an examination of the wheat meal fermentation

48
An examination of the wheat meal fermentation time test as a tool for evaluating the quality of red hard winter wheat F2 derived lines by Donald E Baldridge A THESIS Submitted to the Graduate Faculty in partial fulfillment of the requirements for the degree of Master of Science in Agronomy at Montana State College Montana State University © Copyright by Donald E Baldridge (1959) Abstract: This study was conducted to evaluate the usefulness of the wheat meal fermentation time test (doughball test) as a tool for the plant breeder. This test has distinct advantages in that it requires only a limited amount of wheat and is simple and rapid to perform. Twenty-five F2 derived lines of hard red winter wheat from a cross between Yogo and selection 221 from a Turkey/Oro cross, were used in this study to measure the predictive value of the doughball test. The twenty-five lines were grown at four locations during the period of 1953 through 1956. The lines were again grown at Bozeman in 1957 and the grain produced was evaluated with farinograph and baking tests. It was observed that a better relationship existed between doughball time and stability when the protein level of the grain was above 14 per cent. When the average doughball values were adjusted by regression to a uniform protein level, a significant correlation coefficient was obtained between time and stability. The twenty-five F2 derived lines were screened on the basis of doughball data and seven selections survived the seven year by location evaluations. Of the seven lines chosen, five exhibited both good dough stability and loaf volume. It was necessary to have doughball data from several locations for several years before a significant correlation was obtained between doughball data and stability. However, the lines having the best stability and loaf volume would have been selected had the doughball data been used. Irrespective of low correlation values, the doughball test was reliable means of predicting the quality of the hard red winter wheat lines used in this study.

Upload: others

Post on 14-Mar-2022

1 views

Category:

Documents


0 download

TRANSCRIPT

An examination of the wheat meal fermentation time test as a tool for evaluating the quality of red hardwinter wheat F2 derived linesby Donald E Baldridge

A THESIS Submitted to the Graduate Faculty in partial fulfillment of the requirements for the degreeof Master of Science in Agronomy at Montana State CollegeMontana State University© Copyright by Donald E Baldridge (1959)

Abstract:This study was conducted to evaluate the usefulness of the wheat meal fermentation time test(doughball test) as a tool for the plant breeder. This test has distinct advantages in that it requires only alimited amount of wheat and is simple and rapid to perform.

Twenty-five F2 derived lines of hard red winter wheat from a cross between Yogo and selection 221from a Turkey/Oro cross, were used in this study to measure the predictive value of the doughball test.The twenty-five lines were grown at four locations during the period of 1953 through 1956. The lineswere again grown at Bozeman in 1957 and the grain produced was evaluated with farinograph andbaking tests.

It was observed that a better relationship existed between doughball time and stability when the proteinlevel of the grain was above 14 per cent. When the average doughball values were adjusted byregression to a uniform protein level, a significant correlation coefficient was obtained between timeand stability.

The twenty-five F2 derived lines were screened on the basis of doughball data and seven selectionssurvived the seven year by location evaluations. Of the seven lines chosen, five exhibited both gooddough stability and loaf volume.

It was necessary to have doughball data from several locations for several years before a significantcorrelation was obtained between doughball data and stability. However, the lines having the beststability and loaf volume would have been selected had the doughball data been used. Irrespective oflow correlation values, the doughball test was reliable means of predicting the quality of the hard redwinter wheat lines used in this study. 

AN EXAMINATION OF THE WHEAT MEAL FERMENTATION

TIME TEST AS A TOOL FOR EVALUATING THE

QUALITY OF RED HARD WINTER WHEAT

F2 DERIVED LINES

by

DONALD E. BALDRIDGE

A THESIS

Subm itted to th e G raduate F a c u lty

„p a r t i a l f u l f i l lm e n t o f th e requ irem en ts

f o r th e deg ree o f

M aster o f Science in Agronomy

a t

. Montana S ta te C ollege

Approved;

Head, Major Department

Chairman. Examin ing Committee

fv is io h , '■ ■■ /Dean, Graduat

Bozeman, Montana ..jurie, 1059

" 3 -

ACKNOWLEDGEMENTThe a u th o r w ishes to acknowledge th e a s s is ta n c e and encouragement

o ffe re d by Dr. E rh ard t R. Hehn in t h i s s tu d y .

The au th o r a lso w ishes to ex p ress h is a p p re c ia tio n to Mr. Robertv

K. B equette and Mr. C lif fo rd A. Watson and a l l o th e r members o f th e

Agronomy and S o ils Department and C ereal Q u a lity L abora to ry o f Montana

S ta te C ollege who c o n tr ib u te d t h e i r ad v ice and a s s is ta n c e in com pleting

t h i s s tu d y .

