an introduction to reliability and life distributions · pdf filean introduction to...

38
1 PEUSS 2011/2012 Reliability and Life distributions Page 1 An Introduction to Reliability and Life Distributions Dr Jane Marshall Product Excellence using 6 Sigma Module PEUSS 2011/2012 Reliability and Life distributions Page 2 Objectives of the session Probability distribution functions Life time distributions Fitting Reliability distributions using Hazard Plotting Interpretation

Upload: truongkhanh

Post on 14-Mar-2018

222 views

Category:

Documents


2 download

TRANSCRIPT

1

PEUSS 2011/2012 Reliability and Life distributions Page 1

An Introduction to Reliability andLife Distributions

Dr Jane Marshall

Product Excellence using 6 SigmaModule

PEUSS 2011/2012 Reliability and Life distributions Page 2

Objectives of the session

• Probability distribution functions

• Life time distributions

• Fitting Reliability distributions using HazardPlotting

• Interpretation

2

PEUSS 2011/2012 Reliability and Life distributions Page 3

Data types of interest

• Sample data from a population of items

• For example:

– 100 ipods put on test, 12 fail, analyse the times tofailure

– 1000 aircraft engine controllers operating in-service,collect all the times to failure data and analyse

• Not only times but distance or cycles etc.

PEUSS 2011/2012 Reliability and Life distributions Page 4

Histogram

Histogram of hours to failure

0

5

10

15

20

25

30

35

9

236.375

463.75

691.125

918.5

1145

.875

1373

.25

1600

.625

Mor

e

Hours to failure

Fre

qu

en

cy

.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

Frequency Cumulative %

3

PEUSS 2011/2012 Reliability and Life distributions Page 5

Probability distributionHours to failure

-5

0

5

10

15

20

25

30

35

-500 0 500 1000 1500 2000 2500

Hours to failure

Fre

qu

en

cy

• The area under the curve is equal to 1• The area under the curve between two values is theprobability

PEUSS 2011/2012 Reliability and Life distributions Page 6

• PDF (Probability density function)• The CDF (Cumulative Distribution Function)

– The CDF gives the probability that a unit will fail before time tor alternatively the proportion of units in the population thatwill fail before time t.

• The Survival Function (sometimes known asreliability function)– Complement of the CDF.

• The Hazard Function– Conditional probability of failing in the next small interval

given survival up to time t.

Failure Time distributions

4

PEUSS 2011/2012 Reliability and Life distributions Page 7

Probability density Function:

• PDF - Probability of falling between two values

t2

t1f(t) dtP(t1<t<t2)=

0

0.2

0.4

0.6

0.8

1

1.2

1 1 2 3 3 4 5 5 6 7 7 9

Value

Fre

qu

en

cy

(%)

PD

F,

f(t)

PEUSS 2011/2012 Reliability and Life distributions Page 8

Probability distributions

Probability of failure between 500 and 1000 hours is given by the area

Hours to failure

-0.1

0

0.1

0.2

0.3

0.4

0.5

-500 0 500 1000 1500 2000 2500

hours to failure

Rela

tive

frequency

5

PEUSS 2011/2012 Reliability and Life distributions Page 9

Standard Normal distribution

-2s

95.45%

m+2s

-3s +3s

99.73%

-1s +1s68.27%

PEUSS 2011/2012 Reliability and Life distributions Page 10

Cumulative distribution function

• The CDF known as F(t)

-=

t

dttftF )()(

F(t) gives theprobability that ameasured value will fallbetween - and t

0

0.2

0.4

0.6

0.8

1

1.2

1 1 2 3 3 4 5 5 6 7 7 9

Value

Fre

quency

(%)

1

CD

F,

F(t

)

t

Failure Function, F(t)

6

PEUSS 2011/2012 Reliability and Life distributions Page 11

Cumulative distribution

Cumulative probabilty

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

-500 0 500 1000 1500 2000 2500

hours to failure

cu

mu

lati

ve

pro

ba

bilit

y

The probability of failure before 500 hours is 0.8or 80% will have failed by 500hrs

PEUSS 2011/2012 Reliability and Life distributions Page 12

Survival function

• The survival function or reliability function R(t)

