava

riety

ofhu

man

absc

esse

sin

the

bre

ast,

liver

,sp

ine,

per

itone

um

Pleo

mor

phi

cG

ram

-pos

itive

cocc

ian

db

acill

i;p

artia

llyac

idfa

st;f

orm

sp

inp

oint

,wax

yco

loni

eson

CD

Can

aero

bic

blo

odag

araf

ter

5–7

days

ofin

cub

atio

n;op

timal

grow

that

35°C

inan

envi

ronm

ent

of�

1.0%

oxyg

en

33–3

5

Noc

ardi

ash

inan

onen

sis

sp.

nov.

Noc

ardi

acea

eEy

eIs

olat

edfr

omth

eaq

ueou

shu

mor

from

ap

atie

ntw

ithen

dop

htha

lmiti

s

Aer

obic

Gra

m-p

ositi

vep

artia

llyac

idfa

st,n

onm

otile

;for

ms

whi

teae

rial

myc

eliu

m;g

row

sat

25,3

5,an

d45

°C36

Gor

doni

aho

ngko

ngen

sis

sp.

nov.

Noc

ardi

acea

eBl

ood

Reco

vere

dfr

omtw

op

atie

nts:

inon

efr

oma

blo

odcu

ltur

ean

din

the

othe

rfr

omp

erito

neal

dial

ysis

efflu

ent

Gra

m-p

ositi

vem

odifi

edac

id-f

ast,

nons

por

ulat

ing

bac

illi;

grow

son

Col

umb

iaag

arw

ith5%

defib

rinat

edsh

eep

blo

odae

rob

ical

lyas

pin

kto

oran

geno

nhem

olyt

icco

loni

es;c

atal

ase

pos

itive

;oxi

dase

nega

tive

12

Cory

neba

cter

ium

gott

inge

nse

sp. n

ov.

Cory

neba

cter

iace

aeBl

ood

Isol

ated

from

the

blo

odof

ap

atie

ntw

ithb

acte

rem

iaof

unkn

own

orig

inin

Göt

tinge

n,G

erm

any

Gra

m-p

ositi

ve,b

acill

us-s

hap

edb

acte

riath

atsh

owty

pic

alp

alis

ade

arra

ngem

ents

ofth

ece

lls;n

on-s

por

efo

rmin

g,ca

tala

sep

ositi

ve,o

xida

sene

gativ

e;fo

rms

whi

te-c

ream

circ

ular

colo

nies

onC

olum

bia

blo

odag

ar

13

Paen

ibac

illus

ihum

iisp

. nov

.Pa

enib

acill

acea

eaFe

ces

Not

esta

blis

hed;

the

isol

ate

was

from

afe

mal

ein

Fran

cep

rior

tob

aria

tric

surg

ery

Mot

ile,s

por

e-fo

rmin

g,G

ram

-pos

itive

bac

illus

(fre

quen

tly

over

deco

loriz

esin

Gra

mst

ain)

;op

timal

grow

that

37°C

;cap

able

ofgr

owth

unde

rm

icro

aero

phi

lican

dan

aero

bic

cond

ition

s;1-

to2-

mm

-dia

met

ergr

ayco

loni

eson

blo

od-e

nric

hed

Col

umb

iaag

ar;

cata

lase

and

urea

sene

gativ

e;ut

iliza

tion

ofse

vera

lca

rboh

ydra

tes

37b

Gra

m-n

egat

ive

cocc

iN

eiss

eria

dum

asia

nasp

.nov

.N

eiss

eria

ceae

Sput

um(n

�2)

Not

esta

blis

hed;

clin

ical

isol

ates

sub

mitt

edto

aU

.S.r

efer

ence

lab

orat

ory

in20

09an

d20

12

Facu

ltat

ive

anae

rob

ic,n

onm

otile

,oxi

dase

-pos

itive

Gra

m-n

egat

ive

cocc

usor

cocc

obac

illus

;op

timal

grow

that

37°C

;gra

y-p

igm

ente

d1.

9-to

2.8-

mm

-dia

met

erco

loni

escu

ltiv

ated

onch

ocol

ate

agar

pla

tes

sup

ple

men

ted

with

10%

hors

eb

lood

in5%

CO

2;c

atal

ase

and

pro

line

isom

eras

ep

ositi

ve;r

educ

esni

trat

eto

nitr

ite;a

cid

pro

duct

ion

from

D-g

luco

seb

utno

tfr

omm

alto

seor

sucr

ose

38

(Con

tinue

don

next

pag

e)

Minireview Journal of Clinical Microbiology

February 2019 Volume 57 Issue 2 e01181-18 jcm.asm.org 3

on Decem

ber 4, 2020 by guesthttp://jcm

.asm.org/

Dow

nloaded from

Page 4: An Update on the Novel Genera and Species and Revised ... · February 2019 Volume 57 Issue 2 e01181-18 Journal of Clinical Microbiology jcm.asm.org 1 30 January 2019 on August 17,

TAB

LE1

(Con

tinue

d)

Scie

nti

ficn

ame

Fam

ilySo

urce

Clin

ical

rele

van

ceG

row

thch

arac

teri

stic

sRe

fere

nce

(s)

Gra

m-n

egat

ive

bac

illi

Ente

roba

cter

buga

nden

sis

sp.

nov.

Ente

roba

cter

iace

aeBl

ood

(17)

Isol

ates

from

ane

onat

alse

ptic

emia

outb

reak

inTa

nzan

ia;p

osse

ssed

the

CTX

-M

-15

resi

stan

cege

ne;r

esis

tant

toflu

oroq

uino

lone

,am

inog

lyco

side

,and

tetr

acyc

line

antim

icro

bia

ls

Col

onia

lgr

owth

cons

iste

ntw

ithth

atof

othe

rEn

tero

bact

ersp

p.;

lact

ose

ferm

enta

tion

obse

rved

only

afte

r24

hof

incu

bat

ion;

citr

ate,

argi

nine

dihy

drol

ase,

and

orni

thin

ede

carb

oxyl

ase

pos

itive

;lys

ine

deca

rbox

ylas

e,ur

ease

,and

Voge

s-Pr

oska

uer

nega

tive

39

Alk

anin

dige

sho

ngko

ngen

sis

sp.n

ov.

Mor

axel

lace

aePa

rotid

absc

ess

inci

sion

and

drai

nage

Infe

cted

War

thin

’stu

mor

resu

ltin

gin

par

otid

glan

dab

sces

san

dp

erip

hera

lle

ukoc

ytos

is;t

hep

atie

ntre

spon

ded

todr

aina

gean

dam

oxic

illin

-cla

vula

nate

Aer

obic

,non

mot

ile,o

xida

se-n

egat

ive

Gra

m-n

egat

ive

cocc

obac

illus

;0.5

-mm

-dia

met

er(n

onhe

mol

ytic

)co

loni

eson

blo

odan

dM

acC

onke

yag

ars

at37

°C;g

ener

alfa

ilure

tofe

rmen

tor

oxid

ize

carb

ohyd

rate

s

40c

Mic

rovi

rga

mas

silie

nsis

sp.n

ov.

Met

hylo

bact

eria

ceae

Fece

sN

otes

tab

lishe

d;p

osse

sses

the

larg

est

geno

me

(9.2

meg

abas

es)

ofan

yhu

man

isol

ate

Aer

obic

,non

mot

ile,n

on-s

por

e-fo

rmin

g,ox

idas

e-ne

gativ

eG

ram

-neg

ativ

eb

acill

us;c

olon

ies

pro

pag

ated

onm

odifi

ed7H

10m

ediu

msu

pp

lem

ente

dw

ithsh

eep

blo

od;o

ptim

algr

owth

at37

°C;l

euci

near

ylam

idas

e,ni

trat

ere

duct

ase,

and

cyst

eine

aryl

amid

ase

pos

itive

;alk

alin

ep

hosp

hata

sene

gativ

e

41d

Obl

itim

onas

alka

liphi

lage

n.no

v.,s

p.n

ovPs

eudo

mon

adac

eae

Urin

e(n

�3)

,leg

tissu

e(n

�2)

,liv

er,l

ung

tissu

e,an

dfo

otw

ound

spec

imen

s

Not

esta

blis

hed;

clin

ical

isol

ates

sub

mitt

edto

aU

.S.r

efer

ence

lab

orat

ory

from

1969

to19

79

Mic

roae

rop

hilic

,non

mot

ile,o

xida

se-p

ositi

veG

ram

-neg

ativ

eb

acill

us;g

row

thon

rout

ine

bac

terio

logi

cm

edia

(incl

udin

gb

lood

agar

and

Mac

Con

key

agar

);op

timal

grow

that

20–

35°C

;ure

a,ge

latin

,and

escu

linhy

drol

ysis

nega

tive;

leuc

ine

aryl

amid

ase

and

gluc

ose

oxid

atio

np

ositi

ve;l

acto

sean

dsu

cros

eut

iliza

tion

nega

tive

42

Burk

hold

eria

conc

itans

Burk

hold

eria

ceae

Lung

tissu

e,b

lood

Not

esta

blis

hed

Non

mot

ile,o

xida

se-p

ositi

veG

ram

-neg

ativ

eb

acill

us;l

ess

than

1-m

m-d

iam

eter

colo

nies

cult

ivat

edon

tryp

ticso

yan

dM

acC

onke

yag

ars

at15

–28°

C;p

ositi

vefo

rTw

een

60hy

drol

ysis

,neg

ativ

efo

rTw

een

80hy

drol

ysis

;ure

ase,

escu

linhy

drol

ysis

, �-g

alac

tosi

dase

,an

dca

pra

teas

sim

ilatio

nne

gativ

e;su

bse

quen

tta

xono

mic

revi

sion

desc

ribed

inTa

ble

2

14e

Burk

hold

eria

turb

ans

Burk

hold

eria

ceae

Pleu

ral

fluid

Not

esta

blis

hed

Non

mot

ile,o

xida

se-p

ositi

veG

ram

-neg

ativ

eb

acill

us;l

ess

than

1-m

m-d

iam

eter

colo

nies

cult

ivat

edon

tryp

ticso

yan

dM

acC

onke

yag

ars

at15

–37°

C;p

ositi

vefo

rTw

een

60hy

drol

ysis

,neg

ativ

efo

rTw

een

80hy

drol

ysis

;glu

cose

and

cap

rate

assi

mila

tion

pos

itive

;ur

ease

,esc

ulin

hydr

olys

is,a

nd�

-gal

acto

sida

sene

gativ

e;su

bse

quen

tta

xono

mic

revi

sion

isde

scrib

edin

Tab

le2

14e

Ach

rom

obac

ter

dele

yisp

.nov

.A

lcal

igen

eace

aePr

osta

ticse

cret

ion,

pha

ryng

eal

swab

Not

esta

blis

hed;

pha

ryng

eal

isol

ate

from

aU

.S.c

ystic

fibro

sis

pat

ient

Mot

ile,o

xida

se-p

ositi

veG

ram

-neg

ativ

eb

acill

us;n

onp

igm

ente

d1.

0-to

1.5-

mm

-dia

met

erco

loni

escu

ltiv

ated

ontr

yptic

soy

agar

at28

°C;g

row

thof

sele

cted

stra

ins

once

trim

ide

agar

inth

ep

rese

nce

of3.

0%an

d4.

5%N

aCl;

nitr

itere

duct

ion

and

deni

trifi

catio

nne

gativ

e;ca

pra

teas

sim

ilatio

nan

dal

kalin

ep

hosp

hata

sep

ositi

ve

43

Aci

neto

bact

erdi

jksh

oorn

iae

sp.

nov.

Mor

axel

lace

aeC

linic

alst

rain

s,in

clud

ing

thos

efr

omw

ound

(n�

3),

sput

um(n

�2)

,blo

od,

urin

e,ca

thet

er,a

ndne

phr

olog

ydr

ain

spec

imen

s

Not

esta

blis

hed

Aer

obic

,non

mot

ile,o

xida

se-n

egat

ive

Gra

m-n

egat

ive

cocc

obac

illus

;1-

to2-

mm

-dia

met

erno

nhem

olyt

icco

loni

escu

ltiv

ated

ontr

yptic

soy

agar

at30

°C;g

elat

inhy

drol

ysis

and

citr

acon

ate

nega

tive;

pro

duce

sac

idfr

omD

-glu

cose

;53%

ofst

rain

sut

ilize

tryp

tam

ine

15

Vibr

ioci

dici

isp

.nov

.Vi

brio

nace

aeBl

ood

(n�

3)N

otes

tab

lishe

dC

urve

d,m

otile

,oxi

dase

-pos

itive

Gra

m-n

egat

ive

bac

illus

;suc

rose

-fer

men

tativ

eco

loni

escu

ltiv

ated

onth

iosu

lfate

-citr

ate-

bile

salt

s-su

cros

eag

ar;g

row

thob

serv

edin

tryp

ticso

yb

roth

at30

°Cw

ithN

aCl

conc

entr

atio

nsup

to8%

for

mos

tis

olat

es;u

tiliz

esL-

rham

nose

asth

eso

leca

rbon

sour

ce;m

ost

isol

ates

dono

tut

ilize

sodi

umci

trat

e

16

Ente

roba

cter

horm

aech

eisu

bsp

.hor

mae

chei

sub

sp.

nov.

Ente

roba

cter

iace

aeSp

utum

(n�

2),t

hroa

t,b

lood

,gr

oin,

and

feca

lsa

mp

les,

asde

scrib

edin

refe

renc

e17

Not

esta

blis

hed

Gra

m-n

egat

ive

bac

illus

exhi

biti

ngge

nera

lch

arac

teris

tics

ofEn

tero

bact

ercl

oaca

eco

mp

lex;

dulc

itol

pos

itive

;ado

nito

l,D

-ara

bito

l,D

-sor

bito

l,an

dD

-mel

ibio

sene

gativ

e17

f

Ente

roba

cter

horm

aech

eisu

bsp

.oha

rae

sub

sp.n

ov.

Ente

roba

cter

iace

aeBl

ood

(n�

2),t

rach

ea(n

�2)

,b

ronc

hoal

veol

arla

vage

fluid

(n�

2),t

hroa

t(n

�2)

,fe

ces,

ear,

sput

um,m

outh

,ur

ine,

and

absc

ess

spec

imen

s,as

desc

ribed

pre

viou

sly

( 17)

Not

esta

blis

hed

Gra

m-n

egat

ive

bac

illus

exhi

biti

ngge

nera

lch

arac

teris

tics

ofth

eEn

tero

bact

ercl

oaca

eco

mp

lex;

Am

pC

hyp

erp

rodu

ctio

nin

25%

ofst

rain

sch

arac

teriz

edin

refe

renc

e17

;D

-sor

bito

lan

dD

-mel

ibio

sep

ositi

ve;a

doni

tol,

D-a

rab

itol,

and

dulc

itol

nega

tive

17f

Ente

roba

cter

horm

aech

eisu

bsp

.ste

iger

wal

tiisu

bsp

.no

v.

Ente

roba

cter

iace

aeW

ound

(n�

6),u

rine

(n�

5),

blo

od(n

�3)

,tra

chea

(n�

2),b

ronc

hoal

veol

arla

vage

fluid

,sp

utum

,lun

gb

iop

sy,

thro

at,v

agin

al,a

ndce

ntra

llin

esp

ecim

ens,

asde

scrib

edp

revi

ousl

y( 1

7)

Not

esta

blis

hed

Gra

m-n

egat

ive

bac

illus

exhi

biti

ngge

nera

lch

arac

teris

tics

ofEn

tero

bact

ercl

oaca

eco

mp

lex;

Am

pC

hyp

erp

rodu

ctio

nin

42%

ofst

rain

sch

arac

teriz

edin

refe

renc

e17

;pos

itive

adon

itol,

D-a

rab

itol,

D-s

orb

itol,

and

D-m

elib

iose

test

resu

lts;

nega

tive

dulc

itol

test

resu

lt

17f

(Con

tinue

don

next

pag

e)

Minireview Journal of Clinical Microbiology

February 2019 Volume 57 Issue 2 e01181-18 jcm.asm.org 4

on Decem

ber 4, 2020 by guesthttp://jcm

.asm.org/

Dow

nloaded from

Page 5: An Update on the Novel Genera and Species and Revised ... · February 2019 Volume 57 Issue 2 e01181-18 Journal of Clinical Microbiology jcm.asm.org 1 30 January 2019 on August 17,

TAB

LE1

(Con

tinue

d)

Scie

nti

ficn

ame

Fam

ilySo

urce

Clin

ical

rele

van

ceG

row

thch

arac

teri

stic

sRe

fere

nce

(s)

Citr

obac

ter

euro

paeu

ssp

.nov

.En

tero

bact

eria

ceae

Fece

sN

otes

tab

lishe

d;is

olat

efr

oma

U.S

.pat

ient

with

diar

rhea

Gra

m-n

egat

ive

bac

illus

exhi

biti

ngge

nera

lch

arac

teris

tics

ofCi

trob

acte

rsp

p.;

grow

thob

serv

edfr

om20

to50

°C;H

2S,

inos

itol,

and

salic

inp

ositi

ve;a

rgin

ine

dihy

drol

ase,

citr

ate,

sucr

ose,

and

star

chne

gativ

e

44

Sphi

ngob

acte

rium

cellu

litid

issp

.nov

.Sp

hing

obac

teria

ceae

Toe

Puru

lent

disc

harg

efr

oma

Kuw

aiti

cellu

litis

pat

ient

;nuc

leic

acid

hom

olog

yde

mon

stra

ted

with

pre

viou

sly

unna

med

Sing

apor

een

viro

nmen

tal

isol

ate

Aer

obic

,non

mot

ile,n

on-s

por

e-fo

rmin

g,ox

idas

e-p

ositi

veG

ram

-neg

ativ

eb

acill

us;0

.5-m

m-

diam

eter

pal

eye

llow

colo

nies

cult

ivat

edon

nutr

ient

,try

ptic

soy,

and

Mac

Con

key

agar

saf

ter

48h

ofin

cub

atio

nat

28–3

7°C

;cat

alas

e,Vo

ges-

Pros

kaue

r,tr

ypto

pha

nde

amin

ase,

and

�-g

alac

tosi

dase

pos

itive

;ure

ase,

deca

rbox

ylas

es,c

itrat

e,an

dni

trat

ene

gativ

e

45

Hae

mop

hilu

sm

assi

liens

issp

.no

v.Pa

steu

rella

ceae

Perit

onea

lflu

idIs

olat

efr

oma

Sene

gale

sefe

mal

ew

ithp

elvi

cp

erito

nitis

com

plic

atin

ga

rup

ture

dov

aria

nab

sces

s

Facu

ltat

ive,

nonm

otile

,non

-sp

ore-

form

ing,

oxid

ase-

pos

itive

Gra

m-n

egat

ive

bac

illus

;0.5

-to

1-m

m-d

iam

eter

nonh

emol

ytic

colo

nies

onb

lood

-enr

iche

dC

olum

bia

agar

;op

timal

grow

that

37°C

;alk

alin

ep

hosp

hata

se,l

euci

near

ylam

idas

e,an

dD

-glu

cose

utili

zatio

np

ositi

ve;i

ndol

ean

dD

-man

nose

utili

zatio

nne

gativ

e

46b

Wee

ksel

lam

assi

liens

issp

.nov

.Fl

avob

acte

riace

aeU

rine

Isol

ate

from

aSe

nega

lese

mal

ew

ithac

ute

cyst

itis

Aer

obic

,non

mot

ile,n

on-s

por

e-fo

rmin

g,ox

idas

e-p

ositi

veG

ram

-neg

ativ

eb

acill

us;l

ight

yello

w,2

-mm

-dia

met

er,s

moo

th,n

onhe

mol

ytic

colo

nies

onb

lood

-enr

iche

dC

olum

bia

agar

;alk

alin

ep

hosp

hata

se,l

euci

near

ylam

idas

e,an

dD

-xyl

ose

utili

zatio

np

ositi

ve;t

ryp

sin,

indo

le,u

reas

e,�

-gal

acto

sida

se,a

ndD

-glu

cose

utili

zatio

nne

gativ

e

47b

Ehrli

chia

mur

issu

bsp

.ea

ucla

irens

issu

bsp

.nov

.A

napl

asm

atac

eae

Who

leb

lood

Isol

ate

from

afe

bril

eW

isco

nsin

(USA

)p

atie

ntw

itha

hist

ory

oftic

kex

pos

ure

in20

09

Mor

pho

logi

can

dcu

ltur

alsi

mila

ritie

sto

E.m

uris

sub

sp.m

uris

sub

sp.n

ov.(

Tab

le2)

