an insight into downstream developments: energy efficiency in

20
Global Unit Gas An insight into downstream developments: Energy efficiency in gas heating appliances Werner Weßing, Head of Efficient Home and Building Technology Kraków, 24/25 May 2012

Upload: others

Post on 04-Feb-2022

3 views

Category:

Documents


0 download

TRANSCRIPT

Global Unit Gas

An insight into downstream developments:

Energy efficiency in gas heating appliances

Werner Weßing, Head of Efficient Home and Building Technology

Kraków, 24/25 May 2012

Global Unit Gas

GIE, Kraków 24/25 May 2012 2

Contents

1. Requirements on the global energy market

2. Target in Europe: Increase share of renewable energies

3. Environmental targets in Germany

4. Market structure in Germany

5. Research subjects at E.ON Ruhrgas

6. Intercomparison of appliance technologies

7. Conclusion

Global Unit Gas

GIE, Kraków 24/25 May 2012 3

1. Requirements on the global energy market

CO2 reductions

Primary energy reductions (e.g. improved thermal insulation)

Increase in renewable energy use (e.g. appliances, biomethane, hydrogen)

Predicted long-term rise in global temperatures caused

by increasing levels of carbon emissions

62

209

69 62

391

1444

763

157

0

200

400

600

800

1000

1200

1400

1600

Kernbrennstoffe Kohle Erdgas Erdöl

Re

ich

we

ite

in

Ja

hre

n

Reserve Reserve + Ressource

Static lifetime of (global) conventional energy sources

Source: BGR / EWI / Prognos

Global warming according to IPCC

scenario A1B: 2046-2065,

Source: IPCC

Coal Natural gas Oil Nuclear fuels

Tem

per

atu

re d

evia

tio

n (

rela

tive

to

196

1-9

0) in

K

Sta

tic lifetim

e in y

ears

Global Unit Gas

GIE, Kraków 24/25 May 2012 4

2. Target in Europe: Increase share of renewable energies

Share of energy from renewable sources in gross final

energy consumption in 2008 and targets for 2020

Source: IE Leipzig

Global Unit Gas

GIE, Kraków 24/25 May 2012 5

3. Political requirements in Germany

20%

50%

18%

30%

45%

60%

40%

55%

70%80%

0%

20%

40%

60%

80%

100%

Phase 1 Phase 2 Phase 3 Phase 4

Reduzierung des Primärenergieverbrauchs

(Bezugsjahr 2008)

Bruttoendenergieverbrauch,

erneuerbarer Anteil

CO2-Reduzierung

(Bezugsjahr 1990)

2020 2030 2040 2050

Reduction in primary energy consumption (relative to 2008 levels)

Gross final energy consump-tion (renewable share)

CO2 reduction (rel.to 1990 level)

For the heat market in Germany (buildings and technology) from 2010 to 2050:

total capital expenditure ~ 2,200 billion €

capital expenditure per year: 55 billion €

Global Unit Gas

GIE, Kraków 24/25 May 2012 6

4. 'New' customer groups

Differentiated offers required

Source: SW Bonn Energie und Wasser

Price-sensitive customers

Lifestyle

customers

Ecologically-

minded

customers

Will

ing

ness to

pa

y

Personal commitment

Today

Uniform

group

Yesterday

Many different groups with

very individual requests

Global Unit Gas

GIE, Kraków 24/25 May 2012 7

4. Building statistics

Heat market is dominated by existing building stock

Very old boilers

existing buildings

Accumulated heating demand of new buildings until 2030: only 5%!