R(t) = 1 - F(t) andF(t) = 1 - R(t)

0

0.2

0.4

0.6

0.8

1

1.2

1 1 2 3 3 4 5 5 6 7 7 9

Value

Fre

qu

en

cy

(%)

R(t

)

t

7

PEUSS 2011/2012 Reliability and Life distributions Page 13

Survival Function

Survival Function

0

0.2

0.4

0.6

0.8

1

-500 0 500 1000 1500 2000 2500

Hours to failure

Pro

ba

bilit

yo

fs

urv

iva

l

The probability of surviving up to 500 hrs is 0.2Or 20% have survived up to 500 hrs

PEUSS 2011/2012 Reliability and Life distributions Page 14

Hazard function

• The Hazard function is defined as probability offailure in next time interval given survival to timet

• h(t) =

• Figure showsincreasing hazardfunction

)(

)(

)(1

)(

tR

tf

tF

tf=

-

Reliability Function R(t)

0

0.2

0.4

0.6

0.8

1

1.2

1 1 2 3 3 4 5 5 6 7 7 9

Value

Fre

qu

en

cy

(%)

1

h(t

)

Hazard Function h(t)

8

PEUSS 2011/2012 Reliability and Life distributions Page 15

Bath-tub curve

Useful Life

InfantMortality

Wear Out

Ha

za

rdfu

nctio

n

Time

PEUSS 2011/2012 Reliability and Life distributions Page 16

Probability distributions

• Exponential distribution

• Weibull distribution

• Normal distribution

• Lognormal distribution

9

PEUSS 2011/2012 Reliability and Life distributions Page 17

Exponential distribution

• Simplest of all life models

• One parameter,

• PDF, f(t) = e- t

• CDF, F(t) = 1- e- t and R(t) = e- t

• Hazard function, h(t) = i.e. constant

• MTBF = 1/ and failure rate =

• 1/ is the 63rd percentile i.e. time at which 63%of population will have failed

PEUSS 2011/2012 Reliability and Life distributions Page 18

Exponential distribution

0 10 20 30 40 50

0.150

0.155

0.160

Hazard Function

Rate0 10 20 30 40 50

0.0

0.5

1.0

Survival Function

Pro

babili

ty

10

PEUSS 2011/2012 Reliability and Life distributions Page 19

Failure rate - example

• 10 components of a particular type in each PCB

• 5 PCBS in each unit

• 200 units in the field

• Total operating time to date for all units is 10,000 hours

• There have been 30 confirmed failures of this component

• The failure rate is given by:– 30/5*200*10*10,000 = 0.000003 = 3 fpmh (failures per million hours)

• The MTTF is 1/0.000003 = 333,333

PEUSS 2011/2012 Reliability and Life distributions Page 20

Example

• 100 units in the field

• Total operating hours is 30,000

• Number of confirmed failures is 60

• MTBF = 30,000*100/60 = 50,000

• Removal rate includes all units removedregardless of whether they have failed

• Use 200 removals

• MTBR = 15000

11

PEUSS 2011/2012 Reliability and Life distributions Page 21

Weibull distribution

• Most useful lifetime in reliability analysis

• 2 parameter Weibull

– Shape parameter -

– Scale parameter -

• When < 1 decreasing hazard function

• When > 1 increasing hazard function

• When =1 constant hazard function

• is the characteristic life, 63rd percentile

PEUSS 2011/2012 Reliability and Life distributions Page 22

Weibull distribution

t

t

t

etRliability

etFCDF

ettfPDF

)(:Re

1)(:

)(: 1

12

PEUSS 2011/2012 Reliability and Life distributions Page 23

Weibull distribution

• h(t) = t-1

• When =1, h(t)= 1/ = therefore =1/

• When >3.5 the distribution approximates to anormal distribution

Three parameter Weibull

• A three parameter distribution can be used iffailures do not start at t=0, but after a finitetime . The parameter, is called the failure-free time or location parameter