™ zj. —

TABLE OF. CONTENTS'

PageVITA. . , .................................... .... ................................ .... 2

ACKNOWLEDGEMENT. ............................................ . . ............................................ ’. 3

-TABLE OF CONTENTS. ............................................................. 4

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . 5

LIST OF FIGURES. ............................................ ............................................... .... 6

ABSTRACT . . . . . . . . ........................................ . ........................................ 7

INTRODUCTION . ........................... . . . . . . . . . . .................................... 8

REVIEW OF LITERATURE . k . .................................... .................................. LI

MATERIALS AND METHODS. ...................... . . . . . 28

RESULTS AND DISCUSSION . . .................................... . . . . . . . . . . . 32

SUMMARY. ................................................................................................ 43

LITERATURE CITED.................................................................. .... . . . . . . . . 45

- 5 -

Table I .

LIST OF TABLES

Page

Wheat meal fe rm e n ta tio n tim e v a lu e s , o b ta in edfrom Fg d e riv e d l in e s o f Yogo X Turkey/Oro 221grown a t v a rio u s lo c a t io n s , 1953-195& • ........................... 32

Table I I . P er c en t p ro te in o f Fg d e riv ed l in e s o f Yogo X Turkey/Oro 221 grown a t v a r io u s lo c a t io n s ,1953-1956 . . . . . . . . . . . . . . . . . . . . . . 33

Table I I I . Farinograph and baking d a ta o b ta in ed from Fg d e riv ed l in e s o f Yogo X Turkey/Oro 221 grown a t Bozeman, Montana, in 1957 • • > • • • ' ...................... . • 34

Table IU'. C o rre la tio n c o e f f ic ie n ts of doughball tim es a t v a rio u s lo c a t io n w ith 1957 Bbzemans t a b i l i t y v a lu es .................. . . . . . . . . . . . . . 36

Table V. R egression c o e f f ic ie n ts and doughball va luesa d ju s te d to uniform p ro te in le v e ls from d a taof Fg d e riv ed l in e of Yogo X. Turkey/Oro 221grown a t v a rio u s lo c a t io n s , 1953-1956............................... 37

Table W . Fg d e riv ed l in e s of Yogo X Turkey/Oro th a twere s e le c te d on th e b a s is o f doughballd a t a ...................... .... .......................................................................... 4141

— 6 ■■

LIST OF FIGURES

Page

F ig u re I . A g rap h ic i l l u s t r a t i o n o f p ro te in s t r u c tu r ean dough * * * * * * * * * * * @ » 0 » * » * » * » » » 12

F ig u re 2 . T ypical farinog ram s o f lo n g , medium, and sh o r t dough development tim e f lo u r s w ith s t a b i l i t y , m ixing to le ra n c e in d ex , and dough development tim e in d ic a te d . . . . . . .................. . . . 23

. F ig u re 3« T yp ica l mixograph curves showing d if fe re n c e sbetween d i f f e r e n t ty p es of wheat . . . . . . . . . . . 25

F ig u re 4 » F arinograph curves o b ta in ed from Fg d eriv ed l in e s o f Yogo X Turkey/Oro 221 grown a t Bozeman, Montana, in 1957 • ..................................................... 35

F ig u re 5 - R egression l in e s showing th e r e la t io n s h ip s o f th e in d iv id u a l Fg d e riv ed l in e doughball v a lu es and p ro te in co n ten t ......................................................... 39

F ig u re 6 . R e la tio n sh ip s among doughball tim es and s t a b i l i t y o f Fg d e riv ed l in e s o f Yogo X Turkey/Oro 221 grown a t s e v e ra l lo c a t io n s in Montana, 1953- 195& . . . . . . . . . . * .................. 40

- I -

ABSTRACT

This s tu d y was conducted to e v a lu a te th e u se fu ln e ss o f th e wheat meal fe rm e n ta tio n tim e t e s t (doughball t e s t ) as a to o l f o r th e p la n t b re e d e r. This t e s t has d i s t i n c t advantages in t h a t i t re q u ire s o n ly a l im ite d amount o f w heat and i s sim ple and ra p id to perform .

Tw enty-five Fg d eriv ed l in e s of h a rd re d w in te r wheat from a cross between , Yogo and s e le c t io n 221 from a Turkey/Oro c ro s s , were used in t h i s s tu d y t o measure th e p re d ic t iv e v a lue of th e doughball t e s t . The tw enty- f iv e l in e s w ere grown a t fo u r lo c a tio n s d u rin g th e p e rio d o f 1953 through 1956. The l in e s were again grown a t Bozeman in 1957 anc th e g ra in produced was ev a lu a ted w ith fa rin o g rap h and b ak in g t e s t s .

I t was observed t h a t a b e t t e r r e la t io n s h ip e x is te d between doughball tim e and s t a b i l i t y when th e p ro te in le v e l o f th e g ra in was above 14 p e r c e n t . Whep th e av erag e doughball v a lu es were a d ju s te d by re g re ss io n to a uniform p ro te in l e v e l , a s ig n if ic a n t c o r r e la t io n c o e f f ic ie n t was o b ta in e d between tim e and s t a b i l i t y .