;ho

wev

er,E

.mur

issu

bsp

.euc

laire

nsis

sub

sp.n

ov.i

slo

caliz

edto

the

Uni

ted

Stat

es;t

heso

leve

ctor

isIx

odes

scap

ular

is,a

ndit

caus

eshu

man

dise

ase

48

King

ella

nege

vens

issp

. nov

.N

eiss

eria

ceae

Oro

pha

rynx

(n�

21)

Not

esta

blis

hed;

isol

ates

from

heal

thy

Isra

eli

and

Swis

sch

ildre

n

Non

mot

ile,n

on-s

por

e-fo

rmin

g,ox

idas

e-p

ositi

veG

ram

-neg

ativ

eco

ccob

acill

usth

atex

hib

itsca

pno

phi

licgr

owth

;pal

eye

llow

,bet

a-he

mol

ytic

0.5-

to1-

mm

-dia

met

erco

loni

eson

blo

od-e

nric

hed

Col

umb

iaag

ar;o

ptim

algr

owth

at37

°C;l

euci

near

ylam

idas

ep

ositi

ve;

urea

se,c

atal

ase,

indo

le,o

rnith

ine

deca

rbox

ylas

e,an

dp

rolin

ear

ylam

idas

ene

gativ

e

49

Psyc

hrob

acte

rpa

steu

riisp

.no

v.M

orax

ella

ceae

Hum

anor

igin

(n�

2);n

otot

herw

ise

spec

ified

Not

esta

blis

hed;

isol

ates

sub

mitt

edto

aFr

ench

colle

ctio

nb

ank

in19

72

Aer

obic

,non

mot

ile,n

on-s

por

e-fo

rmin

g,ox

idas

e-p

ositi

veG

ram

-neg

ativ

eco

ccob

acill

us;

optim

algr

owth

at30

°C;t

rans

luce

nt,b

right

,1-

to2-

mm

-dia

met

erco

loni

esob

serv

edon

blo

odag

ar;c

atal

ase,

urea

se,a

ndlip

ase

pos

itive

;red

uces

nitr

ate

toni

trite

;orig

inal

lyid

entifi

edas

am

emb

erof

the

Mor

axel

lage

nus

50

Psyc

hrob

acte

rpi

echa

udii

sp.

nov.

Mor

axel

lace

aeH

uman

orig

in(n

�4)

;not

othe

rwis

esp

ecifi

edN

otes

tab

lishe

d;is

olat

essu

bm

itted

toa

Fren

chco

llect

ion

ban

kin

1972

Aer

obic

,non

mot

ile,n

on-s

por

e-fo

rmin

g,ox

idas

e-p

ositi

veG

ram

-neg

ativ

eco

ccob

acill

us;

optim

algr

owth

at30

°C;t

rans

luce

nt,b

right

,1-

to2-

mm

-dia

met

erco

loni

esob

serv

edon

blo

odag

ar;c

atal

ase

pos

itive

;ure

ase

and

lipas

eac

tivity

isva

riab

le;u

nab

leto

redu

ceni

trat

eto

nitr

ite;o

rigin

ally

iden

tified

asa

mem

ber

ofth

eM

orax

ella

genu

s

50

Burk

hold

eria

sing

ular

issp

. nov

.Bu

rkho

lder

iace

aeRe

spira

tory

(n�

4)N

otes

tab

lishe

d;is

olat

esfr

omcy

stic

fibro

sis

pat

ient

sin

Can

ada

and

Ger

man

y

Aer

obic

,non

-sp

ore-

form

ing

Gra

m-n

egat

ive

bac

illus

;mot

ility

varia

ble

;gro

wth

onC

olum

bia

shee

pb

lood

agar

(muc

oid,

nonh

emol

ytic

colo

nies

),Bu

rkho

lder

iace

paci

aag

ar,y

east

extr

act

man

nito

lag

ar,a

ndM

acC

onke

yag

arat

42°C

;slo

wox

idas

eac

tivity

;aci

dific

atio

nof

gluc

ose,

mal

tose

,lac

tose

,and

xylo

seb

utno

tsu

cros

e;ni

trat

ere

duct

ion,

lysi

nede

carb

oxyl

ase,

and

orni

thin

ede

carb

oxyl

ase

nega

tive

51g

Shew

anel

laca

rass

iisp

.nov

.Sh

ewan

ella

ceae

Fece

sN

otes

tab

lishe

d;is

olat

efr

oma

Chi

nese

infa

ntw

ithdi

arrh

eaFa

cult

ativ

e,m

otile

,oxi

dase

-pos

itive

Gra

m-n

egat

ive

bac

illus

;gro

wth

onLB

agar

and

blo

odag

ar(h

emol

ytic

),w

ithop

timal

grow

that

35°C

;poo

rgr

owth

onM

acC

onke

yag

ar;

colo

nies

onLB

agar

are

pin

k-or

ange

with

a2-

to3-

mm

diam

eter

;cat

alas

e,H

2S,

nitr

ate

redu

ctio

n,an

dL-

pro

line

aryl

amid

ase

pos

itive

;ure

ase

and

orni

thin

ede

carb

oxyl

ase

nega

tive;

does

not

grow

in10

%N

aCl

52

Gra

m-p

ositi

vean

aero

bes

Selli

mon

asin

test

inal

isge

n.no

v.,s

p.n

ov.

Lach

nosp

irace

aeFe

ces

Not

esta

blis

hed;

isol

ated

from

afe

cal

sam

ple

from

ahe

alth

yKo

rean

wom

an

Gra

m-p

ositi

vedi

plo

cocc

us-s

hap

ed,o

blig

ate

anae

rob

e,no

n-sp

ore-

form

ing;

form

siv

ory

yello

wco

loni

es;g

row

thoc

curs

at25

–45°

C;t

heop

timal

grow

thte

mp

erat

ure

is37

°C;

mot

ile;H

2S,

indo

le,u

reas

e,an

des

culin

hydr

olys

isne

gativ

e;ac

idp

rodu

ctio

nfr

oma

varie

tyof

carb

ohyd

rate

s

53

Pept

onip

hilu

sca

toni

aesp

.nov

.Pe

pton

iphi

lace

aeFe

ces

Not

esta

blis

hed;

isol

ated

from

ahu

man

feca

lsa

mp

lein

sout

hern

Peru

Gra

m-p

ositi

ve,n

on-s

por

e-fo

rmin

gco

ccus

;ob

ligat

ean

aero

be;

colo

nies

onb

lood

agar

are

need

lep

oint

insi

ze,b

eige

,and

circ

ular

with

asm

ooth

surf

ace;

optim

algr

owth

at37

°C;

cata

lase

,ure

ase,

indo

le,a

ndni

trat

ene

gativ

e

54

Prop

ioni

bact

eriu

mna

mne

tens

esp

. nov

.Pr

opio

niba

cter

iace

aeBo

neIn

fect

edtib

ial

frac

ture

Gra

m-p

ositi

ve,n

on-s

por

e-fo

rmin

g,no

nmot

ile,p

leom

orp

hic

bac

illi;

anae

rob

ic;a

fter

6da

ysof

incu

bat

ion

colo

nies

are

circ

ular

,dom

esh

aped

,and

from

pal

ecr

eam

toor

ange

-sal

mon

;op

timal

grow

that

35°C

55

Aga

thob

acul

umbu

tyric

ipro

duce

nsge

n.no

v., s

p.n

ov.

Rum

inoc

occa

ceae

Fece

sN

otes

tab

lishe

d;re

cove

red

from

the

fece

sof

ahe

alth

y23

-yea

r-ol

dKo

rean

wom

an

Gra

m-p

ositi

ve,n

on-s

por

e-fo

rmin

gst

rict

anae

rob

e;gr

ows

optim

ally

at37

°Cin

the

pre

senc

eof

0.5%

NaC

l,p

H7;

nonm

otile

;cat

alas

ean

dox

idas

ene

gativ

e;b

utyr

ate

pro

duci

ng56

Buty

ricic

occu

sfa

ecih

omin

issp

.no

v.Cl

ostr

idia

ceae

Fece

sN

otes

tab

lishe

d;re

cove

red

from

the

fece

sof

ahe

alth

yhu

man

adul

t

Gra

m-p

ositi

veco

ccoi

d-sh

aped

orga

nism

s;no

nmot

ilew

ithou

tsp

ores

;ob

ligat

ely

anae

rob

ic;

colo

nies

may

app

ear

wax

yan

dye

llow

ish

afte

rgr

owth

at37

°Cfo

r72

h;in

dole

pos

itive

57

(Con

tinue

don

next

pag

e)

Minireview Journal of Clinical Microbiology

February 2019 Volume 57 Issue 2 e01181-18 jcm.asm.org 5

on Decem

ber 4, 2020 by guesthttp://jcm

.asm.org/

Dow

nloaded from

Page 6: An Update on the Novel Genera and Species and Revised ... · February 2019 Volume 57 Issue 2 e01181-18 Journal of Clinical Microbiology jcm.asm.org 1 30 January 2019 on August 17,

TAB

LE1

(Con

tinue

d)

Scie

nti

ficn

ame

Fam

ilySo

urce

Clin

ical

rele

van

ceG

row

thch

arac

teri

stic

sRe

fere

nce

(s)

Faec

alim

onas

umbi

licat

age

n.no

v.,s

p.n

ov.

Lach

nosp

irace

aeFe

ces

Not

esta

blis

hed;

reco

vere

dfr

omth

efe

ces

ofa

heal

thy

hum

anad

ult

Gra

m-p

ositi

veb

acill

iin

pai

rsor

chai

ns;o

blig

ate

anae

rob

e;no

nmot

ile;n

onp

igm

ente

d;m

ayfo

rmsp

ores

;col

onie

sha

vea

dep

ress

edce

nter

(um

bili

cate

);H

2S

pro

duce

d;in

dole

,ca

tala

se,a

ndur

ease

nega

tive

58

Mer

dim

onas

faec

isge

n.no

v.,

sp.n

ov.

Lach

nosp

irace

aeFe

ces

Not

esta

blis

hed;

reco

vere

dfr

omth

efe

ces

ofa

heal

thy

hum

anad

ult

Gra

m-p

ositi

vest

rictl

yan

aero

bic

;non

-sp

ore

form

ing;

cata

lase

,ind

ole,

and

oxid

ase

nega

tive;

colo

nies

are

ivor

yco

lore

dan

dgr

owop

timal

lyat

37°C

59

Mon

oglo

bus

pect

inily

ticus

gen.

nov.

, sp

.nov

.Ru

min

ococ

cace

aeFe

ces

Not

esta

blis

hed;

reco

vere

dfr

omth

efe

ces

ofa

27-y

ear-

old

heal

thy

wom

anliv

ing

inN

ewZe

alan

d

Gra

m-p

ositi

veco

cci

that

are

stric

tly

anae

rob

ic;c

atal

ase

pos

itive

;oxi

dase

nega

tive;

indo

lene

gativ

e;fe

rmen

tsp

ectin

;op

timum

grow

thb

etw

een

30an

d40

°C60

Gra

m-n

egat

ive

anae

rob

esA

naer

ospo

raho

ngko

ngen

sis

gen.

nov.

,sp

.nov

.Ve

illon

ella

ceae

Bloo

dN

otes

tab

lishe

d;is

olat

esfr

oman

asym

pto

mat

icin

trav

enou

sdr

ugab

user

Ob

ligat

ean

aero

bic

,slig

htly

curv

ed,m

ultip

le-s

por

e-fo

rmin

g,G

ram

-neg

ativ

eb

acill

us(u

pto

14�

min

leng

th);

yiel

dsp

inp

oint

,cat

alas

e-ne

gativ

e,no

nhem

olyt

icco

loni

eson

blo

odag

arfo

llow

ing

48h

ofin

cub

atio

nat

37°C

;rel

ativ

ely

iner

tb

ioch

emic

ally

18c

Meg

asph

aera

mas

silie

nsis

sp.

nov.

Veill

onel

lace

aeFe

ces

Not

esta

blis

hed;

isol

ate

from

anH

IV-p

ositi

vep

atie

ntO

blig

ate

anae

rob

ic,n

on-s

por

e-fo

rmin

g,no

nmot

ileG

ram

-neg

ativ

eco

ccob

acill

us;y

ield

sca

tala

se-n

egat

ive,

0.5-

to1.

0-m

m-d

iam

eter

colo

nies

onb

lood

-enr

iche

dC

olum

bia

agar

;op

timal

grow

that

37°C

;aci

dp

rodu

ctio

nfr

omso

rbito

lan

dar

abito

l

61c

Sedi

men

tibac

ter

hong

kong

ensi

ssp

.nov

.Pe

ptos

trep

toco

ccac

eaeh

Bloo

dIs

olat

edfr

oma

pat

ient

with

sep

ticsh

ock

and

mul

tiorg

anfa

ilure

seco

ndar

yto

colo

nca

rcin

oma

Ob

ligat

ean

aero

bic

,slig

htly

curv

ed,m

otile

,ter

min

al-s

por

e-fo

rmin

gG

ram

-neg

ativ

eb

acill

us;

yiel

dsp

inp

oint

colo

nies

onb

uffe

red

char

coal

yeas

tex

trac

tag

arfo

llow

ing

72h

ofin

cub

atio

nat

37°C

;gro

wth

onag

arut

ilizi

ngBa

ctec

anae

rob

icb

lood

cult

ure

bro

thun

der

anae

rob

icco

nditi

ons;

nogr

owth

onb

ruce

llaag

ar,b

rain

hear

tin

fusi

onm

ediu

m,o

rco

oked

mea

tm

ediu

m;c

atal

ase

and

indo

lep

ositi

ve;n

itrat

ere

duct

ion

nega

tive

62c

Die

lma

fast

idio

sage

n.no

v.,

sp.n

ov.

Erys

ipel

otric

hace

aeFe

ces

Not

esta

blis

hed

Ob

ligat

ean

aero

bic

,mot

ile,n

on-s

por

e-fo

rmin

gG

ram

-neg

ativ

eb

acill

us;0

.5-

to1.

0-m

m-

diam

eter

colo

nies

onb

lood

-enr

iche

dC

olum

bia

agar

;op

timal

grow

that

30°C

;esc

ulin

hydr

olys

isan

dac

idar

ylam

idas

ep

ositi

ve;m

anno

se,s

ucro

se,a

ndD

-glu

cose

utili

zatio

nne

gativ

e

63d

Prev

otel

laco

lora

nssp

.nov

.Pr

evot

ella

ceae

Wou

ndIs

olat

edin

the

cont

ext

ofa

pol

ymic

rob

ial

infe

ctio

nO

blig

ate

anae

rob

ic,n

onm

otile

,non

-sp

ore-

form

ing,

shor

tan

dp

leom

orp

hic

Gra

m-n

egat

ive

bac

illus

;aft

er2–

5da

ysof

incu

bat

ion

at35

–37°

C,1

-mm

-dia

met

erco

loni

esha

vew

eak

grey

ish

bro

wn

pig

men

t;co

loni

esde

velo

pto

ffee

bro

wn

pig

men

taf

ter

exte

nded

incu

bat

ion;

gluc

ose,

sucr

ose,

and

lact

ose

ferm

enta

tion

pos

itive

;cat

alas

e(1

5%H

2O

2)

and

indo

lene

gativ

e

64

Ruth

enib

acte

rium

lact

atifo

rman

sge

n.no

v.,

sp.n

ov.

Rum

inoc

occa

ceae

Fece

sN

otes

tab

lishe

d;is

olat

efr

oma

heal

thy

Russ

ian

mal

eO

blig

ate

anae

rob

ic,n

onm

otile

,non

-sp

ore-

form

ing

Gra

m-n

egat

ive

bac

illus

;non

hem

olyt

ic,

0.15

-to

0.40

-mm

-dia

met

erco

loni

esaf

ter

96h

ofin

cub

atio

non

EGag

arat

37°C

;bile

tole

rant

;gro

wth

can

be

stim

ulat

edb

y5

mg

hem

in,0

.5%

mal

tose

,and

2–3%

Oxg

all;

escu

linan

dst

arch

hydr

olys

isp

ositi

ve

65

Gab

onib

acte

rm

assi

liens

isge

n.no

v., s

p.n

ov.

Porp

hyro

mon

adac

eae

Fece

sN

otes

tab

lishe

d;is

olat

efr

oma

heal

thy

Gab

ones

em

ale

Ob

ligat

ean

aero

bic

,mot

ileG

ram

-neg

ativ

eco

ccob

acill

us;2

-mm

-dia

met

erw

hite

colo

nies

afte

rin

cub

atio

non

shee

pb

lood

-enr

iche

dC

olum

bia

agar

at37

°C;i

ndol

e,es

tera

se,

este

rase

lipas

e,an

dac

idp

hosp

hata

sep

ositi

ve;c

atal

ase,

oxid

ase,

alka

line

pho

spha

tase

,an

dlip

ase

nega

tive

66i

Four

nier

ella

mas

silie

nsis

gen.

nov.

