an overview of the ncep eta model

94
An Overview of the NCEP Eta Model 28 March 2000 COMET/UCAR SOO Symposium on NWP EDAS slides by Eric Rogers Presented by Thomas Black EMC/Mesoscale Modeling Branch

Upload: mahlah

Post on 05-Jan-2016

21 views

Category:

Documents


0 download

DESCRIPTION

An Overview of the NCEP Eta Model. COMET/UCAR SOO Symposium on NWP. 28 March 2000. Presented by Thomas Black. EMC/Mesoscale Modeling Branch. EDAS slides by Eric Rogers. Outline. Brief model description Eta Data Assimilation System Physics Examples of products/statistics Future. Domain. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: An Overview of the NCEP Eta Model

An Overview of the NCEP Eta Model

28 March 2000

COMET/UCAR SOO Symposium on NWP

EDAS slides by Eric Rogers

Presented by Thomas Black

EMC/Mesoscale Modeling Branch

Page 2: An Overview of the NCEP Eta Model

Outline

• Brief model description

• Eta Data Assimilation System

• Physics

• Examples of products/statistics

• Future

Page 3: An Overview of the NCEP Eta Model

Domain

• Semi-staggered Arakawa E grid

• 32km horizontal resolution

• 45 vertical eta layers

• Silhouette step topography

Page 4: An Overview of the NCEP Eta Model

Eta Domains Past & Present

Page 5: An Overview of the NCEP Eta Model
Page 6: An Overview of the NCEP Eta Model

32km DomainTopography w/ Water Points

Page 7: An Overview of the NCEP Eta Model

Topography w/ Water Points32km CONUS

Page 8: An Overview of the NCEP Eta Model

Sigma and Eta Coordinates

MSL

zgpPGF

sfcp

p

P

ground 1

1

At point P:p

0 z

P

1

1

0ref

sfcref

p

zp

At point P:0 p

zis small

is small

ground

Page 9: An Overview of the NCEP Eta Model

Eta Coordinate

Mean Sea LevelP=PMSL

Reference heights and temperatures taken from the standard atmosphere

Z= ZREF

LM=1

LM-1

LM-2

at P = LM-2 PSMSL

Z=0

LM-3

P= LM-2 PMSL

P= LM-3 PMSL

P= LM-1 PMSL

at P = LM-1 PSMSL

Z= ZREF

Page 10: An Overview of the NCEP Eta Model

Eta Model 45-Layer Distribution

1000 hPa

850 hPa

700 hPa

500 hPa

250 hPa

25 hPa27 hPa29

29

2726262423242630

31

32

32

32

33

33

33

33

33

32

31

29

2723211918181716141313

13131212121211 86

5 2

Page 11: An Overview of the NCEP Eta Model

The Semi-Staggered E Grid

H

V

H

V

H

V

H

V

H

V

H

V

H

V

H

V

H

V

H

V

H

V

H

V

H

d

H mass point

V velocity point

d

constanttransformed

latitude

constanttransformed

longitude

Page 12: An Overview of the NCEP Eta Model

GOAL : Produce best possible initial conditions for the Eta Model forecast*

• KEY COMPONENTS

- State of the art analysis (variational)

- Consistency between assimilating and forecast model (resolution, physics, dynamics)

- Intelligent selection and use of observations

* NOT necessarily the same as fitting all the observations exactly

Eta Data Assimilation System

Page 13: An Overview of the NCEP Eta Model

What is 3D-VAR?

• An analysis technique that attempts to minimize analysis error

• Takes background (forecast) and observation error into account

• Variational method allows use of “non-traditional” data sources, such as GOES precipitable water

Page 14: An Overview of the NCEP Eta Model

ETA 3DVAR ANALYSIS

• Loosely patterned after NCEP global SSI analysis

• Analysis variables:

- Stream function- Potential function

- Temperature- Specific humidity

- Surface pressure - Geopotential height

• More adaptable than OI for using new data types (e.g., NEXRAD radial velocities used in Eta-10 runs during 1996 Olympics)

(Parrish et al. 1996 NWP Preprint Volume)

Page 15: An Overview of the NCEP Eta Model

3D-VAR vs. OI

Page 16: An Overview of the NCEP Eta Model

EDAS Original Configuration Eta-48 fcst 00Z/12Z Eta-29 fcst 03Z/15Z

Page 17: An Overview of the NCEP Eta Model

WHY DO CYCLING?