PEUSS 2011/2012 Reliability and Life distributions 24

)(

1)(

t

etF

13

PEUSS 2011/2012 Reliability and Life distributions Page 25

Bath-tub curve and the Weibull

Useful Life

InfantMortality

Wear Out

Ha

za

rdfu

nctio

n

Time

<1=1

>1

PEUSS 2011/2012 Reliability and Life distributions Page 26

Normal Distribution

• Not used as often in reliability work

– Can represent severe wear-out mechanism

– Rapidly Increasing hazard function

• e.g.’s, filament bulbs, IC wire bonds

• Location parameter, m , is the mean

• Scale parameter, , is the standard deviation

• Lognormal more versatile, always positive

14

PEUSS 2011/2012 Reliability and Life distributions Page 27

Fitting parametric distributions

PEUSS 2011/2012 Reliability and Life distributions Page 28

Fitting parametric distributions

• Censoring

• Repaired and non repaired

• Probability plotting

• Hazard plotting

15

PEUSS 2011/2012 Reliability and Life distributions Page 29

Censoring structures

• Complete data

• Single censored– Units started together and data analysed before all units have

failed

– Right, interval and left

• Time censored– Censoring time is fixed

• Failure censored– Number of failures is fixed

• Multiply censored– Different running times intermixed with failure times – field data

PEUSS 2011/2012 Reliability and Life distributions Page 30

Complete Data

16

PEUSS 2011/2012 Reliability and Life distributions Page 31

Right Censored data

PEUSS 2011/2012 Reliability and Life distributions Page 32

Interval Censored

17

PEUSS 2011/2012 Reliability and Life distributions Page 33

Left censored

PEUSS 2011/2012 Reliability and Life distributions Page 34

Repaired and non-repaired data

• Non-repaired data when only one failure canoccur and interested in time to failure

• Repaired data when interested in the pattern oftimes between failures

18

PEUSS 2011/2012 Reliability and Life distributions Page 35

Probability plotting

PEUSS 2011/2012 Reliability and Life distributions Page 36

Areas to be covered

• Introduction to probability plotting

• Assumptions

• How to do a Weibull plot

• Estimating the parameters

• Testing assumptions

• Examples

19

PEUSS 2011/2012 Reliability and Life distributions Page 37

What is probability plotting?

• Graphical estimation method

• Based on cumulative distribution function CDF or F(t)

• Probability papers for parametric distributions, e.g.Weibull

• Axis is transformed so that the true CDF plots as astraight line

• If plotted data fits a straight line then the data fits theappropriate distribution

• Parameter estimation

PEUSS 2011/2012 Reliability and Life distributions Page 38

Assumptions

• Data must be independently identicallydistributed (iid)– No causal relationship between data items

– No trend in the time between failures

– All having the same distribution

• Non-repaired items

• Repaired items with no trend in the timebetween failures

• Time to first failure of repaired items

20

PEUSS 2011/2012 Reliability and Life distributions Page 39

Example of test for trend

• Machine H fails at the following running times(hours):

– 15, 42, 74, 117, 168, 233, and 410

• Machine S fails at the following running times(hours):

– 177, 242, 293, 336, 368, 395, and 410

PEUSS 2011/2012 Reliability and Life distributions Page 40

Trend Analysis

machine H running times to failure

0

12

3

4

56

7

8

0 100 200 300 400 500

machine time to failure

ord

er

nu

mb

er

machine S running times to failure

0

12

3

4

56

7

8

0 100 200 300 400 500

machine time to failure

ord

er

nu

mb

er

This system is getting better withtime, the failure times are gettingfurther and further apart

This system is getting worse with time,the failure times are getting closer andcloser together.

In neither case can Weibull analysis be used as there istrend in the data.

21

PEUSS 2011/2012 Reliability and Life distributions Page 41

Making a Weibull plot

PEUSS 2011/2012 Reliability and Life distributions Page 42

Rank the data

• Probability graph papers are based on plots ofthe variable against cumulative probability

• For n< 50 the cumulative percentage probabilityis estimated using median ranks tables

• For n< 100 use benard’s approximation for themedian rank ri

ri = i - 0.3

n+0.4

Where i is the ith order value and n is the sample size

22

PEUSS 2011/2012 Reliability and Life distributions Page 43

Example

Failure number (i) Ranked hrs at failure (ti) Median Rank from tables

Cumulative % Failed at ti - F(t)

1 300 6.7

2 410 16.2

3 500 25.9

4 600 35.5

5 660 45.2

6 750 54.8

7 825 64.5

8 900 74.1

9 1050 83.8

10 1200 93.3

PEUSS 2011/2012 Reliability and Life distributions Page 44

• Plot times on x-axis• Plot CDF on y-axis• Fit line through the data• Draw perpendicular line from

estimation point to thefitted line.