The tw e n ty -f iv e Fg d e riv ed l in e s were screened on th e .b a s is o f dough­b a l l d a ta and seven s e le c t io n s su rv ived th e seven y ear by lo c a t io n e v a lu a t io n s . Of th e seven l in e s chosen, f iv e e x h ib ite d both good dough s t a b i l i t y and lo a f volume.

I t w a s 'n e c e ssa ry t o have doughball d a ta from se v e ra l lo c a t io n s fo r s e v e ra l y ea rs b e fo re a s ig n i f ic a n t c o r r e la t io n was o b ta in ed between doughball d a ta and s t a b i l i t y . However, th e l in e s having th e b e s t s t a ­b i l i t y and lo a f volume would have been s e le c te d had th e doughball da ta been u sed . I r r e s p e c t iv e of low c o r r e la t io n v a lu e s , th e doughball t e s t was r e l i a b l e means of p re d ic t in g th e q u a l i ty o f th e hard red w in te r wheat l in e s used in t h i s s tu d y .

'x

' • > . .

- 8 —

• INTRODUCTION

The wheat p la n t has a wide range of a d a p ta tio n . • There i s ev idence th a t

wheat has been c u l t iv a te d f o r over 6,000 y e a r s • ( l 8 ) . A la rg e asso rtm en t

o f d i f f e r e n t wheat ty pes have developed th rough t h i s p e r io d . This has come

ab o u t a s th e r e s u l t o f n a tu ra l s e le c t io n and l a t e r by the a p p l ic a t io n o f

s c i e n t i f i c p la n t b reed in g m ethods.

The f i r s t wheat p lan ted in t h i s co u n try was on one o f th e E liza b e th

I s la n d s o f f th e so u th ern co as t o f M assachusetts in l 602i E xp lo rers and

s e t t l e r s from v a rio u s European c o u n tr ie s b rough t d i f f e r e n t s e le c t io n s o f

wheat to t h i s c o u n try a t v a rio u s t im e s , and p la n tin g s were made a t s e v e ra l

lo c a t io n s a long th e A tla n tic C o ast. Wheat was th e n c a r r ie d in la n d by th e

m ig ra tin g p io n ee rs and was f i n a l l y c a r r ie d in to th e Mid-West and th e G reat

P l a in s .

F o r tu n a te ly f o r th e development of hard wheat in th e G reat P la in s ,

c o n d itio n s in R upsia caused a group of M ennonites to m ig ra te to th e U nited

-S ta te s in 1873.« They brought w ith them some o f th e wheat th e y had been

growing in t h e i r home la n d . Thus, th e Turkey-type w in te r wheat Was in ­

tro d u ced in to th e U nited S t a t e s .

• This ty p e o f wheat was n o t re ce iv ed w e ll by th e m il le r s because o f

i t s h ardness and th e b ak ers were no t accustom ed to th e s o -c a l le d " f l i n t y

g lu te n "6 (2 4 ). N e v e rth e le s s , th e hard w in te r w heat, because o f y ie ld and

a d a p ta tio n , soon h e ld a p re-em inen t p o s i t io n in th e Great. P la in s .

The growth h a b its and o th e r c h a r a c te r i s t i c s o f th e wheat grown over

th e w orld a re a t p re se n t w e ll known. There i s no lo n g er th e same opportu -

- 9 -

n i t y t o b r in g in a wheat of a new ty p e 't h a t w i l l b r in g an end oVemigjhb to

th e problem s a s s o c ia te d w ith th e m ill in g and bak ing in d u s try . Improvement

i s coming on ly th rough s c i e n t i f i c advances in wheat b reed ing and q u a l i ty

e v a lu a tio n . These changes a re slow bu t co n tin u o u s , and an ab ru p t change

i s no t l i k e ly . The fa rm e r, m i l le r , b ak er, and consumer should r e a l i z e th a t

th e re i s no known way t o produce a wheat uniform in y ie ld , t e s t w e ig h t,

g ra d e , p h y s ic a l and chem ical p r o p e r t ie s , o r m il l in g and baking q u a l i ty .

The con s is t a n t p ro d u c tio n of a s tro n g , good q u a l i ty , h igh p ro te in

wheat i s dependent upon th e p roper ba lan ce of th e in f lu e n c e o f environm ent

and v a r ie ty . A com bination o f c ircum stances sometimes can r e s u l t in th e

p ro d u c tio n o f le s s s a t i s f a c to r y wheat than i s custom ary in s p i te o f th e

v a r ie ty , which causes a s e r io u s m isfo rtu n e to th e a re a . The development

and re le a s e o f a new v a r ie ty w i l l n o t n e c e s s a r i ly p rov ide a com plete

remedy. % Whert t h e reasons f o r v a r ia t io n s in q u a l i ty a re d isco v e red , we

w i l l be in a b e t t e r p o s i t io n to c o n tro l th e ty p e o f wheat th a t w i l l be

a v a ila b le f o r th e m ill in g and bak ing in d u s try .