,sp

.nov

.Ru

min

ococ

cace

aeFe

ces

Not

esta

blis

hed;

isol

ate

from

ahe

alth

yFr

ench

mal

eO

blig

ate

anae

rob

ic,n

onm

otile

,non

-sp

ore-

form

ing

Gra

m-n

egat

ive

bac

illus

;op

timal

grow

that

37°C

;1-m

m-d

iam

eter

colo

nies

exhi

bit

whi

tep

igm

ent;

cata

lase

,oxi

dase

,and

indo

lene

gativ

e;ni

trat

ere

duct

ase,

D-m

anno

se,a

ndm

alto

sep

ositi

ve;t

hem

ajor

shor

t-ch

ain

fatt

yac

idis

acet

icac

id

67

Alis

tipes

ihum

iisp

.nov

.Ri

kene

llace

aeFe

ces

Isol

ate

from

aFr

ench

fem

ale

with

anor

exia

nerv

osa;

clin

ical

sign

ifica

nce

not

esta

blis

hed

Ob

ligat

ean

aero

bic

,non

-sp

ore-

form

ing,

nonm

otile

Gra

m-n

egat

ive

bac

illus

;op

timal

grow

that

37°C

;tra

nslu

cent

0.2-

mm

-dia

met

erco

loni

eson

blo

od-e

nric

hed

Col

umb

iaag

ar;l

eucy

lgl

ycin

ear

ylam

idas

e,ra

ffino

se,a

ndm

anno

sep

ositi

ve;u

reas

e,in

dole

,cat

alas

e,an

dni

trat

ere

duct

ase

nega

tive

68b

Bact

eroi

des

kore

ensi

ssp

.nov

.Ba

cter

oida

ceae

Fece

sN

otes

tab

lishe

d;is

olat

efr

oma

heal

thy

adul

tO

blig

ate

anae

rob

ic,n

onm

otile

,non

-sp

ore-

form

ing

Gra

m-n

egat

ive

bac

illus

;op

timal

grow

that

37°C

;sm

ooth

,cre

amy,

1-m

m-d

iam

eter

colo

nies

onre

info

rced

clos

trid

ial

med

ium

;gr

ows

inth

ep

rese

nce

ofb

ile;s

imila

rb

ioch

emic

alan

dfa

tty

acid

pro

file

asBa

cter

oide

skr

ibbi

sp.n

ov.,

with

the

exce

ptio

nof

nega

tive

reac

tions

for

�-g

luco

sida

sean

dgl

utam

icac

idde

carb

oxyl

ase

69

Bact

eroi

des

krib

bisp

.nov

.Ba

cter

oida

ceae

Fece

sN

otes

tab

lishe

d;is

olat

efr

oma

heal

thy

adul

tO

blig

ate

anae

rob

ic,n

onm

otile

,non

-sp

ore-

form

ing

Gra

m-n

egat

ive

bac

illus

;op

timal

grow

that

37°C

;sm

ooth

,cre

amy,

1-m

m-d

iam

eter

colo

nies

onre

info

rced

clos

trid

ial

med

ium

;gr

ows

inth

ep

rese

nce

ofb

ile;s

imila

rb

ioch

emic

alan

dfa

tty

acid

pro

file

asBa

cter

oide

sko

reen

sis

sp.n

ov.,

with

the

exce

ptio

nof

pos

itive

reac

tions

for

�-g

luco

sida

sean

dgl

utam

icac

idde

carb

oxyl

ase

69

(Con

tinue

don

next

pag

e)

Minireview Journal of Clinical Microbiology

February 2019 Volume 57 Issue 2 e01181-18 jcm.asm.org 6

on Decem

ber 4, 2020 by guesthttp://jcm

.asm.org/

Dow

nloaded from

Page 7: An Update on the Novel Genera and Species and Revised ... · February 2019 Volume 57 Issue 2 e01181-18 Journal of Clinical Microbiology jcm.asm.org 1 30 January 2019 on August 17,

TAB

LE1

(Con

tinue

d)

Scie

nti

ficn

ame

Fam

ilySo

urce

Clin

ical

rele

van

ceG

row

thch

arac

teri

stic

sRe

fere

nce

(s)

Spiro

chet

esH

aem

atos

piril

lum

jord

ania

ege

n.no

v.,s

p.n

ov.

Rhod

ospi

rilla

ceae

Bloo

d(n

�14

)C

linic

aldi

agno

ses

ofse

ptic

emia

(n�

3)an

db

acte

rem

ia(n

�1)

pro

vide

din

sele

ctin

stan

ces

Mot

ile,h

elic

alG

ram

-neg

ativ

eb

acte

rium

with

dim

ensi

ons

of1.

6�

mb

y0.

1–0.

25�

m;1

-mm

-di

amet

erco

loni

esw

ithsl

ight

alp

ha-h

emol

ysis

cult

ivat

edon

hear

tin

fusi

onag

arsu

pp

lem

ente

dw

ith5%

rab

bit

blo

odaf

ter

48h

ofin

cub

atio

nat

35°C

;cat

alas

e,ox

idas

e,an

dhy

drog

ensu

lfide

pos

itive

;ure

ase,

nitr

ate

redu

ctio

n,an

din

dole

nega

tive

70,7

1e

Borr

elia

may

onii

sp.n

ov.

Spiro

chae

tace

aeBl

ood

(n�

5),s

ynov

ial

fluid

Clin

ical

sign

ifica

nce

isde

scrib

edin

refe

renc

e72

Mot

ilesp

iroch

etes

cult

ivat

edfr

omb

lood

spec

imen

sut

ilizi

ngBa

rbou

r-St

oenn

er-K

elly

med

ium

ina

34°C

mic

roae

rop

hilic

envi

ronm

ent;

B.m

ayon

ii-sp

ecifi

cnu

clei

cac

idde

tect

edb

yPC

Rfr

omIx

odes

scap

ular

istic

ksco

llect

edin

Wis

cons

inan

dM

inne

sota

(USA

)

73

aO

ther

mem

ber

sof

the

Paen

ibac

illac

eae

have

bee

nre

por

ted

tob

eG

ram

pos

itive

,Gra

mne

gativ

e,or

Gra

mva

riab

le.

bTa

xono

mic

desi

gnat

ion

sub

sequ

entl

yad

ded

inva

lidat

ion

list

no.1

76(7

4).

c Tax

onom

icde

sign

atio

nsu

bse

quen

tly

adde

din

valid

atio

nlis

tno

.168

(11)

.dTa

xono

mic

desi

gnat

ion

sub

sequ

entl

yad

ded

inva

lidat

ion

list

no.1

70(7

5).

e Tax

onom

icde

sign

atio

nsu

bse

quen

tly

adde

din

valid

atio

nlis

tno

.171

(76)

.f T

axon

omic

desi

gnat

ion

sub

sequ

entl

yad

ded

inva

lidat

ion

list

no.1

72(7

7).

gTa

xono

mic

desi

gnat

ion

sub

sequ

entl

yad

ded

inva

lidat

ion

list

no.1

78(7

8).

hG

ener

aof

Pept

ostr

epto

cocc

acea

ear

ety

pic

ally

Gra

m-p

ositi

veor

gani

sms.

i Tax

onom

icde

sign

atio

nsu

bse

quen

tly

adde

din

valid

atio

nlis

tno

.173

(79)

.

Minireview Journal of Clinical Microbiology

February 2019 Volume 57 Issue 2 e01181-18 jcm.asm.org 7

on Decem

ber 4, 2020 by guesthttp://jcm

.asm.org/

Dow

nloaded from

Page 8: An Update on the Novel Genera and Species and Revised ... · February 2019 Volume 57 Issue 2 e01181-18 Journal of Clinical Microbiology jcm.asm.org 1 30 January 2019 on August 17,

TABLE 2 Revised bacterial taxa from January 2016 through December 2017

Former name Revised name Other information Reference(s)

Gram-positive cocciStreptococcus oralis

emendeddescription

The main characteristics are those provided in references 80 and 81, with theaddition that some strains hydrolyze arginine

82

Streptococcus oralissubsp. oralissubsp. nov.

Closely related species to S. oralis in the mitisgroup have been reclassified as subspecies ofS. oralis

S. oralis subsp. oralis was created; all strains produce IgA1 protease andextracellular polysaccharide; they do not hydrolyze arginine

82

Streptococcusdentisani

Streptococcus oralis subsp. dentisani comb. nov. The description is the same as that provided in reference 83, with theaddition that it does not produce IgA1 protease or extracellularpolysaccharide; most strains possess �-galactosidase; strains have beenisolated from the dorsum of the tongue and human caries-free toothsurfaces

82

Streptococcustigurinus

Streptococcus oralis subsp. tigurinus comb. nov. The description is the same as that provided in reference 84, with theaddition that most strains possess the enzyme �-galactosidase and allpossess the gene for N-acetyl-�-glucosaminidase; strains have beenisolated from human blood

82

Gram-positive bacilliBrevibacterium

massilienseBrevibacterium ravenspurgense emended The previous taxonomic status of B. massiliense is described in reference 85;

organism originally isolated from ankle discharge86

Arthrobactersanguinus

Haematomicrobium sanguinus gen. nov., comb.nov.

Original isolation from blood culture is described in reference 87; it has alsocaused peritonitis in a dialysis patient (88)

89

Gram-negative bacilliAchromobacter

spiritinusAchromobacter marplatensis Taxonomy revision related to previous erroneous report of sequence data;

the previous taxonomy of A. spiritinus is described in references 1, 90, and91; clinical relevance in humans is not established

92

Acinetobactergenomicspecies 14BJ

Acinetobacter courvalinii sp. nov. Human strains include those isolated from skin and soft tissue (n � 3), blood(n � 1), urine (n � 1), conjunctiva (n � 1), and tracheal aspirate(n � 1) specimens; the previous designation is described in references 93and 94; the clinical relevance of all isolates could not be ascertained

19

Acinetobactergenomicspecies 17

Acinetobacter dispersus sp. nov. Human strains include those isolated from skin and soft tissue specimens(n � 3) and an unknown source (n � 1); the previous designation isdescribed in reference 93; the clinical relevance of all isolates could not beascertained

19

Acinetobactertaxon 18

Acinetobacter modestus sp. nov. Human strains include those isolated from blood (n � 2), throat (n � 1),urine (n � 1), and skin and soft tissue (n � 1) specimens; the previousdesignation is described in references 94 to 96; the clinical relevance of allisolates could not be ascertained

19

Acinetobactertaxon 19

Acinetobacter proteolyticus sp. nov. Human isolates from skin and soft tissue (n � 4), blood (n � 1), and ear(n � 1) specimens; the previous designation is described in reference 93;the clinical relevance of all isolates could not be ascertained

19

Acinetobactertaxon 20

Acinetobacter vivianii sp. nov. Human strains include those isolated from blood (n � 2) and skin and softtissue (n � 1) specimens and an unknown source (n � 1); the previousdesignation is described in references 93 and 94; the clinical relevance ofall isolates could not be ascertained

19

Klebsiella alba Klebsiella quasipneumoniae subsp.similipneumoniae

K. alba was originally isolated from a polluted soil sample in China, with thetaxonomy previously published (97) and added (98); the taxonomic statusand clinical significance of K. quasipneumoniae subsp. similipneumoniaehuman isolates are discussed elsewhere (1, 99)

100

Capnocytophagacanimorsus(selectedstrains)

Capnocytophaga canis sp. nov. Subset of less virulent C. canimorsus strains not isolated from humaninfections has been given a novel species designation; the C. canimorsusdesignation is reserved for species including human pathogens

101a

Paraburkholderiazhejiangensis

Caballeronia zhejiangensis comb. nov. The initial designation of Burkholderia zhejiangensis was published inreference to a wastewater isolate (102) and augmented by three clinicalisolates (blood, respiratory secretions) (103); the intermediate taxonomicstatus of P. zhejiangensis was previously published (104) and added (105)

20

Helicobactercinaedi(selectedstrains)

Helicobacter canicola sp. nov. Subset of H. cinaedi strains not isolated from human infections has beengiven a novel species designation

106b

Rhizobium pusense Agrobacterium pusense comb. nov. The initial designation of R. pusense was published in reference to arhizosphere isolate (107); the pathogenicity of R. pusense (and the previousreclassification of other Agrobacterium spp. as R. pusense) in humaninfections is described in reference 108

21b

Agrobacterium sp.genomovar G2

Agrobacterium pusense comb. nov. Isolated from human blood 21b,c

Elizabethkingiaendophytica

Elizabethkingia anophelis Clinical relevance not established in humans; the previous designation of E.endophytica is described in reference 109; E. endophytica is no longerconsidered a separate species of the genus Elizabethkingia

110

Rahnellagenomospecies2

Rahnella variigena sp. nov. Taxonomic status previously discussed in reference 1 111d

Enterobacteraerogenes

Klebsiella aerogenes comb. nov. Taxonomic status previously discussed in reference 112 113

(Continued on next page)

Minireview Journal of Clinical Microbiology

February 2019 Volume 57 Issue 2 e01181-18 jcm.asm.org 8

on Decem

ber 4, 2020 by guesthttp://jcm

.asm.org/

Dow

nloaded from

Page 9: An Update on the Novel Genera and Species and Revised ... · February 2019 Volume 57 Issue 2 e01181-18 Journal of Clinical Microbiology jcm.asm.org 1 30 January 2019 on August 17,

Novel taxa. Of the two novel genera that fall into the “Gram-positive cocci” groupin Table 1, the most interesting is Streptococcus halichoeri subsp. hominis. Streptococcushalichoeri was originally isolated from gray seals (Halichoerus grypus) in 2004 in theUnited Kingdom (25). Subsequent to the description of this organism, isolates that wereassociated with infections in humans (four from blood and one from a sinus) and thatwere sent to the Centers for Disease Control and Prevention (CDC) were found to bephenotypically similar to S. halichoeri (26). In 2014, an additional isolate was recoveredfrom a man with empyema in Singapore (27). None of these patients were believed tohave an association with seals or ocean water; the average age of the patients was63 years, and they were from different geographic locations (26). In a comprehensiveinvestigation of the human isolates of S. halichoeri, the six isolates were characterizedby Shewmaker et al. (26) using whole-genome and targeted gene sequencing and avariety of phenotypic methods. The six human isolates were genetically and pheno-typically identical and most closely related to S. halichoeri. They can be distinguishedfrom the type strain recovered from a seal as follows: positive for bile esculin andesculin hydrolysis, positive for acid production from sucrose, and positive for�-glucosidase, �-glucuronidase, and acid production from methyl-�-D-glucopyranoside(Rapid ID32 test system [bioMérieux, Inc., Durham, NC]) (26). On the basis of bothphenotypic and genotypic differences from the seal type strain, the human isolates arebelieved to be a subspecies of S. halichoeri and are referred to as S. halichoeri subsp.hominis. Strains from marine animals are referred to as S. halichoeri subsp. halichoeri.

Two new Gram-positive aerobic bacilli associated with ocular infections have beenadded to the genus Corynebacterium. Corynebacterium lowii and Corynebacterium oculi

TABLE 2 (Continued)

Former name Revised name Other information Reference(s)

Herbaspirillummassiliense

Noviherbaspirillum massiliense comb. nov. Isolation from feces of a healthy Senegal patient, with the initial taxonomicstatus previously described in references 1, 114, and 115

116, 117

[Pasteurella]pneumotropica

Rodentibacter pneumotropicus comb. nov. Official 16S rRNA-based taxonomic designation granted for (misclassified) [P.]pneumotropica; human respiratory tract isolates are described in reference118

119

Ehrlichia muris Ehrlichia muris subsp. muris subsp. nov. Clinical significance in humans not definitively established; serologic evidenceof human infection in Japan (120)

48

Acinetobactergenospecies 13

Acinetobacter colistiniresistens sp. nov. Isolation previously described in reference 93 121

Acinetobacter DNAgroup 14

Acinetobacter colistiniresistens sp. nov. Isolation previously described in reference 122 121

Burkholderiaconcitans

Caballeronia concitans comb. nov. Isolation and proposed taxonomic status previously published (14) andadded (76)

123

Burkholderiaturbans

Caballeronia turbans comb. nov. Isolation and proposed taxonomic status previously described (14) andadded (76)

123

Enterobactermassiliensis

Metakosakonia massiliensis comb. nov. Previous taxonomic status of E. massiliensis described in references 1 and 124 125e

Escherichia vulneris Pseudescherichia vulneris comb. nov. Previous taxonomic status of E. vulneris described in reference 126 125e

Gram-positiveanaerobes

Propionibacteriumacnes

Cutibacterium acnes comb. nov. The description is the same as that provided in reference 127 128, 129

Propionibacteriumavidum

Cutibacterium avidum comb. nov. The description is the same as that provided in reference 127

Propionibacteriumgranulosum

Cutibacterium granulosum comb. nov. The description is the same as that provided in reference 127

Propionibacteriumpropionicum

Pseudopropionibacterium propionicum comb. nov. The description is the same as that provided in reference 127; the specieshas been associated with abscesses at a variety of different sites (psoas,brain)

128

Clostridium difficile Clostridioides difficile gen. nov., comb. nov. The description is identical to that for Clostridium difficile (130) 131Clostridium

mangenotiiClostridioides mangenotii comb. nov. The description of Clostridioides mangenotii is identical to that provided in

reference 132Eubacterium

contortumFaecalicatena contorta gen. nov., comb. nov. A previous description of Eubacterium contorta can be found in reference

133; Faecalicatena spp. are obligately anaerobic Gram-positive bacilli foundin chains or pairs; nonmotile; may or may not form spores; F. contortagrows optimally at 37°C

58

aTaxonomic designation subsequently added in validation list no. 170 (75).bTaxonomic designation subsequently added in validation list no. 172 (77).cX. Nesme, personal communication.dTaxonomic designation subsequently added in validation list no. 174 (134).eTaxonomic designation subsequently added in validation list no. 178 (78).

Minireview Journal of Clinical Microbiology

February 2019 Volume 57 Issue 2 e01181-18 jcm.asm.org 9

on Decem

ber 4, 2020 by guesthttp://jcm

.asm.org/

Dow

nloaded from

Page 10: An Update on the Novel Genera and Species and Revised ... · February 2019 Volume 57 Issue 2 e01181-18 Journal of Clinical Microbiology jcm.asm.org 1 30 January 2019 on August 17,

were recovered primarily from patients in Japan at the time of ocular surgery and/orfrom patients with conjunctivitis (32). At the time of recovery from clinical material, theywere described as high-level fluoroquinolone-resistant isolates distinguishable fromCorynebacterium macginleyi (32). Additional characterization found them to be novelspecies.