• Read off the estimate of β• η is the value given on

from the intersection line

23

PEUSS 2011/2012 Reliability and Life distributions Page 45

Interpreting the plot

• If the data produced a straight line then:– The data can be modelled by the Weibull distribution.

• If β<1 then data shows a decreasing hazard function– e.g. Infant mortality, weak components, low quality

• If β=1 then data shows a constant hazard function– e.g. useful life of product

• If β>1 then data shows a increasing hazard function– e.g. wear-out, product reaching end of life

• η is the value in time by which 63.2% of all failures willhave occurred and is termed the characteristic life

PEUSS 2011/2012 Reliability and Life distributions Page 46

Bath-tub curve and the Weibull

Useful Life

InfantMortality

Wear Out

Ha

za

rdfu

nctio

n

Time

<1=1

>1

24

PEUSS 2011/2012 Reliability and Life distributions Page 47

Interpreting the plot

• If the data did not produce a straight light then:

– There may be an amount of failure-free time

• This may appear concave when viewed from the bottomright hand corner of the sheet

– There may be more than one failure mode present

• This may appear convex shape or cranked shape (alsoknown as dog-leg shape)

• In this case the data needs to separated into failuresassociated with each failure mode using expert judgementand analysed separately

Example: Poor fit due to 3 monthsoffset

PEUSS 2011/2012 Reliability and Life distributions Page 48

Time in service (Months)

Pe

rce

nt

100.010.01.00.1

99

9080706050403020

10

532

1

0.01

Table of Statistics

Shape 1.87010

Scale 57.6561

Mean 51.1897

Weibull Plot of Time-in-Service

Censoring Column in Censoring - ML Estimates2-Parameter Weibull - 95% CI

Time in service (Months) - Threshold

Pe

rce

nt

10000.00001000.0000100.000010.00001.00000.10000.01000.00100.0001

99

9080706050403020

10

532

1

0.01

Table of Statistics

Shape 0.873095

Scale 297.337

Thres 2.9997

Weibull Plot of Time in service (Months)

Censoring Column in Censoring - ML Estimates

3-Parameter Weibull - 95% CI

The same data plotted with a three-Parameter Weibull distribution shows a goodfit with 3 months offset (location – 2.99 months)

25

Example of two failure modes

PEUSS 2011/2012 Reliability and Life distributions Page 49

Time to failure ( hours)

We

ibu

llC

DF

Mode 2 Beta= 11.9

Mode 1 Beta= 0.75

Adjusted rank for censored data

PEUSS 2011/2012 Reliability and Life distributions Page 50

Rank Time StatusReverse

rank Adjusted rankMedian

rank1 10 Suspension 8 Suspended...

2 30 Failure 7 [7 X 0 +(8+1)]/ (7+1) = 1,125 9,8 %3 45 Suspension 6 Suspended…

4 49 Failure 5 [5 X 1,125 +(8+1)]/ (5+1) = 2,438 25,5 %5 82 Failure 4 [4 X 2,438 +(8+1)]/ (4+1) = 3,750 41,1 %6 90 Failure 3 [3 X 3,750 +(8+1)]/ (3+1) = 5,063 56,7 %7 96 Failure 2 [2 X 5,063 +(8+1)]/ (2+1) = 6,375 72,3 %8 100 Suspension 1 Suspended...