• Initial conditions more consistent with

• Less spinup of divergence, cloud,

• More accurate representation of soil

forecast model

precipitation, and TKE

moisture

Page 18: An Overview of the NCEP Eta Model
Page 19: An Overview of the NCEP Eta Model

Observations Used By ETA 3DVAR • Upper air data- Rawinsonde height/temperature/wind/moisture- Dropwindsondes- Wind Profilers- NESDIS thickness retrievals from polar orbiting satellites (oceans only)- VAD winds from NEXRAD- Aircraft (conventional and ACARS) winds/temps- Satellite cloud drift winds- SSM/I and GOES precipitable water retrievals- Synthetic tropical cyclone data

• Surface data- Surface land wind/temperature/moisture- Ships and buoys- SSM/I oceanic surface winds

Page 20: An Overview of the NCEP Eta Model

DATA QUALITY CONTROL• CQC: Complex QC of raob height/temps (baseline, hydrostatic, lapse rate, radiation correction, etc.)• ACQC : Quality control of conventional aircraft data (remove duplicates, track checks, create “superobs”)

• 3DVAR : Analysis performs gross check vs. first guess:

- Temperature : +/- 15oC- Wind :+/- 25 ms-1

- RH : +/- 90%- Precipitable water : +/- 12 g/kg- Height : +/- 100 m

• SDMEDIT : NCEP Senior Duty Meteorologist can flag all or parts of suspect raobs

Page 21: An Overview of the NCEP Eta Model

Use of Surface Data: Eta OI vs. Eta 3DVAR

Eta OI Analysis

Eta 3DVAR Analysis

Page 22: An Overview of the NCEP Eta Model

• New 3DVAR tested in July 1998 and showed improved fit to surface and raobs (especially moisture)

• Re-tuned 3DVAR implemented on 3 November 1998

• We thought everything was OK…..

BUT……..BUT……..

Page 23: An Overview of the NCEP Eta Model

Solid = Eta Short Dash = NGM Long Dash = AVN/MRF

24-H ACCUMULATED PRECIPITATION EQUITABLE THREAT SCORES: ALL FCSTS

12/1/97 - 2/28/98 12/1/98 - 2/28/99

10-15% drop in Eta skill between 1997-98 and 1998-99

Page 24: An Overview of the NCEP Eta Model

Persistent synoptic error in Eta-32 during winter of 98-99: weaker and faster Eastern Pacific troughs/cyclones than observed

Example : 48-h Forecasts valid 1200 UTC 17 March 1999

Page 25: An Overview of the NCEP Eta Model

PROBLEM 1: November 98 change degraded mass/wind balance in 3DVAR

• If mass / wind balance well-behaved, positive height correction is coincident with center of anticyclonic wind correction 850 mb ANL-GUESS height/wind

80KM EDAS valid 00Z 3/15/99• Note 10 degree longitude displacement between centers of wind and height correction

• Problem is most severe in regions and at analysis times without widespread raob data but with large amounts of wind or mass only data (e.g., satellite winds)

Page 26: An Overview of the NCEP Eta Model

SOLUTION : Improve geostrophic coupling of mass/wind analysis corrections in 3DVAR (5/99)

Original 3DVAR analysis Improved 3DVAR analysis

Note: Improved height/wind coupling near Aleutians

Page 27: An Overview of the NCEP Eta Model

PROBLEM 2: Horizontal/vertical correlations too narrow : observation had VERY limited impact on analysis away from its level

• One observation test : Insert one height observation 10 m greater than first guess at 200, 500, 900 mb and measure impact in horizontal/vertical

SOLUTION: Expand the influence of the observations (5/99)

Page 28: An Overview of the NCEP Eta Model

Original 32-km 3DVAR Improved 32-km 3DVAR

200 mb

900mb

Page 29: An Overview of the NCEP Eta Model

Performance of new 3DVAR : 3 December 1998 to 16 January 1999 test at 80 km resolution

24-h accumulated precipitation threat scores: All forecasts Dashed = Modified 3DVAR Solid = Operational 3DVAR

Equ

itabl

e T

hrea

t Sco

re

Threshold (in)

Page 30: An Overview of the NCEP Eta Model

Split Explicit Integration: Dynamics

• Fundamental prognostic variables– T, u, v, q, Psfc, TKE, cloud water/ice

• Inertial gravity wave adjustment– forward-backward scheme (t=90s)

• Vertical advection– Euler-backward scheme– centered in space– piecewise linear for q