Another noteworthy novel genus and species listed with the aerobic Gram-positivebacilli is Lawsonella clevelandensis gen nov., sp. nov. This is a very unusual organism, inthat it grows best anaerobically, requiring prolonged incubation, yet it is modifiedacid-fast positive and beaded and branching on Gram stain and by sequencing is mostclosely related to members of the genus Dietzia (33, 34). In the original paper describingthese infections, patients from Cleveland, Ohio, Winnipeg, Manitoba, Canada, and NewYork City had significant abscess collections of the spine (hardware associated), breast,and liver, respectively (34). Three of the patients were immunocompromised, anddiabetes was a significant comorbid factor. Because of the fastidious nature of theorganism growth, susceptibility testing could not be performed. Two of the patientsresponded to a combination of abscess drainage and amoxicillin-clavulanate; the otherpatients received regimens that included trimethoprim-sulfamethoxazole (34). Two

TABLE 3 Update on clinical relevance for selected new taxonomy described previously in JCM in 2017

OrganismSource previously reported inJCM (1) Updated clinical relevance Reference

Streptococcus dentisani Caries-free human tooth surfaces Infective endocarditis; refer to Table 2 for current taxonomic status 135Staphylococcus argenteus Lymph node drainage Purulent lymphadenitis in a Japanese boy 136Gemella taiwanensis Blood Infective endocarditis in a woman with dental caries 137Nocardia kroppenstedtii Brain abscess, blood Immunocompromised patient who presented with central nervous

system symptoms; the patient was found to have brainabscesses and endocarditis

138

Achromobacter animicus Sputum Multidrug-resistant organism implicated in wound infection inTanzania

139

Burkholderiapseudomultivorans

Sputum Bacteremia (not otherwise specified) 140

Klebsiella quasipneumoniaesubsp. quasipneumoniae

Type strain derived from blood Biliary tract infection 141

Liver abscess 142Urinary tract infection (n � 2) 143

Klebsiella quasipneumoniaesubsp. similipneumoniae

Type strain derived from blood Extended-spectrum �-lactamase-producing urine culture isolate 144

Sepsis (necrotizing fasciitis source) 145Clinical isolates from Malaysia (not otherwise specified) harboring

CTX-M, TEM, and NDM resistance determinants146

Odontogenic infection 147Nosocomial infection isolates from Brazil (not otherwise specified)

harboring KPC-2 and OKP-B-6 resistance determinants148

Acinetobacter variabilis Urine, feces, ocular, blood, leg,peritoneal dialysis fluid, toe

Neonatal sepsis in India 149

Sputum from cystic fibrosis patients in Brazil 150Acinetobacter seifertii Blood, ulcer, respiratory Catheter-related bloodstream infection 151

Sputum from cystic fibrosis patients in Brazil 150Ten isolates characterized, including urine culture isolate from

elderly female with dizziness152

Catheter-related sepsis in pediatric patient; pressure ulcer; intra-abdominal abscess

153

Archived tracheal aspirate and nasal secretion isolates from 1993and 1997 harboring OXA-58 resistance determinant

154

Christensenella minuta Feces Coisolated with Desulfovibrio desulfuricans from blood of patientwith acute appendicitis

155

Eisenbergiella tayi Blood Canadian study of eight blood culture isolates and one appendixtissue culture isolate (also with positive blood culture)

156

Klebsiella michiganensis Toothbrush holder Isolate harboring KPC-2, NDM-1, and NDM-5 resistancedeterminants recovered from immunocompromised Chinesepatient with acute diarrhea

157

Actinotignum spp. Blood Bacteremia among elderly patients 158

Minireview Journal of Clinical Microbiology

February 2019 Volume 57 Issue 2 e01181-18 jcm.asm.org 10

on Decem

ber 4, 2020 by guesthttp://jcm

.asm.org/

Dow

nloaded from

Page 11: An Update on the Novel Genera and Species and Revised ... · February 2019 Volume 57 Issue 2 e01181-18 Journal of Clinical Microbiology jcm.asm.org 1 30 January 2019 on August 17,

additional cases of infection caused by L. clevelandensis have been reported. The firstoccurred in a patient with ulcerative colitis and a right lower quadrant intra-abdominalabscess (35). Because of the acid-fast nature of the organism, the patient was initiallythought to have intra-abdominal tuberculosis. However, subsequent 16S rRNA genesequencing performed on the abscess fluid identified the organism as L. clevelandensis,and the patient responded well to amoxicillin-clavulanate and drainage of the abscess(35). A very recent case report involved a 29-year-old woman who had a breast nodulethat yielded a Gram-positive filamentous organism identified by molecular methods asL. clevelandensis (159).

With respect to Gram-negative organisms, three valid subspecies of Enterobacterhormaechei (namely, Enterobacter hormaechei subsp. hormaechei subsp. nov., Entero-bacter hormaechei subsp. oharae subsp. nov., and Enterobacter hormaechei subsp.steigerwaltii subsp. nov.) have been officially added by IJSEM (17, 77), though clinicaldata were not provided to ascribe true clinical relevance. A novel Enterobacter spp.,Enterobacter bugandensis sp. nov. (39), was isolated from 17 neonates in a Tanzaniansepsis outbreak. These isolates tested resistant to fluoroquinolones, aminoglycosides,and tetracycline and harbored the CTX-M-15 resistance determinant. A pair of faculta-tive Gram-negative bacilli, Citrobacter europaeus sp. nov. (44) and Shewanella carassii sp.nov. (52), have been isolated from individuals with diarrhea.

The nonmotile coccobacillus Alkanindiges hongkongensis sp. nov. was isolated froma Chinese patient with an infected Warthin’s tumor that resulted in a parotid glandabscess and peripheral leukocytosis (11, 40). The patient responded well to surgicaldrainage of the abscess and a course of amoxicillin-clavulanate. Organism growth wassignificantly enhanced by Tween 80 supplementation. The oxidase-positive, Gram-negative bacillus Sphingobacterium cellulitidis sp. nov. (45) was isolated from a patientwith cellulitis in Kuwait. The erythematous and purulent infection resolved following a1-week amoxicillin-clavulanate regimen. During genetic characterization of the clinicalisolate, homology with a previously unnamed activated sludge isolate derived fromSingapore was demonstrated.

A novel member of the Anaplasmataceae, Ehrlichia muris subsp. eauclairensis subsp.nov. (48), was isolated from an upper midwestern United States febrile patient withprevious Ixodes scapularis tick exposure. This subspecies is now delineated fromEhrlichia muris subsp. muris subsp. nov. (Table 2), in that the latter has been recoveredfrom multiple genera of ticks, involves multiple natural reservoir hosts, and has distri-bution in Eastern Europe and Japan. Furthermore, human clinical disease with an E.muris subsp. muris subsp. nov. etiology has not been definitively established, thoughserologic evidence of a human immune response has been reported from Japan (120).

Only one of the new species listed under the Gram-positive anaerobes category inTable 1 was recovered from a clinical infection. Propionibacterium namnetense sp. nov.was isolated from a patient who had an infected tibial fracture (55). The remainingnovel genera and species were recovered from the feces of otherwise healthy humansin many cases during the study of intestinal microbiomes. Similarly, many of the novelanaerobic Gram-negative agents have not had clinical significance established, thoughMegasphaera massiliensis sp. nov. (11, 61) was isolated from an HIV-positive patient andSedimentibacter hongkongensis sp. nov. (11, 62) was recovered from a patient withseptic shock and multiorgan failure.

With respect to spirochetes, the valid name of Haematospirillum jordaniae gen. nov.,sp. nov. (70, 71), was added by IJSEM in 2016 (76). The type strain was derived fromhuman blood and referred to CDC in 2010. During a brief interval in 2012, 3 isolateswith identical 16S rRNA sequences matching those of both the type strain and 10previously characterized (but unnamed) isolates were forwarded to CDC. All isolateswere derived from men (mean age, 60 years), and the clinical diagnoses ranged fromsepticemia to tularemia. Limited clinical data were available (70), though two patientsreported headache, fever, chills, diarrhea, and swelling in the lower extremities.

Routine Borrelia burgdorferi sensu lato oppA1 PCR testing performed at an uppermidwestern United States reference laboratory revealed six clinical specimens (five

Minireview Journal of Clinical Microbiology

February 2019 Volume 57 Issue 2 e01181-18 jcm.asm.org 11

on Decem

ber 4, 2020 by guesthttp://jcm

.asm.org/

Dow

nloaded from

Page 12: An Update on the Novel Genera and Species and Revised ... · February 2019 Volume 57 Issue 2 e01181-18 Journal of Clinical Microbiology jcm.asm.org 1 30 January 2019 on August 17,

blood specimens and one synovial fluid specimen from six patients) with atypicalmelting curve profiles (72). Subsequent sequencing of amplified 16S rRNA, in part,resulted in the characterization of the novel taxon Borrelia mayonii sp. nov. (73). Fieldsurveys in Wisconsin and Minnesota recovered I. scapularis ticks from which B. mayoniisp. nov. DNA was detected by PCR. This form of spirochetal disease differed from typicalLyme borreliosis paradigms in several facets (72). In the limited data set, the novelagent was detected more frequently from blood specimens than from synovial fluidspecimens. To an extent, these data were corroborated by higher median oppA1 copynumbers and profound spirochetemia (as observed by microscopy) compared to thosein infections caused by B. burgdorferi sensu stricto. Finally, clinical presentations in-cluded findings of diffuse macular rash not consistent with erythema migrans, nauseaand vomiting, and high-grade fever. Several symptoms more closely resembled thoseassociated with relapsing fever borrelial disease (160).

Taxonomic revisions. In the previous taxonomic update in this journal published in2017, a novel Streptococcus species, Streptococcus tigurinus, was highlighted (1). Zbin-den et al. (84) described this organism as causing serious and invasive infections,including bacteremia and endocarditis. In 2016, this organism was reclassified as asubspecies of Streptococcus oralis (Table 2) (82). Streptococcus oralis now has threesubspecies: S. oralis subsp. oralis, S. oralis subsp. dentisani, and S. oralis subsp. tigurinus(82). S. oralis subsp. dentisani comb. nov. has been reported as a cause of infectiveendocarditis (Table 3) (135).

In 1971, Bascomb et al. (161) characterized a subset of Enterobacter aerogenes strainsthat more closely resembled Klebsiella spp. from a phenotypic perspective. At that time,taxonomic transfer to Klebsiella aerogenes was not possible and the taxon Klebsiellamobilis was utilized for naming this species. It was subsequently determined bytaxonomists (113) that this nomenclature convention was illegitimate. Moreover, byway of adherence to contemporary nomenclature code (162), it was determined thatthe name Klebsiella aerogenes was available for use. Thus, E. aerogenes has now beentransferred to Klebsiella aerogenes comb. nov. (Table 2) (113) and K. mobilis is ahomotypic synonym of Klebsiella aerogenes comb. nov. The clinical utility of thistaxonomic revision remains to be seen, particularly with respect to salient differencesin the predicted antimicrobial susceptibility profiles of the Klebsiella and Enterobactergenera in general (particularly relevant to cephamycins, first-generation cephems, and�-lactam–�-lactamase inhibitor combinations, such as ampicillin-sulbactam [163]) andthe confusion that this may present to clinicians.

In a publication not included in Table 2, Adeolu et al. (164) used comparativegenomic analyses based on greater than 1,500 core proteins, 53 ribosomal proteins,and 4 multilocus sequence analysis proteins to reorganize families and genera withinwhat is now known as Enterobacteriales ord. nov. Essentially, six new families have beencreated from the family Enterobacteriaceae. These new families and the inclusive generaare Erwiniaceae fam. nov. (containing the genera Erwinia, Buchnera, Pantoea, Phaseoli-bacter, Tatumella, and Wigglesworthia), Pectobacteriaceae fam. nov. (containing thegenera Pectobacterium, Brenneria, Dickeya, Lonsdalea, and Sodalis), Yersiniaceae fam.nov. (containing the genera Yersinia, Chania, Ewingella, Rahnella, Rouxiella, Samsonia,and Serratia), Hafniaceae fam. nov. (containing the genera Hafnia, Edwardsiella, andObesumbacterium), Morganellaceae fam. nov. (containing the genera Morganella, Ar-senophonus, Cosenzaea, Moellerella, Photorhabdus, Proteus, Providencia, and Xenorhab-dus), and Budviciaceae fam. nov. (containing the genera Budvicia, Leminorella, andPragia). The remaining Enterobacteriales genera remain in an emended description ofthe family Enterobacteriaceae (164).

Perhaps the most clinically impactful changes have been among the genera Clos-tridium and Propionibacterium. The group of propionibacteria associated with the skinbiome of human hosts constitutes a distinct clade in the genus Propionibacterium.Whole-genome sequencing and more sophisticated phylogenetic analyses supportplacing the species associated with human skin into a new genus, Cutibacterium. The

Minireview Journal of Clinical Microbiology

February 2019 Volume 57 Issue 2 e01181-18 jcm.asm.org 12

on Decem

ber 4, 2020 by guesthttp://jcm

.asm.org/

Dow

nloaded from

Page 13: An Update on the Novel Genera and Species and Revised ... · February 2019 Volume 57 Issue 2 e01181-18 Journal of Clinical Microbiology jcm.asm.org 1 30 January 2019 on August 17,

novel Cutibacterium genus includes the species Cutibacterium acnes, C. avidum, and C.granulosum previously assigned to the Propionibacterium genus (Table 2) (128). Thenovel genus Pseudopropionibacterium now contains the species formerly called Propi-onibacterium propionicum (Table 2) (128). Several of the propionibacteria associatedwith dairy sources, such as matured cheeses, have been placed into the genusAcidipropionibacterium gen. nov. (refer to reference 128 for more details about dairystrains). As also inferred with the Klebsiella aerogenes (Enterobacter aerogenes) para-digm, the clinical microbiologist may wish to consult with clinical practitioner col-leagues regarding the optimal manner to report the identification of organisms af-fected by taxonomic revisions. With respect to the former Propionibacterium acnes,possibilities may include “Cutibacterium acnes (formerly Propionibacterium acnes)” or“Cutibacterium acnes (formerly P. acnes).”

The genus Clostridium is also undergoing substantial changes. Application of mo-lecular methods, including complete sequencing of the 16S rRNA gene and othermethods, emphasizes the phylogenetic diversity of this group of organisms and has ledto the decision to reserve the genus designation of Clostridium sensu stricto to rRNAcluster I, which includes the type species Clostridium butyricum (131, 165). Conse-quently, the majority of Clostridium species which are not consistent with the genusClostridium description, as emended by Lawson and Rainey (165), will be assigned toother genera. Clostridium difficile is phylogenetically distant from cluster I and is locatedin cluster XI (131). Phylogenetic studies have shown that the type strain of C. difficilebelongs in the family Peptostreptococcaceae. In 2013, Yutin and Galperin (166) proposedcreating a new genus, Peptoclostridium, to accommodate the Clostridium species reas-signed to the family Peptostreptococcaceae. This proposal, which would have placedmany diverse species into a single genus (including C. difficile), was rejected as beingtoo simplistic (167). Subsequently, with the recognition that the proposed namePeptoclostridium difficile would change the monikers of C. difficile or C diff alreadyingrained in commercial products, packaging, computer systems, and clinical labora-tories and to avoid tremendous confusion among clinicians, Lawson and colleagues(131) proposed a compromise with the new designation of Clostridioides difficile,thereby retaining the abbreviation commonly used for C. difficile. It is hoped that thisdesignation will mitigate the time and cost associated with the required reclassification,as oftentimes only the abbreviation is used. The only other species in this new genusis Clostridioides mangenotii. Changes to other genera not highlighted here have beenmade or are forthcoming. Many of these new genera contain species not associatedwith human infections. In the 2017 minireview, we highlighted the reassignment ofClostridium hathewayi into the new genus Hungatella as Hungatella hathewayi gen.nov., comb. nov., in 2014 (1). A resident of the human intestinal tract, this organism hasbeen associated with surgical site infections and bacteremia (reviewed in reference168). Like other clostridia, it may stain Gram negative.

One major paradigm of bacterial taxonomy revision was, unfortunately, overlookedin our first compendium. Adeolu and Gupta (169) proposed a reclassification of Borreliasp. spirochetes in 2014. Agents responsible for Lyme disease (formerly residing in theBorrelia burgdorferi sensu lato complex) were transferred to Borreliella gen. nov., whilespirochetal agents largely responsible for relapsing fever retained the Borrelia genusdesignation (type species, Borrelia anserina). Per Adeolu and Gupta (169), specificagents within Borreliella gen. nov. include Borreliella burgdorferi comb. nov. (the typespecies of Borreliella), B. afzelii comb. nov., B. americana comb. nov., B. bavariensis comb.nov., B. carolinensis comb. nov., B. garinii comb. nov., B. japonica comb. nov., B.kurtenbachii comb. nov., B. lusitaniae comb. nov., B. sinica comb. nov., B. spielmaniicomb. nov., B. tanukii comb. nov., B. turdi comb. nov., and B. valaisiana comb. nov. Validnames of B. bavariensis, B. burgdorferi, B. carolinensis, B. garinii, B. japonica, B. kurten-bachii, B. sinica, and B. spielmanii have been added by IJSEM (170), yet this topic remainsthe subject of controversy and discussion (171, 172). To our knowledge, the nomen-clature of the novel taxon Borrelia mayonii sp. nov. (Table 1) has not been revised.

Minireview Journal of Clinical Microbiology

February 2019 Volume 57 Issue 2 e01181-18 jcm.asm.org 13

on Decem

ber 4, 2020 by guesthttp://jcm

.asm.org/

Dow

nloaded from

Page 14: An Update on the Novel Genera and Species and Revised ... · February 2019 Volume 57 Issue 2 e01181-18 Journal of Clinical Microbiology jcm.asm.org 1 30 January 2019 on August 17,

Recently ascribed clinical significance. New literature on novel Gram-positive taxahighlighted in the original series (1) is summarized here and in Table 3. A case ofpurulent lymphadenitis attributed to Staphylococcus argenteus was reported in aJapanese child (136). The authors highlight the observations that this organism is oftenmisidentified as nonpigmented S. aureus. Up to this time, most human cases have beenfound in northeastern Thailand (136). The first case report of infective endocarditiscaused by Gemella taiwanensis was published by Hikone et al. (137). In contrast to thecases mentioned in the initial description of this organism (173), this patient was notimmunocompromised, and it is believed that her native valve endocarditis occurredafter extensive treatment for dental caries (137). The first reported case of disseminatedNocardia kroppenstedtii was reported by Majeed et al. (138). This patient was animmunocompromised gentleman (mantle cell lymphoma) who presented with newcentral nervous system symptoms. He was found to have brain abscesses as well as amitral valve mass. Blood cultures and a brain biopsy specimen were positive for N.kroppenstedtii (138). Finally, with respect to the Gram-positive anaerobes, much newliterature on Actinotignum schaalii can be found via PubMed primary literaturesearches, and the interested reader is directed there for those papers. A comprehensivereview highlighting the clinical and microbiological features of Actinotignum spp. isreferenced (158), with the authors noting that Actinotignum bacteremia affects elderlypersons with comorbidities and is associated with high mortality.

Particular clinical significance can be ascribed to several taxa listed in Table 3 on thebasis of multidrug resistance (139, 144, 146, 148, 149, 154, 157). One of these genus/species designations, Klebsiella quasipneumoniae, is frequently misidentified by theclinical microbiology laboratory as Klebsiella pneumoniae (174), yet it has the potentialto harbor similar resistance determinants and virulence factors as K. pneumoniae. Elliottet al. (175) published the whole-genome sequence of the commonly utilized qualitycontrol strain ATCC 700603, identifying it as K. quasipneumoniae subsp. similipneu-moniae. K. quasipneumoniae subsp. quasipneumoniae has been recovered in clinicalspecimens from patients with biliary tract infection (141), liver abscess (142), andurinary tract infection (143), while K. quasipneumoniae subsp. similipneumoniae hasbeen implicated in urinary tract infection (144), sepsis (with antecedent necrotizingfasciitis) (145), odontogenic infection (147), and nosocomial infection (148). In additionto recent reports of Acinetobacter variabilis isolation in the context of neonatal sepsis(149) and cystic fibrosis (150), organism-specific nucleic acid has been isolated fromPediculus humanus capitis organisms collected from schoolchildren and homelessindividuals in northern Africa (176, 177). The authors raise the possibility of humanbody lice potentially serving as vectors/reservoirs of a range of pathogens broader thanpreviously appreciated.