One o f th e e a r l i e s t methods o f e v a lu a tin g bak ing q u a l i ty was th e use

o f th e p ro te in co n ten t o f w heat. Wheat w ith h igh p ro te in co n ten t has f o r

a long tim e commanded a premium p r ic e . The p ro te in co n ten t has been used

e x te n s iv e ly as a p r ic e d e te rm in er because i t i s a s im ple and inexpensive

a n a ly s is to perform . The c o r r e la t io n o f t o t a l p ro te in con ten t versus

g lu te n s t r e n g th , though n o t to o a c c u ra te , has been used by m i l le r s , buyers

and producers as a measure o f q u a l i ty in th e t r a d e .

D e ta iled m il l in g and baking t e s t s a re th e f i n a l and th e most com plete

- 10 -

means o f e v a lu a tin g th e q u a l i ty o f w heat. These p rocedures e v a lu a te th e

wheat acco rd in g to m il l in g c h a r a c t e r i s t i c s , f lo u r y ie ld , and th e p h y s ic a l

p ro p e r t ie s o f th e dough; such a s , m ixing tim e , w a ter a b so rp tio n , dough

s tre n g th and lo a f volume. The procedure i s n o t adap ted f o r use in th e

e a r ly s tag e s o f a wheat b reed in g program because i t re q u ire s a r e l a t iv e ly ,

la rg e sample (fo u r to f iv e pound minimum); th u s , th e progeny must be

c a r r ie d and in c re a se d s e v e ra l y ea rs w ithou t s e le c t io n to o b ta in s u f f i ­

c ie n t g ra in f o r t e s t i n g .

Wheat b reed in g procedures produce la rg e h y b rid po p u la tio n s from each

c ro ss w ith in a few g e n e ra tio n s . The q u a n ti ty o f seed from each s e le c t io n

o r l in e in c re a s e s v e ry slow ly because, most o f th e seed i s needed f o r re ­

seed in g in th e f i e l d f o r f u r th e r s e le c t io n ; consequen tly , th e m a te r ia l

must be c a r r ie d in th e f i e l d u n t i l about th e seventh o r e ig h t g e n e ra tio n

b e fo re s u f f i c i e n t q u a n ti ty o f g ra in i s a v a ila b le f o r la rg e s c a le baking

t e s t s . The r e s u l t i s th a t many l in e s a re c a r r ie d along th a t cou ld be d is ­

carded i f th e m a te r ia l could be ev a lu a ted c o r r e c t ly w ith a sm all amount of

g r a in .

• Ip t h i s th e s i s problem , th e wheat meal fe rm e n ta tio n tim e t e s t and

p ro te in t e s t were e v a lu a te d . These d a ta were a lso compared to th e r e s u l t s

o b ta in e d from baking e v a lu a tio n s . The d a ta o b ta in ed from th e se comparisons

were ev a lu a ted f o r th e p o s s ib i l i t y o f u s in g th e wheat meal fe rm e n ta tio n tim e

t e s t as a to o l f o r s e le c t in g d e s ir a b le l in e s of h a rd red w in te r wheat in

re s p e c t to breadm aking q u a l i ty in th e e a r ly g e n e ra tio n s o f a b reed in g

program .

REVIEW OF LITERATURE

S e v e ra l f a c to r s a re in s tru m e n ta l in de term in ing the s u i t a b i l i t y Of a

p a r t i c u l a r wheat f o r a s p e c i f ic pu rp o se„ The c h ie f f a c to r i s th e p ropor­

t i o n a l amounts o f th e v a rio u s chem ical components which make up th e wheat

k e rn e l . Swanson (28 ) re p o r ts th e average chem ical components of b read

wheat t o be 13«4 Pe r cen t w a te r , 1 .8 p er cen t a sh , 11.6 p er cen t p r o te in ,

2 .1 p er cen t f a t , I . 7 p e r cen t f i b e r and 69 .4 &er cen t c a rb o h y d ra te s . These

chem ical c o n s t i tu e n ts in v a ry in g p ro p o rtio n make up th e bran,- endosperm,

and germ o f th e wheat k e rn e l.

■The amount of p ro te in i s o fte n co n sid ered o f m ajor im portance and i s

used as a measure o f s tre n g th in b read w heats . P ro te in in wheat i s made up

o f g lu te n and g l ia d in in m ajor p ro p o rtio n s w ith album in, o th e r p r o te in s ,

and aminp a c id s p r e s e n t . The g lu te n and g l ia d in a re r e fe r re d to c o l le c - .

t i v e l y as g lu te n . This w a ter in s o lu b le p ro te in i s th e predom inant c o n s t i­

tu e n t in f lu e n c in g th e q u a l i ty o f w heat. I t i s th e c o n s t i tu e n t th a t g ives

e l a s t i c i t y to th e dough (2 8 ); F igu re I i s a g rap h ic i l l u s t r a t i o n o f p ro te in

s t r u c tu r e reproduced from M ille r and Jo h n so n 's d iscu ss io n on t e s t i n g wheat

f o r q u a l i ty (1 4 ).