2008 2030

634 TWh

511 TWh

existing buildings

0

1.000.000

2.000.000

3.000.000

4.000.000

5.000.000

6.000.000

7.000.000

11 - 25 25 - 50 50 - 100 >100 alle

Leistung [kW]

Anza

hl [

Stü

ck] 33 und älter

32-29

28-22

21-14

Source: Chimney sweep statistics for 2009

(excl. condensing boiler systems)

Source: Prof. Kleemann

Total: 9.2 million

boilers >14 years

Rating [kW]

Qu

an

tity

[u

nit

s]

all

and over

Global Unit Gas

GIE, Kraków 24/25 May 2012 8

5. "Appliance technology" responsibilities of the

Gas Utilisation Department at E.ON Ruhrgas

Applications &

Renewables

Local Power

Generation

Condensing type

Gas & Solar

MicroCHP

GHP Initiative

Fuel Cell

Smart Home

Appliance tests:

Laboratory tests

Field tests

to determine

energy efficiency aspects

environmental aspects

gas property aspects

economic aspects

Global Unit Gas

GIE, Kraków 24/25 May 2012 9

5. Gas heat pump field tests

66 test sites in total

Global Unit Gas

GIE, Kraków 24/25 May 2012 10

5. Micro-CHP field tests

176 test sites in total

Global Unit Gas

GIE, Kraków 24/25 May 2012 11

6. Intercomparison of appliance technologies

(Standard appliances for single-family homes)

ηth: 0,92 - 0,98 *)

Gas-fired

condensing

appliance

ηth: 0,98 – 1,02 *)

Gas-fired condensing appliance plus solar

SPF: 2,2 – 2,9

~ 2,65

Electric heat pump

(air/water)

SPF: 3,2 – 4,0

~ 3,70

Electric heat pump

(brine/water)

Images: Viessmann, Vaillant, Buderus; data: ITG Dresden

*) HI,n

Global Unit Gas

GIE, Kraków 24/25 May 2012 12

6. Intercomparison of appliance technologies

(New appliances for single-family homes)

ηth: 0,80 – 0,82 *)

ηe: 0,11 – 0,13

Micro-CHP

Sterling

Images: Viessmann, Vaillant, Robur; data: ITG Dresden

Micro-CHP

combustion engine

ηth: 0,60 *)

ηe: 0,23

ηth: 1,20 – 1,50 *)

RoburViessmann

DesorptionAdsorption DesorptionAdsorption

Gas heat pump

Adsorption, <10kW

Gas heat pump

Absorption, <40kW

Global Unit Gas

GIE, Kraków 24/25 May 2012 13

6. Intercomparison of appliance technologies

(Standard and new appliances for single-family homes)

Ausgangszustand Öl

- 40%

- 55%

- 70%

- 80%

Ausgangszustand Gas

- 40%

- 55%

- 70%

- 80%

0

2.000

4.000

6.000

8.000

10.000

12.000

14.000

Öl-/Gas-Altkessel

GBW GBWSOL GBWSOL,HMikro-KWKMikro-KWKMikro-KWK L/W-EWP S/W-EWP GWP 1 GWP 2 GWP 3 GWP 4 GWP 5 GWP 6 GWP 7

CO

2-E

mis

sio

ne

n in

kg

CO

2/a

System

CO2-Emissionen im EFH Bestand, 2010 Energieträger bei gasbetriebenen Systemen: Erdgas, Bioerdgas (20% und 100% Anteil)

Erdgas 20% Bioerdgas 100% Bioerdgas

Ausgangszustand bis 2020 bis 2030 bis 2040 bis 2050

Minderung der CO2-Emissionen bis 2050 entsprechend dem Enrgiekonzept der Bundesregierung, Zeitschine

ηth=0,99 ηth=1,08 ηth=1,18 ηth=0,80 ηth=0,82 ηth=0,60 JAZ=2,65 JAZ=3,70 ηth=1,20 ηth=1,30 ηth=1,40 ηth=1,50 ηth=1,60 ηth=1,70 ηth=1,80

ηel=0,11 ηel=0,13 ηel=0,23 *) Bilanziell negative CO2-Emissionen, da Gutschrift für Stromerzeugung größer als Emissionen durch Biogasverbrauch

*)

approx. 36%

reduction

Source: ITG Dresden

CO2 emissions in SFH building stock in 2010 Energy sources for gas-operated systems: natural gas, biomethane (20% and 100% share)

Global Unit Gas

GIE, Kraków 24/25 May 2012 14

6. Intercomparison of appliance technologies

(Standard and new appliances for single-family homes)

approx. 35%

reduction

Source: ITG Dresden

Non-renewable primary energy demand in SFH building stock Energy sources for gas-operated systems: natural gas, biomethane (20% and 100% share)