Other novel agents of interest. One taxon briefly described in the first bacterialtaxonomy compendium (1) was Klebsiella michiganensis, an isolate of which wasoriginally recovered from a toothbrush holder. In 2018, Zheng et al. (157) reported acase of acute diarrhea from a patient after hematopoietic stem cell transplantation inwhich a K. michiganensis isolate harboring the resistance determinants KPC-2, NDM-1,and NDM-5 was recovered from a stool culture (Table 3). While not included within theformal tables of this minireview, the following paragraphs describe examples of newtaxa that possess the potential to progress into the realm of human clinical disease.

Although they have yet to be associated with human clinical specimens, several newtaxa have been cultivated from known disease vector agents. These include therickettsial agents Rickettsia asembonensis sp. nov., Rickettsia amblyommatis sp. nov.,Rickettsia gravesii sp. nov., and Occidentia massiliensis gen. nov., sp. nov., recoveredfrom fleas (178) or ticks (179–181); Borrelia bissettiae sp. nov., Borrelia californiensis sp.nov., and Borrelia lanei sp. nov. from Ixodes pacificus ticks (182, 183); three novelAnaplasmataceae from ticks (184, 185); and the Gram-negative bacillus Coetzeea brasil-iensis gen. nov., sp. nov., from mosquito larvae (186). The valid O. massiliensis gen. nov.,sp. nov., designation was subsequently added by IJSEM (74).

Minireview Journal of Clinical Microbiology

February 2019 Volume 57 Issue 2 e01181-18 jcm.asm.org 14

on Decem

ber 4, 2020 by guesthttp://jcm

.asm.org/

Dow

nloaded from

Page 15: An Update on the Novel Genera and Species and Revised ... · February 2019 Volume 57 Issue 2 e01181-18 Journal of Clinical Microbiology jcm.asm.org 1 30 January 2019 on August 17,

Other agents have been associated with ingestible or inhalable material. Serratiaaquatilis sp. nov. and Ampullimonas aquatilis gen. nov., sp. nov., have recently beenisolated from drinking (187) and bottled mineral (188) water, respectively. Agentsrecovered from raw cow’s milk include Pseudomonas helleri sp. nov., Pseudomonasweihenstephanensis sp. nov. (189), Pseudomonas lactis sp. nov., and Pseudomonasparalactis sp. nov. (190). Rooney et al. (191) reported the isolation of Acinetobacterlactucae sp. nov. from iceberg lettuce. Examples of novel agents recovered fromseafood include Halomonas garicola sp. nov. (192), Proteus cibarius sp. nov. (193), andThalassotalea crassostreae sp. nov. (194). Finally, several nonfermentative Gram-negative bacilli have been isolated from air-conditioning systems (195–199).

In summary, studies of the human microbiome and advancements in molecularcharacterization modalities have largely been responsible for the identification of novelbacterial agents from human sources. Newer and improved tools have also contributedto the assessment of closely related pathogens and, in many instances, have resultedin revisions to previously accepted taxonomy. We have attempted to summarize thesechanges for 2016 and 2017 (as relevant to humans) and to provide insight into theclinical relevance of these agents. Additional changes to the Clostridiales are anticipatedin the next few years. As a result, this project will be sustainable into the near future,while retrospectively attempting to ascertain the clinical significance of agents that arecurrently believed to have uncertain or commensal status.

ACKNOWLEDGMENTThis report was not subject to influence from any funding agency in the public,

commercial, or not-for-profit sectors.

REFERENCES1. Munson E, Carroll KC. 2017. What’s in a name? New bacterial species

and changes to taxonomic status from 2012 through 2015. J ClinMicrobiol 55:24 – 42. https://doi.org/10.1128/JCM.01379-16.

2. Simner PJ. 2017. Medical parasitology taxonomy update: January 2012to December 2015. J Clin Microbiol 55:43– 47. https://doi.org/10.1128/JCM.01020-16.

3. Loeffelholz MJ, Fenwick BW. 2017. Taxonomic changes and additionsfor human and animal viruses, 2012 to 2015. J Clin Microbiol 55:48 –52.https://doi.org/10.1128/JCM.01525-16.

4. Warnock DW. 2017. Name changes for fungi of medical importance,2012 to 2015. J Clin Microbiol 55:53–59. https://doi.org/10.1128/JCM.00829-16.

5. Forbes BA. 2017. Mycobacterial taxonomy. J Clin Microbiol 55:380 –383.https://doi.org/10.1128/JCM.01287-16.

6. CLSI. 2015. Methods for antimicrobial dilution and disk susceptibilitytesting of infrequently isolated or fastidious bacteria, 3rd ed. CLSIguideline M45. CLSI, Wayne, PA.

7. Kämpfer P, Matthews H, Glaeser SP, Martin K, Lodders N, Faye I. 2011.Elizabethkingia anophelis sp. nov., isolated from the midgut of themosquito Anopheles gambiae. Int J Syst Evol Microbiol 61:2670 –2675.https://doi.org/10.1099/ijs.0.026393-0.

8. Lau SK, Wu AK, Teng JL, Tse H, Curreem SO, Tsui SK, Huang Y, Chen JH,Lee RA, Yuen KY, Woo PC. 2015. Evidence for Elizabethkingia anophelistransmission from mother to infant, Hong Kong. Emerg Infect Dis21:232–241. https://doi.org/10.3201/eid2102.140623.

9. College of American Pathologists. 2014. Microbiology accreditationchecklist. College of American Pathologists, Northfield, IL.

10. Munson E, Carroll KC. 2017. Correction for Munson and Carroll, “What’sin a name? New bacterial species and changes to taxonomic statusfrom 2012 through 2015.” J Clin Microbiol 55:1595. https://doi.org/10.1128/JCM.00303-17.

11. Oren A, Garrity GM. 2016. List of new names and new combinationspreviously effectively, but not validly, published. Int J Syst Evol Micro-biol 66:1603–1606. https://doi.org/10.1099/ijsem.0.000919.

12. Tsang CC, Xiong L, Poon RW, Chen JH, Leung KW, Lam JY, Wu AK, ChanJF, Lau SK, Woo PC. 2016. Gordonia hongkongensis sp. nov., isolatedfrom blood culture and peritoneal dialysis effluent of patients in Hong

Kong. Int J Syst Evol Microbiol 66:3942–3950. https://doi.org/10.1099/ijsem.0.001292.

13. Atasayar E, Zimmermann O, Spröer C, Schumann P, Groß U. 2017.Corynebacterium gottingense sp. nov., isolated from a clinical patient.Int J Syst Evol Microbiol 67:4494 – 4499. https://doi.org/10.1099/ijsem.0.002322.

14. Peeters C, Meier-Kolthoff JP, Verheyde B, De Brandt E, Cooper VS,Vandamme P. 2016. Phylogenomic study of Burkholderia glathei-likeorganisms, proposal of 13 novel Burkholderia species and emendeddescriptions of Burkholderia sordidicola, Burkholderia zhejiangensis, andBurkholderia grimmiae. Front Microbiol 7:877. https://doi.org/10.3389/fmicb.2016.00877.

15. Cosgaya C, Marí-Almirall M, Van Assche A, Fernández-Orth D,Mosqueda N, Telli M, Huys G, Higgins PG, Seifert H, Lievens B, Roca I,Vila J. 2016. Acinetobacter dijkshoorniae sp. nov., a member of theAcinetobacter calcoaceticus-Acinetobacter baumannii complex mainlyrecovered from clinical samples in different countries. Int J Syst EvolMicrobiol 66:4105– 4111. https://doi.org/10.1099/ijsem.0.001318.

16. Orata FD, Xu Y, Gladney LM, Rishishwar L, Case RJ, Boucher Y, Jordan IK,Tarr CL. 2016. Characterization of clinical and environmental isolates ofVibrio cidicii sp. nov., a close relative of Vibrio navarrensis. Int J Syst EvolMicrobiol 66:4148 – 4155. https://doi.org/10.1099/ijsem.0.001327.

17. Hoffmann H, Stindl S, Ludwig W, Stumpf A, Mehlen A, Monget D,Pierard D, Ziesing S, Heesemann J, Roggenkamp A, Schleifer KH. 2005.Enterobacter hormaechei subsp. oharae subsp. nov., E. hormaecheisubsp. hormaechei comb. nov., and E. hormaechei subsp. steigerwaltiisubsp. nov., three new subspecies of clinical importance. J Clin Micro-biol 43:3297–3303. https://doi.org/10.1128/JCM.43.7.3297-3303.2005.

18. Woo PC, Teng JL, Leung KW, Lau SK, Woo GK, Wong AC, Wong MK, YuenKY. 2005. Anaerospora hongkongensis gen. nov. sp. nov., a novel genus andspecies with ribosomal DNA operon heterogeneity isolated from an intra-venous drug abuser with pseudobacteremia. Microbiol Immunol 49:31–39.https://doi.org/10.1111/j.1348-0421.2005.tb03637.x.

19. Nemec A, Radolfova-Krizova L, Maixnerova M, Vrestiakova E, Jezek P,Sedo O. 2016. Taxonomy of haemolytic and/or proteolytic strains of thegenus Acinetobacter with the proposal of Acinetobacter courvalinii sp.nov. (genomic species 14 sensu Bouvet & Jeanjean), Acinetobacterdispersus sp. nov. (genomic species 17), Acinetobacter modestus sp.

Minireview Journal of Clinical Microbiology

February 2019 Volume 57 Issue 2 e01181-18 jcm.asm.org 15

on Decem

ber 4, 2020 by guesthttp://jcm

.asm.org/

Dow

nloaded from

Page 16: An Update on the Novel Genera and Species and Revised ... · February 2019 Volume 57 Issue 2 e01181-18 Journal of Clinical Microbiology jcm.asm.org 1 30 January 2019 on August 17,

nov., Acinetobacter proteolyticus sp. nov. and Acinetobacter vivianii sp.nov. Int J Syst Evol Microbiol 66:1673–1685. https://doi.org/10.1099/ijsem.0.000932.

20. Dobritsa AP, Samadpour M. 2016. Transfer of eleven species of thegenus Burkholderia to the genus Paraburkholderia and proposal ofCaballeronia gen. nov. to accommodate twelve species of the generaBurkholderia and Paraburkholderia. Int J Syst Evol Microbiol 66:2836 –2846. https://doi.org/10.1099/ijsem.0.001065.

21. Mousavi SA, Willems A, Nesme X, de Lajudie P, Lindström K. 2015.Revised phylogeny of Rhizobiaceae: proposal of the delineation ofPararhizobium gen. nov., and 13 new species combinations. Syst ApplMicrobiol 38:84 –90. https://doi.org/10.1016/j.syapm.2014.12.003.

22. Kusters JG, Hall RH. 2016. Case reports may be declared dead by theJournal of Clinical Microbiology, but they are alive and well in JMM CaseReports. J Clin Microbiol 54:502. https://doi.org/10.1128/JCM.02870-15.

23. Oren A, Garrity GM. 2014. Notification of changes in taxonomic opinionpreviously published outside the IJSEM. Int J Syst Evol Microbiol 64:8 –10. https://doi.org/10.1099/ijs.0.060301-0.

24. Oren A, Garrity GM. 2015. Notification of changes in taxonomic opinionpreviously published outside the IJSEM. Int J Syst Evol Microbiol 65:2028 –2029. https://doi.org/10.1099/ijs.0.000286.

25. Lawson PA, Foster G, Falsen E, Davison N, Collins MD. 2004. Strepto-coccus halichoeri sp. nov., isolated from grey seals (Halichoerus grypus).Int J Syst Evol Microbiol 54:1753–1756. https://doi.org/10.1099/ijs.0.63082-0.

26. Shewmaker PL, Whitney AM, Humrighouse BW. 2016. Phenotypic, ge-notypic, and antimicrobial characteristics of Streptococcus halichoeriisolates from humans, proposal to rename Streptococcus halichoeri asStreptococcus halichoeri subsp. halichoeri, and description of Strepto-coccus halichoeri subsp. hominis subsp. nov., a bacterium associatedwith human clinical infections. J Clin Microbiol 54:739 –744. https://doi.org/10.1128/JCM.03214-15.

27. Foo RM, Chan D. 2014. A fishy tale: a man with empyema caused byStreptococcus halichoeri. J Clin Microbiol 52:681– 682. https://doi.org/10.1128/JCM.03055-13.

28. Prakash O, Muduli S, Kumar R, Kumari C, Nimonkar Y, Shouche YS,Sharma R. 2017. Description of Auricoccus indicus gen. nov., sp. nov.,isolated from skin of human ear. Int J Syst Evol Microbiol 67:1212–1218.https://doi.org/10.1099/ijsem.0.001787.

29. Teng JL, Tang Y, Wong SS, Ngan AH, Huang Y, Tsang CC, Choi GK, LauSK, Woo PC. 2016. Tsukamurella hongkongensis sp. nov. and Tsuka-murella sinensis sp. nov., isolated from patients with keratitis, catheter-related bacteraemia and conjunctivitis. Int J Syst Evol Microbiol 66:391–397. https://doi.org/10.1099/ijsem.0.000733.

30. Chang DH, Rhee MS, Kim BC. 2016. Dermabacter vaginalis sp. nov.,isolated from human vaginal fluid. Int J Syst Evol Microbiol 66:1881–1886. https://doi.org/10.1099/ijsem.0.000960.

31. Park YK, Lee KM, Lee WK, Cho MJ, Lee HS, Cho YG, Lee YC, Lee WK,Seong WK, Hwang KJ. 2016. Dermabacter jinjuensis sp. nov., a novelspecies of the genus Dermabacter isolated from a clinical specimen. IntJ Syst Evol Microbiol 66:2573–2577. https://doi.org/10.1099/ijsem.0.001092.

32. Bernard KA, Pacheco AL, Loomer C, Burdz T, Wiebe D, Huynh C, KaplenB, Olson AB, Cnockaert M, Eguchi H, Kuwahara T, Nakayama-Imaohji H,Shiota H, Boudewijns M, Van Hoecke F, Vandamme P. 2016. Coryne-bacterium lowii sp. nov. and Corynebacterium oculi sp. nov., derivedfrom human clinical disease and an emended description of Coryne-bacterium mastitidis. Int J Syst Evol Microbiol 66:2803–2812. https://doi.org/10.1099/ijsem.0.001059.

33. Bell ME, Bernard KA, Harrington SM, Patel NB, Tucker TA, Metcalfe MG,McQuiston JR. 2016. Lawsonella clevelandensis gen. nov., sp. nov., a newmember of the suborder Corynebacterineae isolated from human ab-scesses. Int J Syst Evol Microbiol 66:2929 –2935. https://doi.org/10.1099/ijsem.0.001122.

34. Harrington SM, Bell M, Bernard K, Lagace-Wiens P, Schuetz AN, Hart-man B, McQuiston JR, Wilson D, LaSalvia M, Ng B, Richter S, Taege A.2013. Novel fastidious, partially acid-fast, anaerobic Gram-positive ba-cillus associated with abscess formation and recovered from multiplemedical centers. J Clin Microbiol 51:3903–3907. https://doi.org/10.1128/JCM.01497-13.

35. Chudy-Onwugaje K, Vandermeer F, Quezada S. Mimicking abdominaltuberculosis: abdominal abscess caused by Lawsonella clevelandensis inIBD. Clin Gastroenterol Hepatol. Epub ahead of print. https://doi.org/10.1016/j.cgh.2018.06.017.

36. Matsumoto T, Negishi T, Hamada M, Komaki H, Gonoi T, Yaguchi T.2016. Nocardia shinanonensis sp. nov., isolated from a patient withendophthalmitis. Int J Syst Evol Microbiol 66:3324 –3328. https://doi.org/10.1099/ijsem.0.001197.

37. Togo AH, Khelaifia S, Lagier JC, Caputo A, Robert C, Fournier PE,Maraninchi M, Valero R, Raoult D, Million M. 2016. Noncontiguousfinished genome sequence and description of Paenibacillus ihumii sp.nov. strain AT5. New Microbes New Infect 10:142–150. https://doi.org/10.1016/j.nmni.2016.01.013.

38. Wroblewski D, Cole J, McGinnis J, Perez M, Wilson H, Mingle LA, MusserKA, Wolfgang WJ. 2017. Neisseria dumasiana sp. nov. from humansputum and a dog’s mouth. Int J Syst Evol Microbiol 67:4304 – 4310.https://doi.org/10.1099/ijsem.0.002148.

39. Doijad S, Imirzalioglu C, Yao Y, Pati NB, Falgenhauer L, Hain T, FoeselBU, Abt B, Overmann J, Mirambo MM, Mshana SE, Chakraborty T.2016. Enterobacter bugandensis sp. nov., isolated from neonatalblood. Int J Syst Evol Microbiol 66:968 –974. https://doi.org/10.1099/ijsem.0.000821.

40. Woo PC, Tse H, Lau SK, Leung KW, Woo GK, Wong MK, Ho CM, Yuen KY.2005. Alkanindiges hongkongensis sp. nov. A novel Alkanindiges speciesisolated from a patient with parotid abscess. Syst Appl Microbiol28:316 –322. https://doi.org/10.1016/j.syapm.2005.01.003.

41. Caputo A, Lagier JC, Azza S, Robert C, Mouelhi D, Fournier PE, Raoult D.2016. Microvirga massiliensis sp. nov., the human commensal with thelargest genome. Microbiologyopen 5:307–322. https://doi.org/10.1002/mbo3.329.

42. Drobish AM, Emery BD, Whitney AM, Lauer AC, Metcalfe MG, McQuis-ton JR. 2016. Oblitimonas alkaliphila gen. nov., sp. nov., in the familyPseudomonadaceae, recovered from a historical collection of previouslyunidentified clinical strains. Int J Syst Evol Microbiol 66:3063–3070.https://doi.org/10.1099/ijsem.0.001147.

43. Vandamme PA, Peeters C, Inganäs E, Cnockaert M, Houf K, Spilker T,Moore ER, LiPuma JJ. 2016. Taxonomic dissection of Achromobacterdenitrificans Coenye et al. 2003 and proposal of Achromobacter agilis sp.nov., nom. rev., Achromobacter pestifier sp. nov., nom. rev., Achromo-bacter kerstersii sp. nov. and Achromobacter deleyi sp. nov. Int J Syst EvolMicrobiol 66:3708 –3717. https://doi.org/10.1099/ijsem.0.001254.

44. Ribeiro TG, Clermont D, Branquinho R, Machado E, Peixe L, Brisse S.2017. Citrobacter europaeus sp. nov., isolated from water and humanfaecal samples. Int J Syst Evol Microbiol 67:170 –173. https://doi.org/10.1099/ijsem.0.001606.