The q u a l i ty of th e p ro te in has been found to be e q u a lly as im portan t

as q u a n ti ty in producing a d e s ira b le dough. According to Swanson (28):,

weakness in w heat i s due to th re e cau ses : I . an adequate q u a n t i ty of

g lu te n but o f i n f e r io r q u a l i ty ; 2 . in ad eq u a te q u a n tity o f g lu te n ; and 3*

f a c to r s t h a t in f lu e n c e o r i n h ib i t th e a c t i v i t y of y e a s t .

B ay fie ld ( I ) re p o rte d t h a t th e s tre n g th o f a wheat q u a lity -w ise i s

- 12 -

determ ined o r in flu en ced by gas p roduction and gas r e te n t io n . The pro­

d u c tio n of gas (th e r e s u l t of y e a s t a c t i v i ty ) i s a f fe c te d by th e sugar

c o n ten t and d i a s t a t i c a c t i v i t y o f th e w heat. F a t con ten t and method of

m il l in g have a ls o been found to in f lu e n c e th e g ass in g powers o f wheat (3 ) .

The re te n t io n o f gas i s d i r e c t l y a f fe c te d by th e e l a s t i c i t y o f th e dough

which i s a r e s u l t o f p ro te in q u a n ti ty , p ro te in q u a l i ty , enzyme a c t i v i t y ,

and ash c o n s t i tu e n ts .

GLUTEN STRUCTURE

I

H S

F igu re I . A g rap h ic i l l u s t r a t i o n o f p ro te in s t r u c tu r e in dough.Each geom etric symbol re p re se n ts one of th e 22 known amino a c id s . The H ...H re p re se n ts weak hydrogenbonding w hile S---- S re p re se n ts s tro n g e r chem icals u l f u r c ro ss bonding between chains of amino a c id s .(14).

Q u a lity i s p robab ly th e most d i f f i c u l t to measure and in t e r p r e t of

a l l th e c h a r a c te r i s t i c s t h a t must be co n sidered in a wheat b reed in g pro­

gram. M ic ro -te s tin g methods a re in r e a l need as a s a t i s f a c to r y a id in

wheat b re e d in g . They would enable th e p la n t b re e d e r to a p p ra ise more

h y b rid s a s to q u a l i ty p o te n t ia l in th e e a r ly seg reg a tin g g e n e ra tio n s .

C onsidering th e complex n a tu re o f q u a l i ty coupled w ith v a rio u s d e f i -

- 13 - ,

n i t io n s and c r i t e r i a o f q u a l i ty , i t would appear th a t q u a l i ty ev a lu a tio n s

cannot be made on an in d iv id u a l p la n t b a s is .

R e itz (19 ) d e fin e s q u a l i ty as th e c h a r a c te r i s t i c o r com bination o f

c h a r a c te r i s t i c s de term in ing th e degree o f a c c e p ta b i l i ty , u s e fu ln e s s , and

v a lu e to th e u s e r . Those who t e s t th e wheat b re e d e rs ’ samples f o r q u a l i ty

a re concerned m ainly w ith determ in ing w hether g ra in from a v a r ie ty i s

f i t t e d f o r i t s in ten d ed u s e s . The p la n t b re e d e r needs a more m easurable

a t t r i b u t e th an good o r bad , and he needs th e se sep ara ted from th e m odifying

e f f e c t s o f environm ent. Most p e rp lex in g a re th e o p p o site views expressed

by bakers about a f lo u r in tended f o r th e same u se . This le a d s to a g re a t

d e a l of confusion when th e b reed e r asks re p re s e n ta t iv e s of th e tra d e f o r

an a p p ra is a l of a new v a r ie ty of w heat.

Some w heat b re e d e rs a re fo rg o in g p re lim in a ry y ie ld t e s t s in fav o r of

q u a l i ty p re d ic tio n t e s t s in th e F4 g e n e ra tio n . S ev e ra l la b o ra to r ie s a re

in v e s t ig a t in g a number o f q u a l i ty p re d ic tio n t e s t s . Some f e e l t h a t th e

expansion t e s t of M il le r , e t a l . (15) o f f e r s some r e a l prom ise a t th e p re ­

sen t t im e .

Schlehuber (21 ) in h is d iscu ss io n of wheat q u a l i ty in North America

p o in ts out th a t tw elve t o f i f t e e n y ears ago f lo u r y ie ld was n o t thought

e s p e c ia l ly im p o rtan t, and the emphasis was on te s t in g th e f lo u r by baking

and judg ing th e r e s u l t s c h ie f ly on th e b a s is o f lo a f volume and w ater

a b s o rp tio n . In th e l a s t f iv e y ears th e emphasis has changed somewhat w ith

a v a i l a b i l i t y o f p h y s ic a l d o u g h -te s tin g ap p ara tu s to th e s t r e s s in g o f dough

m ixing p ro p e r t ie s . . More and more r e l ia n c e i s be ing p laced upon p h y s ica l

— 14 —

d o u g h -te s tin g d a ta .