Global Unit Gas

GIE, Kraków 24/25 May 2012 15

6. Intercomparison of appliance technologies

(Standard and new appliances for single-family homes)

18%

30%

45%

60%

0%

10%

20%

30%

40%

50%

60%

70%

80%

GBW GBWSOL GBWSOL,H Mikro-KWK Mikro-KWK Mikro-KWK L/W-EWP S/W-EWP GWP 1 GWP 2 GWP 3 GWP 4 GWP 5 GWP 6 GWP 7

An

teil

ern

eu

erb

are

r En

erg

ien

System

Anteil erneuerbarer Energien im EFH BestandEnergieträger bei gasbetriebenen Systemen: Erdgas, Bioerdgas (20% und 100% Anteil)

Erdgas 20% Bioerdgas 100 % Bioerdgas

bis 2020 bis 2030 bis 2040 bis 2050

Entwicklung des Anteils erneuerbaren Energien bis 2050 entsprechend dem Enrgiekonzept der Bundesregierung, Zeitschine

ηth=0,99 ηth=1,08 ηth=1,18 ηth=0,80 ηth=0,82 ηth=0,60 JAZ=2,65 JAZ=3,70 ηth=1,20 ηth=1,30 ηth=1,40 ηth=1,50 ηth=1,60 ηth=1,70 ηth=1,80

ηel=0,11 ηel=0,13 ηel=0,23

Source: ITG Dresden

Share of renewable energies in SFH building stock Energy sources for gas-operated systems: natural gas, biomethane (20% and 100% share)

Global Unit Gas

GIE, Kraków 24/25 May 2012 16

6. Intercomparison of appliance technologies

(Standard and new appliances for single-family homes)

Ausgangszustand Öl

- 40%

- 55%

- 70%

- 80%

Ausgangszustand Gas

- 40%

- 55%

-70%

- 80%

0

2.000

4.000

6.000

8.000

10.000

12.000

14.000

Öl-/Gas-Altkessel

GBW GBWSOL GBWSOL,H Mikro-KWK Mikro-KWK L/W-EWP S/W-EWP GWP 1 GWP 2 GWP 3 GWP 4 GWP 5 GWP 6 GWP 7

CO

2-E

mis

sio

ne

n in

kg

CO

2/a

System

CO2-Emissionen im EFH Bestand, 2020 Energieträger bei gasbetriebenen Systemen: Erdgas, Bioerdgas (20% und 100% Anteil)

Erdgas 20% Bioerdgas 100% Bioerdgas

Ausgangszustand bis 2020 bis 2030 bis 2040 bis 2050

Minderung der CO2-Emissionen bis 2050 entsprechend dem Enrgiekonzept der Bundesregierung, Zeitschine

ηth=0,99 ηth=1,08 ηth=1,18 ηth=0,80 ηth=0,65 JAZ=2,80 JAZ=3,90 ηth=1,20 ηth=1,30 ηth=1,40 ηth=1,50 ηth=1,60 ηth=1,70 ηth=1,80

ηel=0,15 ηel=0,25 *) Bilanziell negative CO2-Emissionen, da Gutschrift für Stromerzeugung größer als Emissionen durch Biogasverbrauch

*) *)

approx. 46%

reduction

Source: ITG Dresden

CO2 emissions in SFH building stock in 2020 Energy sources for gas-operated systems: natural gas, biomethane (20% and 100% share)

Global Unit Gas

GIE, Kraków 24/25 May 2012 17

6. Intercomparison of appliance technologies

(Standard and new appliances for single-family homes)

Ausgangszustand Öl

- 40%

- 55%

- 70%

- 80%

Ausgangszustand Gas

- 40%

- 55%

-70%

- 80%

0

2.000

4.000

6.000

8.000

10.000

12.000

14.000

Öl-/Gas-Altkessel

GBW GBWSOL GBWSOL,H Mikro-KWK Mikro-KWK L/W-EWP S/W-EWP GWP 1 GWP 2 GWP 3 GWP 4 GWP 5 GWP 6 GWP 7

CO

2-E

mis

sio

ne

n in

kg

CO

2/a

System

CO2-Emissionen im EFH Bestand, 2030 Energieträger bei gasbetriebenen Systemen: Erdgas, Bioerdgas (20% und 100% Anteil)