45. Huys G, Purohit P, Tan CH, Snauwaert C, Vos P, Saffar HA, Obaid IA,Busse HJ, Seemann T, Albert MJ. 2017. Sphingobacterium cellulitidis sp.nov., isolated from clinical and environmental sources. Int J Syst EvolMicrobiol 67:1415–1421. https://doi.org/10.1099/ijsem.0.001832.

46. Lo CI, Sankar SA, Fall B, Sambe-Ba B, Diawara S, Gueye MW, Median-nikov O, Blanc-Tailleur C, Wade B, Raoult D, Fournier PE, Fenollar F.2016. High-quality draft genome sequence and description of Haemo-philus massiliensis sp. nov. Stand Genomic Sci 11:31. https://doi.org/10.1186/s40793-016-0150-1.

47. Sankar SA, Lo CI, Fall B, Sambe-Ba B, Mediannikov O, Diallo I, Labas N,Faye N, Wade B, Raoult D, Fournier PE, Fenollar F. 2015. Noncontiguousfinished genome sequence and description of Weeksella massiliensis sp.nov. New Microbes New Infect 8:89 –98. https://doi.org/10.1016/j.nmni.2015.09.013.

48. Pritt BS, Allerdice MEJ, Sloan LM, Paddock CD, Munderloh UG, RikihisaY, Tajima T, Paskewitz SM, Neitzel DF, Hoang Johnson DK, Schiffman E,Davis JP, Goldsmith CS, Nelson CM, Karpathy SE. 2017. Proposal toreclassify Ehrlichia muris as Ehrlichia muris subsp. muris subsp. nov. anddescription of Ehrlichia muris subsp. eauclairensis subsp. nov., a newlyrecognized tick-borne pathogen of humans. Int J Syst Evol Microbiol67:2121–2126. https://doi.org/10.1099/ijsem.0.001896.

49. El Houmami N, Bakour S, Bzdrenga J, Rathored J, Seligmann H, RobertC, Armstrong N, Schrenzel J, Raoult D, Yagupsky P, Fournier PE. 2017.Isolation and characterization of Kingella negevensis sp. nov., a novelKingella species detected in a healthy paediatric population. Int J SystEvol Microbiol 67:2370 –2376. https://doi.org/10.1099/ijsem.0.001957.

50. Hurtado-Ortiz R, Nazimoudine A, Criscuolo A, Hugon P, Mornico D,Brisse S, Bizet C, Clermont D. 2017. Psychrobacter pasteurii and Psychro-bacter piechaudii sp. nov., two novel species within the genus Psychro-bacter. Int J Syst Evol Microbiol 67:3192–3197. https://doi.org/10.1099/ijsem.0.002065.

51. Vandamme P, Peeters C, De Smet B, Price EP, Sarovich DS, Henry DA,Hird TJ, Zlosnik JEA, Mayo M, Warner J, Baker A, Currie BJ, Carlier A.

Minireview Journal of Clinical Microbiology

February 2019 Volume 57 Issue 2 e01181-18 jcm.asm.org 16

on Decem

ber 4, 2020 by guesthttp://jcm

.asm.org/

Dow

nloaded from

Page 17: An Update on the Novel Genera and Species and Revised ... · February 2019 Volume 57 Issue 2 e01181-18 Journal of Clinical Microbiology jcm.asm.org 1 30 January 2019 on August 17,

2017. Comparative genomics of Burkholderia singularis sp. nov., a lowG�C content, free-living bacterium that defies taxonomic dissection ofthe genus Burkholderia. Front Microbiol 8:1679. https://doi.org/10.3389/fmicb.2017.01679.

52. Fang Y, Wang Y, Liu Z, Lu B, Dai H, Kan B, Wang D. 2017. Shewanellacarassii sp. nov., isolated from surface swabs of crucian carp and faecesof a diarrhoea patient. Int J Syst Evol Microbiol 67:5284 –5289. https://doi.org/10.1099/ijsem.0.002511.

53. Seo B, Yoo JE, Lee YM, Ko G. 2016. Sellimonas intestinalis gen. nov., sp.nov., isolated from human faeces. Int J Syst Evol Microbiol 66:951–956.https://doi.org/10.1099/ijsem.0.000817.

54. Patel NB, Tito RY, Obregón-Tito AJ, O’Neal L, Trujillo-Villaroel O, Marin-Reyes L, Troncoso-Corzo L, Guija-Poma E, Lewis CM, Lawson PA. 2016.Peptoniphilus catoniae sp. nov., isolated from a human faecal samplefrom a traditional Peruvian coastal community. Int J Syst Evol Microbiol66:2019 –2024. https://doi.org/10.1099/ijsem.0.000985.

55. Aubin GG, Bémer P, Kambarev S, Patel NB, Lemenand O, Caillon J,Lawson PA, Corvec S. 2016. Propionibacterium namnetense sp. nov.,isolated from a human bone infection. Int J Syst Evol Microbiol 66:3393–3399. https://doi.org/10.1099/ijsem.0.001204.

56. Ahn S, Jin TE, Chang DH, Rhee MS, Kim HJ, Lee SJ, Park DS, Kim BC.2016. Agathobaculum butyriciproducens gen. nov. sp. nov., a strictanaerobic, butyrate-producing gut bacterium isolated from humanfaeces and reclassification of Eubacterium desmolans as Agathobaculumdesmolans comb. nov. Int J Syst Evol Microbiol 66:3656 –3661. https://doi.org/10.1099/ijsem.0.001195.

57. Takada T, Watanabe K, Makino H, Kushiro A. 2016. Reclassification ofEubacterium desmolans as Butyricicoccus desmolans comb. nov., anddescription of Butyricicoccus faecihominis sp. nov., a butyrate-producing bacterium from human faeces. Int J Syst Evol Microbiol66:4125– 4131. https://doi.org/10.1099/ijsem.0.001323.

58. Sakamoto M, Iino T, Ohkuma M. 2017. Faecalimonas umbilicata gen.nov., sp. nov., isolated from human faeces, and reclassification ofEubacterium contortum, Eubacterium fissicatena and Clostridium oroti-cum as Faecalicatena contorta gen. nov., comb. nov., Faecalicatenafissicatena comb. nov. and Faecalicatena orotica comb. nov. Int J SystEvol Microbiol 67:1219 –1227. https://doi.org/10.1099/ijsem.0.001790.

59. Seo B, Yoo JE, Lee YM, Ko G. 2017. Merdimonas faecis gen. nov., sp. nov.,isolated from human faeces. Int J Syst Evol Microbiol 67:2430 –2435.https://doi.org/10.1099/ijsem.0.001977.

60. Kim CC, Kelly WJ, Patchett ML, Tannock GW, Jordens Z, Stoklosinski HM,Taylor JW, Sims IM, Bell TJ, Rosendale DI. 2017. Monoglobus pectinilyti-cus gen. nov., sp. nov., a pectinolytic bacterium isolated from humanfaeces. Int J Syst Evol Microbiol 67:4992– 4998. https://doi.org/10.1099/ijsem.0.002395.

61. Padmanabhan R, Lagier JC, Dangui NP, Michelle C, Couderc C, Raoult D,Fournier PE. 2013. Non-contiguous finished genome sequence anddescription of Megasphaera massiliensis sp. nov. Stand Genomic Sci8:525–538. https://doi.org/10.4056/sigs.4077819.

62. Woo PC, Teng JL, Leung KW, Lau SK, Wong MK, Yuen KY. 2004.Bacteremia in a patient with colonic carcinoma caused by a novelSedimentibacter species: Sedimentibacter hongkongensis sp. nov. DiagnMicrobiol Infect Dis 50:81– 87. https://doi.org/10.1016/j.diagmicrobio.2004.05.005.

63. Ramasamy D, Lagier JC, Nguyen TT, Raoult D, Fournier PE. 2013. Noncontiguous-finished genome sequence and description of Dielma fas-tidiosa gen. nov., sp. nov., a new member of the family Erysipelo-trichaceae. Stand Genomic Sci 8:336 –351. https://doi.org/10.4056/sigs.3567059.

64. Buhl M, Willmann M, Liese J, Autenrieth IB, Marschal M. 2016. Prevotellacolorans sp. nov., isolated from a human wound. Int J Syst Evol Micro-biol 66:3005–3009. https://doi.org/10.1099/ijsem.0.001134.

65. Shkoporov AN, Chaplin AV, Shcherbakova VA, Suzina NE, Kafarskaia LI,Bozhenko VK, Efimov BA. 2016. Ruthenibacterium lactatiformans gen.nov., sp. nov., an anaerobic, lactate-producing member of the familyRuminococcaceae isolated from human faeces. Int J Syst Evol Microbiol66:3041–3049. https://doi.org/10.1099/ijsem.0.001143.

66. Mourembou G, Rathored J, Lekana-Douki JB, Ndjoyi-Mbiguino A, Khe-laifia S, Robert C, Armstrong N, Raoult D, Fournier PE. 2016. Descriptionof Gabonibacter massiliensis gen. nov., sp. nov., a new member of thefamily Porphyromonadaceae isolated from the human gut microbiota.Curr Microbiol 73:867– 877. https://doi.org/10.1007/s00284-016-1137-2.

67. Togo AH, Durand G, Khelaifia S, Armstrong N, Robert C, Cadoret F, DiPinto F, Delerce J, Levasseur A, Raoult D, Million M. 2017. Fournierella

massiliensis gen. nov., sp. nov., a new human-associated member of thefamily Ruminococcaceae. Int J Syst Evol Microbiol 67:1393–1399.https://doi.org/10.1099/ijsem.0.001826.

68. Pfleiderer A, Mishra AK, Lagier JC, Robert C, Caputo A, Raoult D,Fournier PE. 2014. Non-contiguous finished genome sequence anddescription of Alistipes ihumii sp. nov. Stand Genomic Sci 9:1221–1235.https://doi.org/10.4056/sigs.4698398.

69. Shin Y, Park SJ, Paek J, Kim JS, Rhee MS, Kim H, Kook JK, Chang YH.2017. Bacteroides koreensis sp. nov. and Bacteroides kribbi sp. nov., twonew members of the genus Bacteroides. Int J Syst Evol Microbiol67:4352– 4357. https://doi.org/10.1099/ijsem.0.002226.

70. Humrighouse BW, Emery BD, Kelly AJ, Metcalfe MG, Mbizo J, Mc-Quiston JR. 2016. Haematospirillum jordaniae gen. nov., sp. nov.,isolated from human blood samples. Antonie Van Leeuwenhoek109:493–500. https://doi.org/10.1007/s10482-016-0654-0.

71. Humrighouse BW, Emery BD, Kelly AJ, Metcalfe MG, Mbizo J, McQuistonJR. 2016. Erratum to: Haematospirillum jordaniae gen. nov., sp. nov.,isolated from human blood samples. Antonie Van Leeuwenhoek 109:895– 896. https://doi.org/10.1007/s10482-016-0694-5.

72. Pritt BS, Mead PS, Johnson DKH, Neitzel DF, Respicio-Kingry LB, DavisJP, Schiffman E, Sloan LM, Schriefer ME, Replogle AJ, Paskewitz SM, RayJA, Bjork J, Steward CR, Deedon A, Lee X, Kingry LC, Miller TK, Feist MA,Theel ES, Patel R, Irish CL, Petersen JM. 2016. Identification of a novelpathogenic Borrelia species causing Lyme borreliosis with unusuallyhigh spirochaetaemia: a descriptive study. Lancet Infect Dis 16:556 –564. https://doi.org/10.1016/S1473-3099(15)00464-8.

73. Pritt BS, Respicio-Kingry LB, Sloan LM, Schriefer ME, Replogle AJ, BjorkJ, Liu G, Kingry LC, Mead PS, Neitzel DF, Schiffman E, Hoang JohnsonDK, Davis JP, Paskewitz SM, Boxrud D, Deedon A, Lee X, Miller TK, FeistMA, Steward CR, Theel ES, Patel R, Irish CL, Petersen JM. 2016. Borreliamayonii sp. nov., a member of the Borrelia burgdorferi sensu latocomplex, detected in patients and ticks in the upper midwesternUnited States. Int J Syst Evol Microbiol 66:4878 – 4880. https://doi.org/10.1099/ijsem.0.001445.

74. Oren A, Garrity GM. 2017. List of novel names and novel combinationspreviously effectively, but not validly, published. Int J Syst Evol Micro-biol 67:2075–2078. https://doi.org/10.1099/ijsem.0.002122.

75. Oren A, Garrity GM. 2016. List of new names and new combinationspreviously effectively, but not validly, published. Int J Syst Evol Micro-biol 66:2463–2466. https://doi.org/10.1099/ijsem.0.001149.

76. Oren A, Garrity GM. 2016. List of new names and new combinationspreviously effectively, but not validly, published. Int J Syst Evol Micro-biol 66:3761–3764. https://doi.org/10.1099/ijsem.0.001321.

77. Oren A, Garrity GM. 2016. List of new names and new combinationspreviously effectively, but not validly, published. Int J Syst Evol Micro-biol 66:4299 – 4305. https://doi.org/10.1099/ijsem.0.001585.

78. Oren A, Garrity GM. 2017. List of novel names and novel combinationspreviously effectively, but not validly, published. Int J Syst Evol Micro-biol 67:4291– 4293. https://doi.org/10.1099/ijsem.0.002415.

79. Oren A, Garrity GM. 2017. List of new names and new combinationspreviously effectively, but not validly, published. Int J Syst Evol Micro-biol 67:1–3. https://doi.org/10.1099/ijsem.0.001733.

80. Bridge PD, Sneath PH. 1982. Streptococcus gallinarum sp. nov. andStreptococcus oralis sp. nov. Int J Syst Bacteriol 32:410 – 415. https://doi.org/10.1099/00207713-32-4-410.

81. Kilian M, Mikkelsen L, Henrichsen J. 1989. Taxonomic study of viridansstreptococci: description of Streptococcus gordonii sp. nov. andemended descriptions of Streptococcus sanguis (White and Niven 1946),Streptococcus oralis (Bridge and Sneath 1982), and Streptococcus mitis(Andrewes and Horder 1906). Int J Syst Bacteriol 39:471– 484. https://doi.org/10.1099/00207713-39-4-471.

82. Jensen A, Scholz CF, Kilian M. 2016. Re-evaluation of the taxonomy ofthe mitis group of the genus Streptococcus based on whole genomephylogenetic analyses, and proposed reclassification of Streptococcusdentisani as Streptococcus oralis subsp. dentisani comb. nov., Strepto-coccus tigurinus as Streptococcus oralis subsp. tigurinus comb. nov., andStreptococcus oligofermentans as a later synonym of Streptococcus cris-tatus. Int J Syst Evol Microbiol 66:4803– 4820. https://doi.org/10.1099/ijsem.0.001433.

83. Camelo-Castillo A, Benítez-Páez A, Belda-Ferre P, Cabrera-Rubio R, MiraA. 2014. Streptococcus dentisani sp. nov., a novel member of the mitisgroup. Int J Syst Evol Microbiol 64:60 – 65. https://doi.org/10.1099/ijs.0.054098-0.

84. Zbinden A, Mueller NJ, Tarr PE, Spröer C, Keller PM, Bloemberg GV.

Minireview Journal of Clinical Microbiology

February 2019 Volume 57 Issue 2 e01181-18 jcm.asm.org 17

on Decem

ber 4, 2020 by guesthttp://jcm

.asm.org/

Dow

nloaded from

Page 18: An Update on the Novel Genera and Species and Revised ... · February 2019 Volume 57 Issue 2 e01181-18 Journal of Clinical Microbiology jcm.asm.org 1 30 January 2019 on August 17,

2012. Streptococcus tigurinus sp. nov., isolated from blood of patientswith endocarditis, meningitis and spondylodiscitis. Int J Syst Evol Mi-crobiol 62:2941–2945. https://doi.org/10.1099/ijs.0.038299-0.

85. Roux V, Raoult D. 2009. Brevibacterium massiliense sp. nov., isolatedfrom a human ankle discharge. Int J Syst Evol Microbiol 59:1960 –1964.https://doi.org/10.1099/ijs.0.007864-0.

86. Bernard KA, Pacheco AL, Burdz T, Wiebe D, Huynh C, Bonner C, GermanGJ, Bernier AM. 2016. Brevibacterium massiliense (Roux and Raoult 2009)is a later heterotypic synonym of Brevibacterium ravenspurgense (Ma-ges, Frodl, Bernard and Funke 2009), using whole-genome sequenceanalysis as a comparative tool. Int J Syst Evol Microbiol 66:4440 – 4444.https://doi.org/10.1099/ijsem.0.001371.

87. Mages IS, Frodl R, Bernard KA, Funke G. 2008. Identities of Arthrobacterspp. and Arthrobacter-like bacteria encountered in human clinical spec-imens. J Clin Microbiol 46:2980 –2986. https://doi.org/10.1128/JCM.00658-08.

88. Yap DY, Tse H, Mok MM, Chan GC, Yip T, Lui SL, Lo WK, Chan TM. 2015.Arthrobacter sanguinis: an uncommon cause of peritonitis in a perito-neal dialysis patient. Nephrology (Carlton) 20:868. https://doi.org/10.1111/nep.12513.

89. Schumann P, Busse HJ. 2017. Reclassification of Arthrobacter sanguinis(Mages et al. 2009) as Haematomicrobium sanguinis gen. nov., comb.nov. Int J Syst Evol Microbiol 67:1052–1057. https://doi.org/10.1099/ijsem.0.001763.

90. Vandamme P, Moore ER, Cnockaert M, De Brandt E, Svensson-Stadler L,Houf K, Spilker T, LiPuma JJ. 2013. Achromobacter animicus sp. nov.,Achromobacter mucicolens sp. nov., Achromobacter pulmonis sp. nov.and Achromobacter spiritinus sp. nov., from human clinical samples.Syst Appl Microbiol 36:1–10. https://doi.org/10.1016/j.syapm.2012.10.003.

91. Euzéby J. 2013. List of new names and new combinations previouslyeffectively, but not validly, published. Int J Syst Evol Microbiol 63:2365–2367.

92. Vandamme PA, Peeters C, Cnockaert M, Gomila M, Moore ER, Spilker T,LiPuma JJ. 2016. Reclassification of Achromobacter spiritinus Vandammeet al. 2013 as a later heterotypic synonym of Achromobacter marplat-ensis Gomila et al. 2011. Int J Syst Evol Microbiol 66:1641–1644. https://doi.org/10.1099/ijsem.0.000872.

93. Bouvet PJ, Jeanjean S. 1989. Delineation of new proteolytic genomicspecies in the genus Acinetobacter. Res Microbiol 140:291–299. https://doi.org/10.1016/0923-2508(89)90021-1.

94. Karah N, Haldorsen B, Hegstad K, Simonsen GS, Sundsfjord A, Samu-elsen Ø, Norwegian Study Group of Acinetobacter. 2011. Species iden-tification and molecular characterization of Acinetobacter spp. bloodculture isolates from Norway. J Antimicrob Chemother 66:738 –744.https://doi.org/10.1093/jac/dkq521.