Some new concepts about q u a l i ty th a t a re c o n tra ry to what was b e lie v e d

on ly a few y ea rs ago as l i s t e d by R e itz (1 9 ).

1 . Every use does n o t re q u ire a narrow range o f q u a l i ty .

2 . Mixing tim e has l i t t l e r e la t io n s h ip to b read lo a f volume poten­

t i a l i t i e s .

3 . Thick bran does n o t n e c e s s a r i ly account f o r poor m il l in g q u a l i ty .

4 . Hard red w in te r and hard red sp r in g wheats on eq u al p ro te in b a s is

may have eq u al in h e re n t breadmaking q u a l i ty .

5 . A w h ite wheat v a r ie ty may produce e x c e lle n t b read i f i t i s in a

s u i ta b le p ro te in ra n g e .

R e itz (19) a ls o suggests th a t b reed ing shou ld be done f o r w heats th a t posses

q u a l i ty s a f e ty zones. In o th e r words, a s e le c t io n o r v a r ie ty would be ex­

trem e in c h a r a c te r i s t i c s t h a t could be r e a d i ly m odified . He p re sen ts th e

fo llo w in g l i s t :

1 . M ixing tim e: Breed f o r long tim e , sh o rten by b le n d in g .

2 . F lo u r c o lo r: Breed f o r l i g h t y e llo w , make l i g h t e r by b leech in g .

3 . P ro te in c o n te n t: Breed f o r h igh l e v e l , reduce by b len d in g .

4 . K ernel h a rd n e ss : Breed f o r v e ry h a rd , so f te n by tem pering .

5 . T est w eigh t: Breed f o r heavy.

6 . F lo u r y ie ld : Breed f o r h igh f lo u r y ie ld and p r ic e wheat on t h i s

b a s is n o t on t e s t w e ig h t.

7 . Mixing to le ra n c e : Breed f o r to le ra n c e th a t i s s e p a ra te from

m ixing tim e .

- 15 -

8 . Loaf voIume: Breed fo r h igh volume w ith f in e t e x tu r e .

P inchney and o th e rs (17) found v a r ia t io n s in g lu te n q u a l i ty th a t were

independent of p ro te in q u a n ti ty b u t a f fe c te d lo a f volume and sed im en ta tion

v a lu e s in much th e same way. These w orkers, however, found th a t lo a f v o l­

ume was more c lo se ly c o r re la te d w ith sed im en ta tio n v a lu e than w ith p ro te in

con ten t when th e g lu te n q u a l i ty was q u ite v a r ia b le .

The w e t t a b i l i ty o f f lo u r by w ater o r i t s a b so rp tio n i s one o f th e most

im p o rtan t c h a r a c te r i s t i c s o f f lo u r . The w ater forms a f i lm on th e s u r fa c e

o f th e f l o u r p a r t i c l e s . This w a ter f i lm g iv es th e dough i t s p la s t i c o r

m oldable p r o p e r t ie s . P a r t o f th e w a ter i s f irm ly absorbed on th e su rfa ce

of th e s ta r c h g ran u le and p a r t on the p ro te in p a r t i c l e s .

A dough made from an 11 p e r cent p ro te in f lo u r having I3 .5 per cen t

m oistu re and u s in g Go p er cen t a b so rp tio n , to g e th e r w ith norm al amounts of

su g a r , s a l t , s h o r te n in g , and y e a s t w i l l have th e fo llo w in g approxim ate p e r­

cen tage com position acco rd in g t o Swanson (30)•

W ater. . . . . . . . . . . . 4*3 o4*S ta r c h . . . . . . . . . . . 4 0 . 5P r o t e i n . . . . . . . . o . G .4 *S u g ar. . . . . . . . . . . . B 0^Fa t 2. ^S a l t and Ash. . . . . 1 .4O th e r ...00 .000000 2 . ^

When w a ter i s added t o f lo u r , i t w i l l p e n e tra te th e p a r t i c l e s v e ry

s low ly ; hence , m echanical a c tio n i s n e ce ssa ry to form a homogeneous dough.

In a w ell-m ixed dough th e w a te r forms a continuous l iq u id phase—p a r t being

absorbed on s ta rc h and p ro te in , and p a r t h e ld in a c a p i l l a r y s t a t e (3 0 ) .

The p ro te in m olecules o r p a r t i c l e s which a re e longated o r branched

- l6 -

form s tra n d s o r f i b r i l s . I t i s th e se s tra n d s th a t form in to a three-rdimen­

s io n a l netw ork. The s ta r c h g ra n u le s } covered w ith f ilm s o f w a te r , a re....... . ' . • i,

enmeshed in t h i s netw ork. The y e a s t grows in th e dough and forms gas bub­

b le s which in c re a se in s iz e and th u s produce th e open te x tu re in b re a d .