Erdgas 20% Bioerdgas 100% Bioerdgas

Ausgangszustand bis 2020 bis 2030 bis 2040 bis 2050

Minderung der CO2-Emissionen bis 2050 entsprechend dem Enrgiekonzept der Bundesregierung, Zeitschine

ηth=0,99 ηth=1,08 ηth=1,18 ηth=0,80 ηth=0,65 JAZ=3,00 JAZ=4,10 ηth=1,20 ηth=1,30 ηth=1,40 ηth=1,50 ηth=1,60 ηth=1,70 ηth=1,80

ηel=0,15 ηel=0,25 *) Bilanziell negative CO2-Emissionen, da Gutschrift für Stromerzeugung größer als Emissionen durch Biogasverbrauch

*)

Increased biomethane share

required to reach target

Source: ITG Dresden

CO2 emissions in SFH building stock in 2030 Energy sources for gas-operated systems: natural gas, biomethane (20% and 100% share)

Global Unit Gas

GIE, Kraków 24/25 May 2012 18

6. Intercomparison of appliance technologies (only gas )

(Standard and new appliances for single-family homes)

Gas-fired condensing boiler

+Low investment costs

+Low total annual costs

+Final and primary energy

savings in comparison to old

boiler

- No integration of renewables

if operated with natural gas

Gas-fired condensing boiler

+ solar thermal energy

+Tangible share of

renewables

+Higher final and primary

energy savings in comparison

to old boiler

- Higher investment costs than

for gas-fired condensing boiler

- Higher total annual costs

than for gas-fired condensing

boiler

Micro-CHP system

+Credit for the electricity

generated

+Considerable primary energy

savings in comparison to old

boiler

- Ecological benefits to

become smaller with expected

change of electricity

generation structures

- Higher investment costs than

for gas-fired condensing

systems

- Higher total annual costs

than for gas-fired condensing

systems

- No integration of renewable

energies if operated with

natural gas

Gas heat pump

+High share of renewable

energies

+Higher final and primary

energy savings in comparison

to old boiler

+Lowest CO2 emission levels

+Economic efficiency

expected to improve for

increasing levels of utilisation

- Investment costs still high

- Market presence currently

low

- Further technical

improvements required

Source: ITG Dresden

Global Unit Gas

GIE, Kraków 24/25 May 2012 19

7. Conclusion

New gas technologies (micro-CHP, gas heat pumps) are about to come into

the market in Germany on a major scale.

These technologies meet environmental requirements in the long term.

Compared with the current state of the art, some further technical

developments and a reduction in capital expenditure are required and

achievable.

Global Unit Gas

GIE, Kraków 24/25 May 2012 20

Energieträger

Kohlendioxidemissionsfaktoren in kg CO2/kWh

2010 2020 2030

Mittlerer CO2-

Emissions-

faktor über

20 Jahre

Strom 0,573 0,505 0,338 0,456

Erdgas 0,226 0,226 0,226 0,226

Bioerdgas, 100% Biogas 0,073 0,050 0,050 0,062

Bioerdgas, 20% Biogas 0,195 0,191 0,191 0,191

Bioerdgas, 25% Biogas 0,188 0,182 0,182 0,185

Energieträger

Kohlendioxidemissionsfaktoren in kg CO2/kWh

2010 2020 2030

Mittlerer CO2-

Emissions-

faktor über

20 Jahre

Strom 0,573 0,505 0,338 0,456

Erdgas 0,226 0,226 0,226 0,226

Bioerdgas, 100% Biogas 0,073 0,050 0,050 0,062

Bioerdgas, 20% Biogas 0,195 0,191 0,191 0,191

Bioerdgas, 25% Biogas 0,188 0,182 0,182 0,185

Ökologische Bewertung von GWP (CO2-Emissionsfaktoren)