95. Nemec A, Dijkshoorn L, Ježek P. 2000. Recognition of two novel phe-nons of the genus Acinetobacter among non-glucose-acidfying isolatesfrom human specimens. J Clin Microbiol 38:3937–3941.

96. Dijkshoorn L, Van Harsselaar B, Tjernberg I, Bouvet PJ, Vaneechoutte M.1998. Evaluation of amplified ribosomal DNA restriction analysis foridentification of Acinetobacter genomic species. Syst Appl Microbiol21:33–39. https://doi.org/10.1016/S0723-2020(98)80006-4.

97. Xu J, Li W, Chen X, Zhou Y. 2010. Klebsiella alba sp. nov., a novelpesticide-tolerant bacterium from a heavily polluted environment. JGen Appl Microbiol 56:241–247. https://doi.org/10.2323/jgam.56.241.

98. Oren A, Garrity GM. 2015. List of new names and new combinationspreviously effectively, but not validly, published. Int J Syst Evol Micro-biol 65:3763–3767. https://doi.org/10.1099/ijsem.0.000632.

99. Brisse S, Passet V, Grimont PA. 2014. Description of Klesbsiella quasi-pneumoniae sp. nov., isolated from human infections, with two sub-species, Klebsiella quasipneumoniae subsp. quasipneumoniae subsp.nov. and Klebsiella quasipneumoniae subsp. similipneumoniae subsp.nov., and demonstration that Klebsiella singaporensis is a junior hetero-typic synonym of Klebsiella variicola. Int J Syst Evol Microbiol 64:3146 –3152. https://doi.org/10.1099/ijs.0.062737-0.

100. Li CY, Zhou YL, Ji J, Gu CT. 2016. Klebsiella alba is a later heterotypicsynonym of Klebsiella quasipneumoniae subsp. similipneumoniae. IntJ Syst Evol Microbiol 66:2406 –2408. https://doi.org/10.1099/ijsem.0.001043.

101. Renzi F, Dol M, Raymackers A, Manfredi P, Cornelis GR. 2016. Only asubset of C. canimorsus strains is dangerous for humans. Emerg Mi-crobes Infect 5:e29. https://doi.org/10.1038/emi.2016.43.

102. Lu P, Zheng LQ, Sun JJ, Liu HM, Li SP, Hong Q, Li WJ. 2012. Burkholderia

zhejiangensis sp. nov., a methyl-parathion-degrading bacterium iso-lated from a wastewater-treatment system. Int J Syst Evol Microbiol62:1337–1341. https://doi.org/10.1099/ijs.0.035428-0.

103. Vandamme P, De Brandt E, Houf K, Salles JF, Dirk van Elsas J, Spilker T,LiPuma JJ. 2013. Burkholderia humi sp. nov., Burkholderia choica sp.nov., Burkholderia telluris sp. nov., Burkholderia terrestris sp. nov. andBurkholderia udeis sp. nov.: Burkholderia glathei-like bacteria from soiland rhizosphere soil. Int J Syst Evol Microbiol 63:4707– 4718. https://doi.org/10.1099/ijs.0.048900-0.

104. Sawana A, Adeolu M, Gupta RS. 2014. Molecular signatures and phy-logenomic analysis of the genus Burkholderia: proposal for division ofthis genus into the emended genus Burkholderia containing patho-genic organisms and a new genus Paraburkholderia gen. nov. harbor-ing environmental species. Front Genet 5:429. https://doi.org/10.3389/fgene.2014.00429.

105. Oren A, Garrity GM. 2015. List of new names and new combinationspreviously effectively, but not validly, published. Int J Syst Evol Micro-biol 65:2777–2783. https://doi.org/10.1099/ijsem.0.000464.

106. Kawamura Y, Tomida J, Miyoshi-Akiyama T, Okamoto T, Narita M,Hashimoto K, Cnockaert M, Vandamme P, Morita Y, Sawa T, Akaike T.2016. Proposal of Helicobacter canicola sp. nov., previously identified asHelicobacter cinaedi, isolated from canines. Syst Appl Microbiol 39:307–312. https://doi.org/10.1016/j.syapm.2016.06.004.

107. Panday D, Schumann P, Das SK. 2011. Rhizobium pusense sp. nov.,isolated from the rhizosphere of chickpea (Cicer arietinum L.). Int J SystEvol Microbiol 61:2632–2639. https://doi.org/10.1099/ijs.0.028407-0.

108. Aujoulat F, Marchandin H, Zorgniotti I, Masnou A, Jumas-Bilak E. 2015.Rhizobium pusense is the main human pathogen in the genusAgrobacterium/Rhizobium. Clin Microbiol Infect 21:472.e1– 472.e5.https://doi.org/10.1016/j.cmi.2014.12.005.

109. Kämpfer P, Busse HJ, McInroy JA, Glaeser SP. 2015. Elizabethkingiaendophytica sp. nov., isolated from Zea mays and emended descriptionof Elizabethkingia anophelis Kämpfer et al. 2011. Int J Syst Evol Micro-biol 65:2187–2193. https://doi.org/10.1099/ijs.0.000236.

110. Doijad S, Ghosh H, Glaeser S, Kämpfer P, Chakraborty T. 2016. Taxo-nomic reassessment of the genus Elizabethkingia using whole-genomesequencing: Elizabethkingia endophytica Kämpfer et al. 2015 is a latersubjective synonym of Elizabethkingia anophelis Kämpfer et al. 2011. IntJ Syst Evol Microbiol 66:4555– 4559. https://doi.org/10.1099/ijsem.0.001390.

111. Brady C, Hunter G, Kirk S, Arnold D, Denman S. 2014. Rahnella victorianasp. nov., Rahnella bruchi sp. nov., Rahnella woolbedingensis sp. nov.,classification of Rahnella genomospecies 2 and 3 as Rahnella variigenasp. nov. and Rahnella inusitata sp. nov., respectively and emendeddescription of the genus Rahnella. Syst Appl Microbiol 37:545–552.https://doi.org/10.1016/j.syapm.2014.09.001.

112. Hormaeche E, Edwards PR. 1960. A proposed genus Enterobacter. IntBull Bacteriol Nomen Taxon 10:71–74. https://doi.org/10.1099/0096266X-10-2-71.

113. Tindall BJ, Sutton G, Garrity GM. 2017. Enterobacter aerogenes Hor-maeche and Edwards 1960 (Approved Lists 1980) and Klebsiella mobilisBascomb et al. 1971 (Approved Lists 1980) share the same nomencla-tural type (ATCC 13048) on the Approved Lists and are homotypicsynonyms, with consequences for the name Klebsiella mobilis Bascombet al. 1971 (Approved Lists 1980). Int J Syst Evol Microbiol 67:502–504.https://doi.org/10.1099/ijsem.0.001572.

114. Lagier JC, Gimenez G, Robert C, Raoult D, Fournier PE. 2012. Non-contiguous finished genome sequence and description of Herbaspiril-lum massiliense sp. nov. Stand Genomic Sci 7:200 –209. https://doi.org/10.4056/sigs.3086474.

115. Oren A, Garrity GM. 2014. List of new names and new combinationspreviously effectively, but not validly, published. Int J Syst Evol Micro-biol 64:1–5. https://doi.org/10.1099/ijs.0.060285-0.

116. Chaudhary DK, Kim J. 2017. Noviherbaspirillum agri sp. nov., isolatedfrom reclaimed grassland soil, and reclassification of Herbaspirillummassiliense (Lagier et al., 2014) as Noviherbaspirillum massiliense comb.nov. Int J Syst Evol Microbiol 67:1508 –1515. https://doi.org/10.1099/ijsem.0.001747.

117. Ishii S, Ashida N, Ohno H, Segawa T, Yabe S, Otsuka S, Yokota A, SenooK. 2017. Noviherbaspirillum denitrificans sp. nov., a denitrifying bacte-rium isolated from rice paddy soil and Noviherbaspirillum autotrophi-cum sp. nov., a denitrifying, facultatively autotrophic bacterium iso-lated from rice paddy soil and proposal to reclassify Herbaspirillum

Minireview Journal of Clinical Microbiology

February 2019 Volume 57 Issue 2 e01181-18 jcm.asm.org 18

on Decem

ber 4, 2020 by guesthttp://jcm

.asm.org/

Dow

nloaded from

Page 19: An Update on the Novel Genera and Species and Revised ... · February 2019 Volume 57 Issue 2 e01181-18 Journal of Clinical Microbiology jcm.asm.org 1 30 January 2019 on August 17,

massiliense as Noviherbaspirillum massiliense comb. nov. Int J Syst EvolMicrobiol 67:1841–1848. https://doi.org/10.1099/ijsem.0.001875.

118. Henriksen SD. 1962. Some Pasteurella strains from the human respira-tory tract. A correction and supplement. Acta Pathol Microbiol Scand55:355–356.

119. Adhikary S, Nicklas W, Bisgaard M, Boot R, Kuhnert P, Waberschek T,Aalbæk B, Korczak B, Christensen H. 2017. Rodentibacter gen. nov.including Rodentibacter pneumotropicus comb. nov., Rodentibacter hey-lii sp. nov., Rodentibacter myodis sp. nov., Rodentibacter ratti sp. nov.,Rodentibacter heidelbergensis sp. nov., Rodentibacter trehalosifermen-tans sp. nov., Rodentibacter rarus sp. nov., Rodentibacter mrazii and twogenomospecies. Int J Syst Evol Microbiol 67:1793–1806. https://doi.org/10.1099/ijsem.0.001866.

120. Kawahara M, Ito T, Suto C, Shibata S, Rikihisa Y, Hata K, Hirai K. 1999.Comparison of Ehrlichia muris strains isolated from wild mice and ticksand serologic survey of humans and animals with E. muris as antigen.J Clin Microbiol 37:1123–1129.

121. Nemec A, Radolfova-Krizova L, Maixnerova M, Sedo O. 2017. Acineto-bacter colistiniresistens sp. nov. (formerly genomic species 13 sensuBouvet and Jeanjean and genomic species 14 sensu Tjernberg andUrsing), isolated from human infections and characterized by intrinsicresistance to polymyxins. Int J Syst Evol Microbiol 67:2134 –2141.https://doi.org/10.1099/ijsem.0.001903.

122. Tjernberg I, Ursing J. 1989. Clinical strains of Acinetobacter classified byDNA-DNA hybridization. APMIS 97:595– 605. https://doi.org/10.1111/j.1699-0463.1989.tb00449.x.

123. Dobritsa AP, Linardopoulou EV, Samadpour M. 2017. Transfer of 13species of the genus Burkholderia to the genus Caballeronia and re-classification of Burkholderia jirisanensis as Paraburkholderia jirisanensiscomb. nov. Int J Syst Evol Microbiol 67:3846 –3853. https://doi.org/10.1099/ijsem.0.002202.

124. Lagier JC, El Karkouri K, Mishra AK, Robert C, Raoult D, Fournier PE.2013. Non contiguous-finished genome sequence and description ofEnterobacter massiliensis sp. nov. Stand Genomic Sci 7:399 – 412.https://doi.org/10.4056/sigs.3396830.

125. Alnajar S, Gupta RS. 2017. Phylogenomics and comparative genomicstudies delineate six main clades within the family Enterobacteriaceaeand support the reclassification of several polyphyletic members of thefamily. Infect Genet Evol 54:108 –127. https://doi.org/10.1016/j.meegid.2017.06.024.

126. Brenner DJ, McWhorter AC, Knutson JK, Steigerwalt AG. 1982. Esche-richia vulneris: a new species of Enterobacteriaceae associated withhuman wounds. J Clin Microbiol 15:1133–1140.

127. Goodfellow M, Whitman WB, Bergey DH. 2012. Bergey’s manual ofsystematic bacteriology, vol 5, The actinobacteria, 2nd ed. Springer,New York, NY.

128. Scholz CF, Kilian M. 2016. The natural history of cutaneous propionibac-teria, and reclassification of selected species within the genus Propi-onibacterium to the proposed novel genera Acidipropionibacteriumgen. nov., Cutibacterium gen. nov. and Pseudopropionibacterium gen.nov. Int J Syst Evol Microbiol 66:4422– 4432. https://doi.org/10.1099/ijsem.0.001367.

129. Corvec S. 2018. Clinical and biological features of Cutibacterium (formerlyPropionibacterium) avidum, an underrecognized microorganism. Clin Mi-crobiol Rev 31:e00064-17. https://doi.org/10.1128/CMR.00064-17.

130. Hall IC, O’Toole E. 1935. Intestinal flora in newborn infants: with adescription of a new pathogenic anaerobe, Bacillus difficilis. Am J DisChild 49:390. https://doi.org/10.1001/archpedi.1935.01970020105010.

131. Lawson PA, Citron DM, Tyrrell KL, Finegold SM. 2016. Reclassification ofClostridium difficile as Clostridioides difficile (Hall and O’Toole 1935)Prévot 1938. Anaerobe 40:95–99. https://doi.org/10.1016/j.anaerobe.2016.06.008.

132. Prevot AR, Zimmes-Chaverou J. 1947. Etude d’une nouvelle espèceanaérobie de Côte d’Ivoire; Inflabilis mangenoti n. sp. Ann Inst Pasteur(Paris) 73:602– 604.

133. Holdeman LV, Cato EP, Moore WE. 1971. Eubacterium contortum(Prevot) comb. nov.: emendation of description and designation ofthe type strain. Int J Syst Bacteriol 21:304 –306. https://doi.org/10.1099/00207713-21-4-304.

134. Oren A, Garrity GM. 2017. List of new names and new combinationspreviously effectively, but not validly, published. Int J Syst Evol Micro-biol 67:529 –531. https://doi.org/10.1099/ijsem.0.001845.

135. Rasmussen LH, Højholt K, Dargis R, Christensen JJ, Skovgaard O, Just-esen US, Rosenvinge FS, Moser C, Lukjancenko O, Rasmussen S, Nielsen

XC. 2017. In silico assessment of virulence factors in strains of Strepto-coccus oralis and Streptococcus mitis isolated from patients with infec-tive endocarditis. J Med Microbiol 66:1316 –1323. https://doi.org/10.1099/jmm.0.000573.

136. Ohnishi T, Shinjoh M, Ohara H, Kawai T, Kamimaki I, Mizushima R,Kamada K, Itakura Y, Iguchi S, Uzawa Y, Yoshida A, Kikuchi K. 2018.Purulent lymphadenitis caused by Staphylococcus argenteus, represent-ing the first Japanese case of Staphylococcus argenteus (multilocussequence type 2250) infection in a 12-year-old boy. J Infect Chemother24:925–927. https://doi.org/10.1016/j.jiac.2018.03.018.

137. Hikone M, Sakamoto N, Ota M, Washino T, Kobayashi K, Iwabuchi S,Kazama H, Kounosu A, Negishi K, Ainoda Y, Iguchi S, Yoshida A, KikuchiK, Ohnishi K. 2017. The first case report of infective endocarditis causedby Gemella taiwanensis. J Infect Chemother 23:567–571. https://doi.org/10.1016/j.jiac.2017.02.012.

138. Majeed A, Abdullah HM, Ullah W, Al Mohajer M. 2017. First reportedcase of disseminated Nocardia kroppenstedtii sp. nov. infection present-ing with brain abscess and endocarditis in an immunocompromisedpatient with mantle cell lymphoma: challenges in diagnosis and treat-ment. BMJ Case Rep 2017:217337. https://doi.org/10.1136/bcr-2016-217337.

139. Moremi N, Claus H, Hingi M, Vogel U, Mshana SE. 2017. Multidrug-resistant Achromobacter animicus causing wound infection in a streetchild in Mwanza, Tanzania. Diagn Microbiol Infect Dis 88:58 – 61.https://doi.org/10.1016/j.diagmicrobio.2017.02.002.

140. Chien YC, Liao CH, Sheng WH, Chien JY, Huang YT, Yu CJ, Hsueh PR.2018. Clinical characteristics of bacteraemia caused by Burkholderiacepacia complex species and antimicrobial susceptibility of the isolatesin a medical centre in Taiwan. Int J Antimicrob Agents 51:357–364.https://doi.org/10.1016/j.ijantimicag.2017.07.004.

141. Arena F, Henrici De Angelis L, Pieralli F, Di Pilato V, Giani T, Torricelli F,D’Andrea MM, Rossolini GM. 2015. Draft genome sequence of the firsthypermucoviscous Klebsiella quasipneumoniae subsp. quasipneumoniaeisolate from a bloodstream infection. Genome Announc 3(5):e00952-15. https://doi.org/10.1128/genomeA.00952-15.

142. Breurec S, Melot B, Hoen B, Passet V, Schepers K, Bastian S, Brisse S.2016. Liver abscess caused by infection with community-acquired Kleb-siella quasipneumoniae subsp. quasipneumoniae. Emerg Infect Dis 22:529 –531. https://doi.org/10.3201/eid2203.151466.

143. Garza-Ramos U, Barrios-Camacho H, Moreno-Domínguez S, Toribio-Jiménez J, Jardón-Pineda D, Cuevas-Peña J, Sánchez-Pérez A, Duran-Bedolla J, Olguín-Rodriguez J, Román-Román A. 2018. Phenotypic andmolecular characterization of Klebsiella spp. isolates causingcommunity-acquired infections. New Microbes New Infect 23:17–27.https://doi.org/10.1016/j.nmni.2018.02.002.

144. Garza-Ramos U, Silva-Sánchez J, Catalán-Nájera J, Barrios H,Rodríguez-Medina N, Garza-González E, Cevallos MA, Lozano L.2016. Draft genome sequence of a hypermucoviscous extended-spectrum-�-lactamase-producing Klebsiella quasipneumoniae subsp.similipneumoniae clinical isolate. Genome Announc 4(4):e00475-16.https://doi.org/10.1128/genomeA.00475-16.

145. Shankar C, Nabarro LEB, Muthuirulandi Sethuvel DP, Raj A, DevangaRagupathi NK, Doss GP, Veeraraghavan B. 2017. Draft genome of ahypervirulent Klebsiella quasipneumoniae subsp. similipneumoniae withnovel sequence type ST2320 isolated from a chronic liver diseasepatient. J Glob Antimicrob Resist 9:30 –31. https://doi.org/10.1016/j.jgar.2017.01.004.

146. Gan HM, Rajasekaram G, Eng WWH, Kaniappan P, Dhanoa A. 2017.Whole-genome sequences of two carbapenem-resistant Klebsiella qua-sipneumoniae strains isolated from a tertiary hospital in Johor, Malaysia.Genome Announc 5(32):e00768-17. https://doi.org/10.1128/genomeA.00768-17.

147. Jagadish Chandra H, Sripathi Rao BH, Muhammed Manzoor AP, ArunAB. 2017. Characterization and antibiotic sensitivity profile of bacteriain orofacial abscesses of odontogenic origin. J Maxillofac Oral Surg16:445– 452. https://doi.org/10.1007/s12663-016-0966-7.