The gas r e te n t iv e p ro p e r t ie s o f th e c e l l w a lls a re due to th e w a ter.ab so rb ed

on th e th re e d im ensional netw ork and th e embedded s ta r c h . The m o b ility In

t h i s netw ork allow s th e bubbles to in c re a se in s iz e and thus, produce th e

r a is e d dough. 1'• ■ . ' '

• V arious t e s t s o r 'te c h n iq u e s have been developed to e v a lu a te th e

q u a l i ty o f b read wheat u s in g a r e l a t i v e ly sm all amount o f w heat. These

t e s t s would perm it s e le c t io n o f b reed ing m a te r ia l on a q u a l i ty b a s is in an

e a r ly g e n e ra tio n o f th e progeny from a c r o s s .

The wheat meal fe rm e n ta tio n tim e t e s t , sometimes r e f e r r e d to as th e

t im e - te s t o r doughball t e s t , has been found u s e fu l in th a t i t i s sim ple

and ra p id ; re q u ire s sm all q u a n t i t ie s o f la b o r , equipm ent, and m ateria}.;

equipment i s in e x p en s iv e ; and th e g ra in sample re q u ire d i s r e l a t i v e ly sm all

(10 to 30 grams b e in g .s u f f i c i e n t ) (2 8 ). ' ■ , , '

The wheat mqal fe rm en ta tio n tim e was f i r s t developed in 1926 by H„ A*

Saunders' in England. Pelshenke (23) in Germany m odified th e t e s t by u sin g. . ■ . f ■' ' ■ ' ■ ■ ■ .

th e tim e r e s u l t in co n ju n c tio n w ith p ro te in co n ten t in 1^30. C u tle r and

W orzella (5) have o u tlin e d th e t e q t in d e t a i l and s t r e s s th e use q f c le a n ,

d ry , sound g ra in when making th e t e s t . The wheat should be allow ed to age

a t l e a s t s ix weeks and be in sp e c te d fo r d is e a s e , w p ev ils , and o th e r d is -' ' . ' . . ' ■ : • ■ •

- . 1 , 1 ' 1 . h , , 1 1 i .

o rd e rs b e fo re u s in g . The samples should have th e same.t imp in te r v a l b e - .

. ■ ■■

tween g rin d in g and a n a ly s is as th e q u a l i ty ch an g es ' r a th e r r a p id ly in

ground m a te r ia l . A te ch n iq u e th a t has g iven good r e s u l t s i s to g rin d

th e wheat th e a f te rn o o n p rev ious to th e day th a t th e t e s t i s t o be p e r-1

form ed.

The wheat meal fe rm e n ta tio n tim e t e s t i s based on th e le n g th o f tim e

re q u ire d f o r a b a l l of dough made from whole wheat meal to d is in te g r a te

in a beaker o f d i s t i l l e d w a te r . This t e s t i s r e fe r re d t o a s th e "Dough-

b a l l T e s t" , because o f th e b a l l o f dough used in determ in ing th e v a lu e s .

The tgrm " Doughball T est" w i l l be used by th e w r i te r in th e rem ainder o f

t h i s d is c u s s io n when r e f e r r in g t o th e wheat meal fe rm en ta tio n tim e t e s t .

Comparable v a lu es o f baking q u a l i ty a re o b ta in ed in th i s t e s t by m easuring

th e d is in te g r a t io n tim e o f th e doughballs in m inu tes. A lo n g tim e in d i ­

c a te s a s tro n g wheat and a s h o r t tim e i s a s s o c ia te d w ith weaker s e le c t io n s .

C u tle r and W orzella (5) found th a t s t r a in s from th e same v a r ie ty

d i f f e r e d g e n e t ic a l ly in baking q u a l i ty and th a t th e s e d if fe re n c e s could

be d e te c te d w ith th e doughball t e s t . They a lso o b ta ined evidence th a t

th e r e l a t i v e q u a l i ty of d i f f e r e n t w heats w as;m ain ta ined when th o se wheats

were grown in d i f f e r e n t lo c a t io n s where th e y were exposed to d i f f e r e n t

environm ental c o n d it io n s .

I t i s e v id en t t h a t in h e re n t q u a l i ty may be masked by la b o ra to ry p ro­

cedure w ith v a r i e t i e s t h a t show l i t t l e d if fe re n c e in doughball tim e accord ­

in g to Swanson (2 7 ). However, th e tim e t e s t has proven s u c c e ss fu l in

d is t in g u is h in g th e s tro n g wheats from th o se which a re i n f e r i o r because o f

in h e re n t q u a l i ty .

- 18 - ' .