The Forecast Model

Page 31: An Overview of the NCEP Eta Model

Split Explicit Integration: Dynamics

• Horizontal advection– modified Euler-backward scheme– Janjic advection in space– conservative, (nearly) shape-preserving

scheme for H20

– upstream advection near boundaries

Page 32: An Overview of the NCEP Eta Model

Split Explicit Integration: Physics

• Betts-Miller-Janjic convection

• Mellor-Yamada level 2.5 turbulent exchange

• GFDL radiation

• explicit cloud water/ice prediction

• 4-layer NOAH land surface package

• 2 horizontal diffusion

Page 33: An Overview of the NCEP Eta Model
Page 34: An Overview of the NCEP Eta Model
Page 35: An Overview of the NCEP Eta Model

One-way Boundary Conditions

• 3-hour tendencies

• 6 hour old AVN forecast used

Page 36: An Overview of the NCEP Eta Model

Runstream Schematic of Eta Model Integration

gridscale cloudgridscale precipconvectionturbulence

horizontaladvection

verticaladvection

inertialgrv wave

adjustment

13 14 1511 1210987654321 16

timestep

t = 90 s

Radiative temperature tendency updates

Shortwave: 40 timesteps (1 hour)Longwave: 80 timesteps (2 hours)

Page 37: An Overview of the NCEP Eta Model

The Betts-Miller-Janji Convection Schemein the Eta Model

References: Betts, 1986 (QJRMS) Betts and Miller, 1986 (QJRMS) Janji, 1994 (MWR)

Deep (precipitating) convection

Temperature reference profile

Moisture reference profile

Convective adjustment

Modification for “precipitation efficiency”

Shallow (non-precipitating) convectionTemperature reference profile

Moisture reference profile

Page 38: An Overview of the NCEP Eta Model

Find the Deep Convective Clouds

1. For all ‘parcels’ within 0.2xPsfc mb of the ground find Psat andES

2. At each point, select parcel with the maximum ES

3. Given Psat, choose cloud base as the model level just below it

4. Adjust cloud base if needed:(a) at least 25 mb above middle of lowest layer(b) at least one model layer above lowest layer

5. Compute Tmad above cloud base using ES and P in lookup tables

6. Set cloud top at highest level where Tmad<T-T (currently T=0)

7. Gather all clouds at least 0.2xPsfc mb deep

Page 39: An Overview of the NCEP Eta Model

Betts-Miller Reference Temperature Profile

Page 40: An Overview of the NCEP Eta Model

Construction of 1st Guess Humidity Reference Profile

2. Linearly interpolate DSP’s for values between these 3 levels

3. Define the reference humidity profile as qsat in each layer

For Deep Convection

1. Define ‘deficit from saturation pressure’ (DSP) for cloud bottom,freezing level, and cloud top (larger DSPdrier state)

Page 41: An Overview of the NCEP Eta Model

The Enthalpy Correction

Modify the profiles to ensure enthalpy in the cloud columnis conserved during adjustment

0 dpHH

top

bot

p

pmodref

)2(

)1(2(

)2(

)

ref

refref

Tq

vLpcHTT

from but before as computed ref

Tsatq

Corrections:

Initially:

Currently the above procedure is repeated two times

Page 42: An Overview of the NCEP Eta Model

Final Deep Convective Adjustment

2. Convective rainfall amount is

3. At any point, deep adjustment is ignored and

1. Relax model profiles of T and q toward the reference profileswhere relaxation time equals 2400 s

oldrefcnv

oldnew TTTTt

oldrefcnv

oldnew qqt

qq

ltop

lbotloldlref

cnv pqqt

gwP

,,

a “swap” to shallow convection occurs if:

(a) S < 0(b) precipitation is negative

Page 43: An Overview of the NCEP Eta Model

Deep Convective Adjustment of Temperature

cloud top

REFERENCE TEMPERATURE

Upward Transport of HeatUpward Transport of Heat

cloud base

AMBIENT TEMPERATURE

Page 44: An Overview of the NCEP Eta Model

Modification for ‘Precipitation Efficiency’

So define precipitation efficiencyprecipitation efficiency as the ratio:

Numerator: Q arising from entropy change

Examination of Eta integrations shows:

As convective precipitation increases, entropy changes decrease.

pTc

STC

p

E 1

Denominator: Q arising from precipitation (H=0)

Page 45: An Overview of the NCEP Eta Model

USE E TO MODERATE HEAVY RAIN

larger E less mature systemThus,

(A) Modify the humidity reference profile

smaller E more mature system

IN LONG-LIVED MATURE SYSTEMS

(B) Modify the relaxation time

Page 46: An Overview of the NCEP Eta Model

Humidity Reference Profile Limits

cloud top

HUMIDITY HUMIDITY REFERENCE REFERENCE

PROFILEPROFILE

DSP’s vary between DRY (fast) and MOIST (slow) limits

cloud base

DRY PROFILE

LIMIT

MOIST PROFILE

LIMIT

E=0.2E=1

q

p

Page 47: An Overview of the NCEP Eta Model

Values of DSP Limits

Dry limits

Top -1875 Pa

Freezing -5875 Pa

Bottom -3875 Pa

MOIST DSP limits equal 0.85 times DRY limits.