26

PEUSS 2011/2012 Reliability and Life distributions Page 51

Weibull Analysis usingsoftware tools• Number of software packages that can do Weibull

plotting (and other distributions), these include:

– Minitab

– Relex

– WinSMITH

– Reliasoft

• Concentrate on getting good quality data, correctassumptions and correct interpretation from thesoftware

PEUSS 2011/2012 Reliability and Life distributions Page 52

Hazard Plotting

27

PEUSS 2011/2012 Reliability and Life distributions Page 53

Contents

• Assumptions

• Fitting parametric distributions

• Estimating parameters

• Using results for decision making

PEUSS 2011/2012 Reliability and Life distributions Page 54

Assumptions

• Non-repaired items

• Repaired items with no trend in the timebetween failures

• Time to first failure of repaired items

• Individual failure modes from non-repaired items

• Can deal with censored datain particular multiply censored data

28

PEUSS 2011/2012 Reliability and Life distributions Page 55

Hazard Plotting

• Cumulative hazard function

• Relationship allows derivation of cumulativehazard plotting paper

t

0h(t) dtH(t)=

t

0f(t) /1-F(t) dtH(t)=

-ln[1-F(t)]H(t)=

PEUSS 2011/2012 Reliability and Life distributions Page 56

Weibull Hazard Plotting

• h(t) = t-1 and H(t) = t

• If H is the cumulative hazard value then

Log t = 1 log H + log

• Weibull hazard paper is log-log paper

• The slope is 1/ and when H=1, t=

( )

29

PEUSS 2011/2012 Reliability and Life distributions Page 57

Hazard plotting procedure

• Tabulate times in order and rank

• Reverse rank

• For each failure, calculate the hazard interval

– hi = 1/ no of items remaining after previousfailure/censoring (i.e. 1/reverse rank)

• For each failure, calculate the cumulative hazardfunction

– H = h1 +h2 + ………. +

• Plot the cumulative hazard against life value

Hn

PEUSS 2011/2012 Reliability and Life distributions Page 58

Example 1 – vehicle shockabsorbers

Distance (km)6700 F 17520 F6950 175407820 178908790 184509120 F 189609660 189809820 1941011310 20100 F11690 2010011850 2015011880 2032012140 20900 F12200 F 22700 F12870 2349013150 F 26510 F13330 2741013470 27490 F14040 2789014300 F 28100

Distance to failure forShock absorbersF denotes failure

30

PEUSS 2011/2012 Reliability and Life distributions Page 59

Example 1 – vehicle shockabsorbers

Rank Reverserank

Distance(km)

Hazard(1/rank)

Cumulativehazard

1 38 6700 F 1/38 0.02632 37 69503 36 78204 35 87905 34 9120 F 1/34 0.05576 33 96607 32 98208 31 113109 30 1169010 29 1185011 28 1188012 27 1214013 26 12200 F 1/26 0.094214 25 1287015 24 13150 F 1/24 0.135916 23 1333017 22 1347018 21 1404019 20 14300 F 1/20 0.1859

20 19 17520 F 1/19 0.238521 18 1754022 17 1789023 16 1845024 15 1896025 14 1898026 13 1941027 12 20100 F 1/12 0.321828 11 2010029 10 2015030 9 2032031 8 20900 F 1/8 0.446832 7 22700 F 1/7 0.589633 6 2349034 5 26510 F 1/5 0.789635 4 2741036 3 27490 F 1/3 1.122937 2 2789038 1 28100

PEUSS 2011/2012 Reliability and Life distributions Page 60

Example 1

• Plot the data on log 2 cycle paper x log 2 cyclepaper

• Estimate Weibull shape parameter

• Estimate Weibull scale parameter

• Interpret results

31

PEUSS 2011/2012 Reliability and Life distributions Page 61

Example 1

Cumulative hazard plot for shock absorbers on linear

paper

0

5000

10000

15000

20000

25000

30000

0 0.2 0.4 0.6 0.8 1 1.2

Cumulative hazard

dis

tan

ce

PEUSS 2011/2012 Reliability and Life distributions Page 62

Example 1

= 2.6= 28500kmR2 = 0.98

Log cumulative hazard for shock absorbers

1000

10000

100000

0.01 0.1 1 10

log hazard

log

dis

tan

ce

32

PEUSS 2011/2012 Reliability and Life distributions Page 63

Survival plot for vehicle shock absorbers with

Beta =2.6 and Eta=29000km

0

0.2

0.4

0.6

0.8

1

1.2

0 5000 10000 15000 20000 25000 30000 35000 40000

kilometers

Pro

bab

ilit

yo

fsu

rviv

al

Example 1Since looking at one known failure mode use the estimatedparameters to fit to the distribution