148. Nicolás MF, Ramos PIP, Marques de Carvalho F, Camargo DRA, deFátima Morais Alves C, Loss de Morais G, Almeida LGP, Souza RC,Ciapina LP, Vicente ACP, Coimbra RS, Ribeiro de Vasconcelos AT. 2018.Comparative genomic analysis of a clinical isolate of Klebsiella quasi-pneumoniae subsp. similipneumoniae, a KPC-2 and OKP-B-6 beta-lactamases producer harboring two drug-resistance plasmids fromsoutheast Brazil. Front Microbiol 9:220. https://doi.org/10.3389/fmicb.2018.00220.

Minireview Journal of Clinical Microbiology

February 2019 Volume 57 Issue 2 e01181-18 jcm.asm.org 19

on Decem

ber 4, 2020 by guesthttp://jcm

.asm.org/

Dow

nloaded from

Page 20: An Update on the Novel Genera and Species and Revised ... · February 2019 Volume 57 Issue 2 e01181-18 Journal of Clinical Microbiology jcm.asm.org 1 30 January 2019 on August 17,

149. Chatterjee S, Datta S, Roy S, Ramanan L, Saha A, Viswanathan R, Som T,Basu S. 2016. Carbapenem resistance in Acinetobacter baumannii andother Acinetobacter spp. causing neonatal sepsis: focus on NDM-1 andits linkage to ISAba125. Front Microbiol 7:1126. https://doi.org/10.3389/fmicb.2016.01126.

150. Rocha GA, Lima DF, Rodrigues ER, Leão RS, Folescu TW, Firmida MC,Cohen RWF, Albano RM, Marques EA. 2018. Species distribution, se-quence types and antimicrobial resistance of Acinetobacter spp. fromcystic fibrosis patients. Epidemiol Infect 146:524 –530. https://doi.org/10.1017/S0950268817002849.

151. Kishii K, Kikuchi K, Tomida J, Kawamura Y, Yoshida A, Okuzumi K,Moriya K. 2016. The first cases of human bacteremia caused by Acin-etobacter seifertii in Japan. J Infect Chemother 22:342–345. https://doi.org/10.1016/j.jiac.2015.12.002.

152. Yang Y, Wang J, Fu Y, Ruan Z, Yu Y. 2016. Acinetobacter seifertiiisolated from China: genomic sequence and molecular epidemiol-ogy analyses. Medicine (Baltimore) 95:e2937. https://doi.org/10.1097/MD.0000000000002937.

153. Cerezales M, Xanthopoulou K, Ertel J, Nemec A, Bustamante Z, Seifert H,Gallego L, Higgins PG. 2018. Identification of Acinetobacter seifertiiisolated from Bolivian hospitals. J Med Microbiol 67:834 – 837. https://doi.org/10.1099/jmm.0.000751.

154. Cayô R, Rodrigues-Costa F, Pereira Matos A, Godoy Carvalhaes C,Dijkshoorn L, Gales AC. 2016. Old clinical isolates of Acinetobacterseifertii in Brazil producing OXA-58. Antimicrob Agents Chemother60:2589 –2591. https://doi.org/10.1128/AAC.01957-15.

155. Alonso BL, Irigoyen von Sierakowski A, Sáez Nieto JA, Rosel AB. 2017.First report of human infection by Christensenella minuta, a gram-negative, strickly [sic] anaerobic rod that inhabits the human intestine.Anaerobe 44:124 –125. https://doi.org/10.1016/j.anaerobe.2017.03.007.

156. Bernard K, Burdz T, Wiebe D, Balcewich BM, Zimmerman T, Lagacé-Wiens P, Hoang LMN, Bernier AM. 2017. Characterization of isolates ofEisenbergiella tayi, a strictly anaerobic Gram-stain variable bacillus re-covered from human clinical materials in Canada. Anaerobe 44:128 –132. https://doi.org/10.1016/j.anaerobe.2017.03.005.

157. Zheng B, Xu H, Yu X, Lv T, Jiang X, Cheng H, Zhang J, Chen Y, HuangC, Xiao Y. 2018. Identification and genomic characterization of a KPC-2-,NDM-1- and NDM-5-producing Klebsiella michiganensis isolate. J Anti-microb Chemother 73:536 –538. https://doi.org/10.1093/jac/dkx415.

158. Pedersen H, Senneby E, Rasmussen M. 2017. Clinical and microbiolog-ical features of Actinotignum bacteremia: a retrospective observationalstudy of 57 cases. Eur J Clin Microbiol Infect Dis 36:791–796. https://doi.org/10.1007/s10096-016-2862-y.

159. Favila Menezes M, Sousa MJ, Paixão P, Atouguia J, Negreiros I, SimõesMJ. 2018. Lawsonella clevelandensis as the causative agent of a breastabscess. IDCases 12:95–96. https://doi.org/10.1016/j.idcr.2018.03.014.

160. Dworkin MS, Anderson DE, Jr, Schwan TG, Shoemaker PC, Banerjee SN,Kassen BO, Burgdorfer W. 1998. Tick-borne relapsing fever in thenorthwestern United States and southwestern Canada. Clin Infect Dis26:122–131. https://doi.org/10.1086/516273.

161. Bascomb S, Lapage SP, Willcox WR, Curtis MA. 1971. Numerical classi-fication of the tribe Klebsiellae. J Gen Microbiol 66:279 –295. https://doi.org/10.1099/00221287-66-3-279.

162. Parker CT, Tindall BJ, Garrity GM. 20 November 2015. International codeof nomenclature of prokaryotes. Int J Syst Evol Microbiol https://doi.org/10.1099/ijsem.0.000778.

163. CLSI. 2018. Performance standards for antimicrobial susceptibility test-ing, 28th ed. CLSI supplement M100. CLSI, Wayne, PA.

164. Adeolu M, Alnajar S, Naushad S, Gupta RS. 2016. Genome-based phy-logeny and taxonomy of the ‘Enterobacteriales’: proposal for Entero-bacterales ord. nov. divided into the families Enterobacteriaceae, Erwi-niaceae fam. nov., Pectobacteriaceae fam. nov., Yersiniaceae fam. nov.,Hafniaceae fam. nov., Morganellaceae fam. nov., and Budviciaceae fam.nov. Int J Syst Evol Microbiol 66:5575–5599. https://doi.org/10.1099/ijsem.0.001485.

165. Lawson PA, Rainey FA. 2016. Proposal to restrict the genus ClostridiumPrazmowski to Clostridium butyricum and related species. Int J Syst EvolMicrobiol 66:1009 –1016. https://doi.org/10.1099/ijsem.0.000824.

166. Yutin N, Galperin MY. 2013. A genomic update on clostridial phylogeny:Gram-negative spore formers and other misplaced clostridia. EnvironMicrobiol 15:2631–2641. https://doi.org/10.1111/1462-2920.12173.

167. Galperin MY, Brover V, Tolstoy I, Yutin N. 2016. Phylogenomic analysisof the family Peptostreptococcaceae (Clostridium cluster XI) and pro-posal for reclassification of Clostridium litorale (Fendrich et al. 1991) and

Eubacterium acidaminophilum (Zindel et al. 1989) as Peptoclostridiumlitorale gen. nov. comb. nov. and Peptoclostridium acidaminophilumcomb. nov. Int J Syst Evol Microbiol 66:5506 –5513. https://doi.org/10.1099/ijsem.0.001548.

168. Randazzo A, Kornreich A, Lissoir B. 2015. A Clostridium hathewayi isolatein blood culture of a patient with an acute appendicitis. Anaerobe35:44 – 47. https://doi.org/10.1016/j.anaerobe.2015.07.003.

169. Adeolu M, Gupta RS. 2014. A phylogenomic and molecular markerbased proposal for the division of the genus Borrelia into two genera:the emended genus Borrelia containing only the members of therelapsing fever Borrelia, and the genus Borreliella gen. nov. containingthe members of the Lyme disease Borrelia (Borrelia burgdorferi sensulato complex). Antonie Van Leeuwenhoek 105:1049 –1072. https://doi.org/10.1007/s10482-014-0164-x.

170. Oren A, Garrity GM. 2015. List of new names and new combinationspreviously effectively, but not validly, published. Int J Syst Evol Micro-biol 65:1105–1111. https://doi.org/10.1099/ijs.0.000178.

171. Margos G, Marosevic D, Cutler S, Derdakova M, Diuk-Wasser M, Emler S,Fish D, Gray J, Hunfeld KP, Jaulhac B, Kahl O, Kovalev S, Kraiczy P, LaneRS, Lienhard R, Lindgren PE, Ogden N, Ornstein K, Rupprecht T,Schwartz I, Sing A, Straubinger RK, Strle F, Voordouw M, Rizzoli A,Stevenson B, Fingerle V. 2017. There is inadequate evidence to supportthe division of the genus Borrelia. Int J Syst Evol Microbiol 67:1081–1084. https://doi.org/10.1099/ijsem.0.001717.

172. Barbour AG, Adeolu M, Gupta RS. 2017. Division of the genus Borreliainto two genera (corresponding to Lyme disease and relapsing fevergroups) reflects their genetic and phenotypic distinctiveness and willlead to a better understanding of these two groups of microbes(Margos et al. (2016) There is inadequate evidence to support thedivision of the genus Borrelia. Int. J. Syst. Evol. Microbiol. doi: 10.1099/ijsem.0.001717). Int J Syst Evol Microbiol 67:2058 –2067. https://doi.org/10.1099/ijsem.0.001815.

173. Hung WC, Chen HJ, Tsai JC, Tseng SP, Lee TF, Hsueh PR, Shieh WY, TengLJ. 2014. Gemella parahaemolysans sp. nov. and Gemella taiwanensis sp.nov., isolated from human clinical specimens. Int J Syst Evol Microbiol64:2060 –2065. https://doi.org/10.1099/ijs.0.052795-0.

174. Long SW, Linson SE, Ojeda Saavedra M, Cantu C, Davis JJ, Brettin T,Olsen RJ. 2017. Whole-genome sequencing of human clinical Kleb-siella pneumoniae isolates reveals misidentification and misunder-standings of Klebsiella pneumoniae, Klebsiella variicola, and Klebsiellaquasipneumoniae mSphere 2(4):e00290-17. https://doi.org/10.1128/mSphereDirect.00290-17.

175. Elliott AG, Ganesamoorthy D, Coin L, Cooper MA, Cao MD. 2016.Complete genome sequence of Klebsiella quasipneumoniae subsp. si-milipneumoniae strain ATCC 700603. Genome Announc 4(3):e00438-16.https://doi.org/10.1128/genomeA.00438-16.

176. Louni M, Mana N, Bitam I, Dahmani M, Parola P, Fenollar F, Raoult D,Mediannikov O. 2018. Body lice of homeless people reveal thepresence of several emerging bacterial pathogens in northern Al-geria. PLoS Negl Trop Dis 12:e0006397. https://doi.org/10.1371/journal.pntd.0006397.

177. Mana N, Louni M, Parola P, Bitam I. 2017. Human head lice and pubiclice reveal the presence of several Acinetobacter species in Algiers,Algeria. Comp Immunol Microbiol Infect Dis 53:33–39. https://doi.org/10.1016/j.cimid.2017.06.003.

178. Maina AN, Luce-Fedrow A, Omulo S, Hang J, Chan TC, Ade F, Jima DD,Ogola E, Ge H, Breiman RF, Njenga MK, Richards AL. 2016. Isolation andcharacterization of a novel Rickettsia species (Rickettsia asembonensissp. nov.) obtained from cat fleas (Ctenocephalides felis). Int J Syst EvolMicrobiol 66:4512– 4517. https://doi.org/10.1099/ijsem.0.001382.

179. Karpathy SE, Slater KS, Goldsmith CS, Nicholson WL, Paddock CD. 2016.Rickettsia amblyommatis sp. nov., a spotted fever group Rickettsiaassociated with multiple species of Amblyomma ticks in North, Centraland South America. Int J Syst Evol Microbiol 66:5236 –5243. https://doi.org/10.1099/ijsem.0.001502.

180. Abdad MY, Abdallah RA, Karkouri KE, Beye M, Stenos J, Owen H,Unsworth N, Robertson I, Blacksell SD, Nguyen TT, Nappez C, Raoult D,Fenwick S, Fournier PE. 2017. Rickettsia gravesii sp. nov.: a novel spottedfever group rickettsia in Western Australia Amblyomma triguttatumtriguttatum ticks. Int J Syst Evol Microbiol 67:3156 –3161. https://doi.org/10.1099/ijsem.0.001865.

181. Mediannikov O, Nguyen TT, Bell-Sakyi L, Padmanabhan R, Fournier PE,Raoult D. 2014. High quality draft genome sequence and description ofOccidentia massiliensis gen. nov., sp. nov., a new member of the family

Minireview Journal of Clinical Microbiology

February 2019 Volume 57 Issue 2 e01181-18 jcm.asm.org 20

on Decem

ber 4, 2020 by guesthttp://jcm

.asm.org/

Dow

nloaded from

Page 21: An Update on the Novel Genera and Species and Revised ... · February 2019 Volume 57 Issue 2 e01181-18 Journal of Clinical Microbiology jcm.asm.org 1 30 January 2019 on August 17,

Rickettsiaceae. Stand Genomic Sci 9:9. https://doi.org/10.1186/1944-3277-9-9.

182. Margos G, Lane RS, Fedorova N, Koloczek J, Piesman J, Hojgaard A, SingA, Fingerle V. 2016. Borrelia bissettiae sp. nov. and Borrelia californiensissp. nov. prevail in diverse enzootic transmission cycles. Int J Syst EvolMicrobiol 66:1447–1452. https://doi.org/10.1099/ijsem.0.000897.

183. Margos G, Fedorova N, Kleinjan JE, Hartberger C, Schwan TG, Sing A,Fingerle V. 2017. Borrelia lanei sp. nov. extends the diversity of Borreliaspecies in California. Int J Syst Evol Microbiol 67:3872–3876. https://doi.org/10.1099/ijsem.0.002214.

184. Gofton AW, Doggett S, Ratchford A, Ryan U, Irwin P. 2016. Phylogeneticcharacterisation of two novel Anaplasmataceae from Australian Ixodesholocyclus ticks: ‘Candidatus Neoehrlichia australis’ and ‘CandidatusNeoehrlichia arcana.’ Int J Syst Evol Microbiol 66:4256 – 4261. https://doi.org/10.1099/ijsem.0.001344.

185. Cabezas-Cruz A, Zweygarth E, Vancová M, Broniszewska M, Grub-hoffer L, Passos LMF, Ribeiro MFB, Alberdi P, de la Fuente J. 2016.Ehrlichia minasensis sp. nov., isolated from the tick Rhipicephalusmicroplus. Int J Syst Evol Microbiol 66:1426 –1430. https://doi.org/10.1099/ijsem.0.000895.

186. Kämpfer P, Glaeser SP, Marinotti O, Guy L, Håkansson S, Tadei WP,Busse HJ, Terenius O. 2016. Coetzeea brasiliensis gen. nov., sp. nov.isolated from larvae of Anopheles darlingi. Int J Syst Evol Microbiol66:5211–5217. https://doi.org/10.1099/ijsem.0.001497.

187. Kämpfer P, Glaeser SP. 2016. Serratia aquatilis sp. nov., isolated fromdrinking water systems. Int J Syst Evol Microbiol 66:407– 413. https://doi.org/10.1099/ijsem.0.000731.

188. França L, Albuquerque L, Sánchez C, Fareleira P, da Costa MS. 2016.Ampullimonas aquatilis gen. nov., sp. nov. isolated from bottled mineralwater. Int J Syst Evol Microbiol 66:1459 –1465. https://doi.org/10.1099/ijsem.0.000903.

189. von Neubeck M, Huptas C, Glück C, Krewinkel M, Stoeckel M, StresslerT, Fischer L, Hinrichs J, Scherer S, Wenning M. 2016. Pseudomonas hellerisp. nov. and Pseudomonas weihenstephanensis sp. nov., isolated fromraw cow’s milk. Int J Syst Evol Microbiol 66:1163–1173. https://doi.org/10.1099/ijsem.0.000852.

190. von Neubeck M, Huptas C, Glück C, Krewinkel M, Stoeckel M, Stressler

T, Fischer L, Hinrichs J, Scherer S, Wenning M. 2017. Pseudomonas lactissp. nov. and Pseudomonas paralactis sp. nov., isolated from bovine rawmilk. Int J Syst Evol Microbiol 67:1656 –1664. https://doi.org/10.1099/ijsem.0.001836.

191. Rooney AP, Dunlap CA, Flor-Weiler LB. 2016. Acinetobacter lactucae sp.nov., isolated from iceberg lettuce (Asteraceae: Lactuca sativa). Int JSyst Evol Microbiol 66:3566 –3572. https://doi.org/10.1099/ijsem.0.001234.

192. Jung WY, Lee HJ, Jeon CO. 2016. Halomonas garicola sp. nov., isolatedfrom saeu-jeot, a Korean salted and fermented shrimp sauce. Int J SystEvol Microbiol 66:731–737. https://doi.org/10.1099/ijsem.0.000784.

193. Hyun DW, Jung MJ, Kim MS, Shin NR, Kim PS, Whon TW, Bae JW. 2016.Proteus cibarius sp. nov., a swarming bacterium from Jeotgal, a tradi-tional Korean fermented seafood, and emended description of thegenus Proteus. Int J Syst Evol Microbiol 66:2158 –2164. https://doi.org/10.1099/ijsem.0.001002.

194. Choi S, Kim E, Shin SK, Yi H. 2017. Thalassotalea crassostreae sp. nov.,isolated from Pacific oyster. Int J Syst Evol Microbiol 67:2195–2198.https://doi.org/10.1099/ijsem.0.001923.

195. Kim DU, Lee H, Kim H, Kim SG, Park SY, Ka JO. 2016. Mucilaginibactercarri sp. nov., isolated from a car air conditioning system. Int J Syst EvolMicrobiol 66:1754 –1759. https://doi.org/10.1099/ijsem.0.000938.

196. Lee Y, Jeon CO. 2017. Sphingomonas frigidaeris sp. nov., isolated froman air conditioning system. Int J Syst Evol Microbiol 67:3907–3912.https://doi.org/10.1099/ijsem.0.002221.

197. Hyeon JW, Jeon CO. 2017. Roseomonas aerofrigidensis sp. nov., isolatedfrom an air conditioner. Int J Syst Evol Microbiol 67:4039 – 4044. https://doi.org/10.1099/ijsem.0.002246.

198. Lee H, Kim DU, Lee S, Yun J, Park S, Yoon JH, Park SY, Ka JO. 2017.Sphingomonas carri sp. nov., isolated from a car air-conditioning sys-tem. Int J Syst Evol Microbiol 67:4069 – 4074. https://doi.org/10.1099/ijsem.0.002250.

199. Kim DU, Lee H, Lee S, Park S, Yoon JH, Park SY, Ka JO. 2017. Spirosomacarri sp. nov., isolated from an automobile air conditioning system. IntJ Syst Evol Microbiol 67:4195– 4199. https://doi.org/10.1099/ijsem.0.002276.

Minireview Journal of Clinical Microbiology

February 2019 Volume 57 Issue 2 e01181-18 jcm.asm.org 21

on Decem

ber 4, 2020 by guesthttp://jcm

.asm.org/

Dow

nloaded from