At t=0, DSP’s are set to the DRY limits.

Page 48: An Overview of the NCEP Eta Model

Modification of Relaxation Time

OR

For simplicity assume F is linear. Then empirically:

Multiply the standard change due to adjustment by some quantity Fwhich is a function of the precipitation efficiency

oldrefcnv

oldnew TTTTt

'

)(EFqqt

qq oldrefcnv

oldnew

0.7 < F < 1.0 for 0.2 < E < 1.0

)(EFt

oldrefcnv

oldnew TTTT

oldrefcnv

oldnew qqqq t

'

where)(

'EF

Page 49: An Overview of the NCEP Eta Model

Find the Shallow Convective Clouds

2. Gather all clouds that are:

(a) greater than 10 mb deep

(b) less than 0.2xPsfc mb deep

1. Find the tops of the “swapped” clouds

(a) set a preliminary top at pbot - 0.2xPsfc mb (pbot > 450 mb)

(b) reset top to level where maximum (RH)/p occurs

(c) at least two model layers deep

Page 50: An Overview of the NCEP Eta Model

Construction of Temperature Reference ProfileFor Shallow Convection

cloud top

REFERENCE TEMPERATURE

cloud base

Mixing Line

bottop

bottop

pp

Correct Tref assuming (cpT p) = 0

Page 51: An Overview of the NCEP Eta Model

Shallow Convection

• Moisture profile calculation

• Forces a net positive entropy change

Page 52: An Overview of the NCEP Eta Model

Turbulent Exchange

References: Mellor and Yamada, 1974 (J. Atmos. Sci.) Mellor and Yamada, 1982 (Rev. Geo. Space Sci.)

Janji, 1994 (Mon. Wea. Rev.)

Vertical advection occurs through transport

Turbulent vertical diffusion of variable A is given by:

Fundamental task is to determine exchange coefficient KFundamental task is to determine exchange coefficient KAA

by resolvable vertical motion

Turbulent diffusionTurbulent diffusion occurs through transport by subgrid scale turbulent eddies

z

AK

zt

AA

Page 53: An Overview of the NCEP Eta Model

Modes of Turbulent Exchange

SURFACE

free atmosphere free atmosphere

surface layersurface layer

ALM -1

ALM

Az0

LM-1

LM

z0

Page 54: An Overview of the NCEP Eta Model

Exchange in the Free Atmosphere

Use second order closure scheme of Mellor-Yamada Level 2.5

Exchange coefficients for heat and momentum given by:

HH SQlK MM SQlK

l is the mixing length

Q2/2 is the turbulent kinetic energy (TKE)

SH , SM are quantities determined from MY level 2.5

TKETKE is a fully prognostic variable needed to compute exchange coefficients in the free atmosphere

Page 55: An Overview of the NCEP Eta Model

The predictive relationship for TKE is:

A variety of approaches have been used to solve the production/dissipation tendency, generally with imposed limits on Q

22

22 Q

zSQl

z

Q

dt

dq Ps + Pb -

prod/dissp

Eta Model technique: Cast in terms of (l / Q)

124

24

1

1B

Q

l

Q

l

Q

l

Q

l

Q

l

t

Write in finite difference form and solve for (l / Q)

Place physical constraints on l and not on Q

Use new Q to compute new KH and KM

Page 56: An Overview of the NCEP Eta Model

Exchange in the Surface Layer

Use similarity theory between the surface and the middle of the lowest layer

Vertical change of variable A is described by:

)(*

Fzk

S

z

A

S* = F/u* where F is flux, u* is friction velocity

F is a prescribed function (empirical)

= z/L where L is Monin-Obukov length

For neutral static stability or small z, 1 integration of A / z yields log profile

k is the von Karman constant (~ 0.4)

Note: L is a function of heat and momentum fluxes and thus of the exchange coefficients

Page 57: An Overview of the NCEP Eta Model

Take u* and L from the previous timestep then iterate:

Replace F with the standard relationship:

12

12

zz

AAKF A

Integrate A / z for the general case between two levels:

Fku

FAA

* 12

where F is an integral function of F

Solve for KA:

L

zkuzz

K

F

A

*12

KA L KA L KA new surface exchange coefficients

Considerable application of theory and computation is needed to determine values at the lower boundary

Page 58: An Overview of the NCEP Eta Model

Cloud Top Pressure

Page 59: An Overview of the NCEP Eta Model

Cloud Top Temperature

Page 60: An Overview of the NCEP Eta Model

Cloud Base Height

Page 61: An Overview of the NCEP Eta Model

850mb Cloud Water (kg/kg)

Page 62: An Overview of the NCEP Eta Model

850mb Cloud Ice (kg/kg)

Page 63: An Overview of the NCEP Eta Model

Winter Precipitation Type

Area Tw > -4 C< 3000 deg m?

Coldest T in a saturated layer < 269K?

Area sfc basedTw < 0 C

< -3000 deg m?OR

Net area with respectto 0 C < -3000 deg m

and sfc based Tw > 0 C< 50 deg m?

Lowest levelT > 0 C ?

snow

freezing rain

ice pellets

rain

Y

N

Y

N

Y

N

N

Y

Page 64: An Overview of the NCEP Eta Model

Example of precip type

Page 65: An Overview of the NCEP Eta Model

Eta/AVN/NGM Equitable Threat Scores1 Jan - 31 Oct 1999

Page 66: An Overview of the NCEP Eta Model

Impact of Fall 1999 Eta Degradation

Page 67: An Overview of the NCEP Eta Model

Impact of Fall 1999 Eta Degradation

Page 68: An Overview of the NCEP Eta Model

Impact of Fall 1999 Eta Degradation

Page 69: An Overview of the NCEP Eta Model

Output Grid Resolution

• Be aware of the resolution of the grid being viewed

Page 70: An Overview of the NCEP Eta Model

AVN Vorticity Output

Page 71: An Overview of the NCEP Eta Model

24-h Eta-32 Vorticity Output : Coarse

Page 72: An Overview of the NCEP Eta Model

24-h Eta-32 Vorticity Output: Fine

Page 73: An Overview of the NCEP Eta Model

00-h Eta-32 Vorticity Output: Fine

Page 74: An Overview of the NCEP Eta Model

Subsets (“tiles”) of 32km grid

Page 75: An Overview of the NCEP Eta Model

Future Directions of Eta Effort with the Class VIII Computer

• 72-84 hours for on-time runs

• 10km/60lyr resolution

• Expanded domain

• Cloud and precipitation assimilation

• Microphysics

• 4D-VAR

• Short range ensembles

• Nonhydrostatic model

Page 76: An Overview of the NCEP Eta Model

Rainfall Data Assimilation

• During the 12h pre-forecast assimilation period at each timestep compare the model predicted rainfall to observed

• Adjust the model’s latent heating profile accordingly (Carr and Baldwin, 1991)

Page 77: An Overview of the NCEP Eta Model

Cloud Data Assimilation(Zhao et al, 1998, 12th NWP, Phoenix, AZ)

• Data sources– real-time Neph Analyses (USAFGWC)– hourly radar/gauge observations

Page 78: An Overview of the NCEP Eta Model

Cloud Data Assimilation

Page 79: An Overview of the NCEP Eta Model

• c

Page 80: An Overview of the NCEP Eta Model
Page 81: An Overview of the NCEP Eta Model
Page 82: An Overview of the NCEP Eta Model

22km Domain / Topography

Page 83: An Overview of the NCEP Eta Model

22km CONUSTopography w/ Water Points

Page 84: An Overview of the NCEP Eta Model
Page 85: An Overview of the NCEP Eta Model
Page 86: An Overview of the NCEP Eta Model
Page 87: An Overview of the NCEP Eta Model
Page 88: An Overview of the NCEP Eta Model
Page 89: An Overview of the NCEP Eta Model
Page 90: An Overview of the NCEP Eta Model
Page 91: An Overview of the NCEP Eta Model
Page 92: An Overview of the NCEP Eta Model
Page 93: An Overview of the NCEP Eta Model

30-h Eta-10 Rainfall Forecast

Page 94: An Overview of the NCEP Eta Model

Eta Workstation Version

• Pontiac, MI running 10km– including lake temps from GLERL– other changes to the model

• NSSL/SPC running Kain-Fritsch version• Code available from NCEP: contact Matt

Pyle ([email protected])• Code available from COMET: contact

Bob Rozumalski ([email protected])