PEUSS 2011/2012 Reliability and Life distributions Page 64

Example 2:Hazard plot onlinear paper

Cumulative hazard plot for O ring failures

0

500

1000

1500

2000

0 1 2 3 4 5 6

cumulative hazard

ho

urs

33

PEUSS 2011/2012 Reliability and Life distributions Page 65

Example 2: Hazard plot on logpaper

log cumulative hazard for O ring failures

1

10

100

1000

10000

0.01 0.1 1 10

log cumulative hazard

log

ho

urs

= 1.01= 360hrsR2 = 0.98

PEUSS 2011/2012 Reliability and Life distributions Page 66

Example 2: Interpretation ofresults

• = 1.01 is approximately an exponentialdistribution and constant failure rate

• = 360 hrs = 1/ = Mean Time to Failure

• Calculating the MTTF from the data gives:

– Total hours/number of failures

– 26839/73 = 367 hrs

34

PEUSS 2011/2012 Reliability and Life distributions Page 67

Example 2: Survival function

R(t) - Survival Function for O ring failures

0

0.2

0.4

0.6

0.8

1

1.2

0 500 1000 1500 2000

Hours to failure

Pro

bab

ilit

yo

fsu

rviv

al

PEUSS 2011/2012 Reliability and Life distributions Page 68

Example 2: Failure Distribution

F(t) for O ring failures

0

0.2

0.4

0.6

0.8

1

1.2

0 500 1000 1500 2000

Hours to failure

Pro

bab

ilit

yo

ffa

ilu

re

35

PEUSS 2011/2012 Reliability and Life distributions Page 69

Example 3 : pumps

• Two dominant failuremodes

– Impeller failure (I)

– Motor failure (m)

pump no age at failure failure mode

1 1180 m

2 6320 m

3 1030 i

4 120 m

5 2800 i

6 970 i

7 2150 i

8 700 m

9 640 i

10 1600 i

11 520 m

12 1090 i

PEUSS 2011/2012 Reliability and Life distributions Page 70

Example 3: ignoring failuremodes

log cumulative hazard for all failures

1

10

100

1000

10000

0.01 0.1 1 10

cum hazard

ag

e

36

PEUSS 2011/2012 Reliability and Life distributions Page 71

Example 3: impeller failure

log cumulative hazard plot for impeller failures

1

10

100

1000

10000

0.1 1 10

cumulative hazard

ag

ea

tfa

ilu

re

= 1.95= 1900hrsR2 = 0.93

PEUSS 2011/2012 Reliability and Life distributions Page 72

Example 3: motor failure

log cumulative hazard plot for motor failures

1

10

100

1000

10000

0.01 0.1 1 10

cumulative hazard

ag

ea

tfa

ilu

re

= 0.76= 3647hrsR2 = 0.978

37

PEUSS 2011/2012 Reliability and Life distributions Page 73

Advantages of Cum HazardPlotting

• It is much easier to calculate plotting positionsfor multiply censored data using cum hazardplotting techniques.

• Linear graph paper can be used for exponentialdata and log-log paper can be used for Weibulldata.

PEUSS 2011/2012 Reliability and Life distributions Page 74

Disadvantages of CumHazard Plotting• It is less intuitively clear just what is being plotted.

– Cum percent failed (i.e., probability plots) is meaningful andthe resulting straight-line fit can be used to read off timeswhen desired percents of the population will have failed.

– Percent cumulative hazard increases beyond 100% and isharder to interpret.

• Normal cum hazard plotting techniques require exacttimes of failure and running times.

• With computer software for probability plotting, themain advantage of cum hazard plotting goes away

38

PEUSS 2011/2012 Reliability and Life distributions Page 75

Summary

• Important lifetime distributions

– Failure distribution (CDF), Survival function R(t) andthe hazard function h(t)

• Some parametric distributions

– Exponential, Weibull and Normal

• Weibull probability plotting

• Distribution fitting using hazard plottingtechniques