K olar (11 ) s tu d ie d seven teen wheats in one group and e leven in an­

o th e r group w ith n in e o f them being common to both g roups. A s ig n i f ic a n t

c o r r e la t io n between doughball tim e , lo a f volume, and m ixing to le ra n c e was

found . The doughball tim e and lo a f volume c o r r e la t io n e x is te d f o r two

lo c a t io n s , bu t doughball tim e and p ro te in co n ten t was n o t c o n s is te n t ly

c o r r e la te d . A d e f in i t e a s s o c ia t io n was found between doughball tim e and

th e q u a l i ty e v a lu a tio n s by la rg e s c a le baking t e s t s . These d a ta showed

th a t w heats having th e lo n g e s t tim es were su p e r io r in q u a l i ty to th ose

having s h o r t doughball t im e s . The m iddle c la s s group could n o t be r e a d i ly

d is tin g u is h e d from each o th e r by th e tim e t e s t . S uperio r w heats m ain tained

t h e i r r e l a t i v e q u a l i ty r a t in g when grown under d i f f e r e n t environm ental

c o n d it io n s .

S ig n i f ic a n t c o r re la t io n s between doughball t im e . re ad in g s and lo a f v o l­

ume were f e l t to in d ic a te th a t t h i s t e s t m easures gas r e te n t io n c ap a c ity

to some e x te n t . P ro te in co n ten t and doughball tim e c o r r e la te d on ly to th e

e x te n t th a t wheat w ith h igh p ro te in had a g r e a te r g lu te n co n ten t and con-,

sequen tIy had lo n g e r doughball tim es th an wheat w ith a low p ro te in con ten t

when th e range was 8 .4 to 9 »4 p e r c e n t, b u t t h i s was n o t t r u e when th e

p ro te in le v e l was between I 5 . I and l 6 .6 p e r c e n t.

Wheats th a t r e s is te d d is in te g r a t io n f o r a longer tim e were a lso more

to le r a n t to over m ixing as in d ic a te d by th e c o r re la t ip n o f doughball tim e

and m ixing to le ra n c e re a d in g s . Wheat th a t would r a te f a i r and good could

n o t be d is tin g u is h e d by th e doughball tim e t e s t .

Hayes, e t a l . (8) s ta te d th a t one o f th e g re a te s t d i f f i c u l t i e s in

— —

b reed in g improved v a r i e t i e s o f wheat i s th e la c k o f a r e l i a b l e method o f

e s tim a tin g m ill in g and baking q u a l i ty when o n ly a sm all q u a n ti ty of seed

i s a v a i l a b le „ A t e s t r e q u ir in g on ly a sm all q u a n ti ty o f seed would be o f

g re a t value t o th e p la n t b re e d e r .

The requ irem en ts o f a s a t i s f a c to r y t e s t f o r q u a l i ty in th e e a r ly

g e n e ra tio n s a r e :

1 . The amount o f g ra in re q u ire d must be sm a ll.

2 . I t should be r e l a t i v e ly sim p le and ra p id .

3 . The m a te r ia l and equipment should be in ex p en siv e .

4 . I t sho u ld g iv e ah a c c u ra te ev a lu a tio n o f q u a l i ty .

The d o u ghball t e s t appears to meet a l l o f th e se req u irem en ts . There i s

no q u e s tio n about th e f i r s t th r e e and th e tim e t e s t , d a ta a v a i la b le seem to

in d ic a te , t h a t th e v e ry weak and ex trem ely s tro n g s e le c t io n s i,n a progeny

can d e f in i t e ly be d e te c te d .

The c e re a l chem ists have been t o l d by th e b reed ers th a t m icro­

methods must be developed which w i l l a llow th e te s t in g of th e g ra in from

in d iv id u a l p la n ts and s t i l l le av e a remnant f o r p la n tin g . I t has been

s t a t e d , f a c e t io u s ly o f co u rse , t h a t th e u t l im a te i s to develop methods fo r

t e s t i n g th e q u a l i ty of an in d iv id u a l seed and leave a remnant f o r p la n tin g

(21 ) . Some f in e advances have been made in develop ing t e s t s th a t use v e ry

sm a ll q u a n t i t ie s of w heat, but. th e se have been more u s e fu l in e v a lu a tin g

m ill in g q u a l i ty than baking q u a l i ty . Seeborg and Barmore (22 ) d esc rib e

a fiv e -g ram m ill in g t e s t which in v o lv es h y d ra tin g the samples to a 17.5

p e r cent m o is tu re l e v e l ; g rin d in g them th rough two s e ts o f b reak r o l l s ;

- 20 -

and weighing th e sep a ra te d b ra n . These au th o rs c laim th a t two te c h n ic ia n s

can p rocess .OO t o 600 h yd ra ted sam ples a day. Such a method i s a t t r a c t i v e

to p la n t b reed e rs and encourages them to devote more e f f o r t to b reed ing

f o r b e t te r m il l in g q u a l i ty .

Methods d e sc rib ed by H a rr is and B runer (6) a re b e in g used a t th e

N orth Dakota la b o ra to ry . The use of whole wheat mixograms f o r a s se ss in g

m ixing requ irem ent in e a r ly g en era tio n s i s being ex p lo red . The search i s

under way f o r methods th a t w i l l a s s e s s q u a l i ty in th e e a r ly g e n e ra tio n s .

R esearch in wheat q u a l i ty occupies a m ajor p o rtio n o f th e improvement pro­

gram o f th e b read wheats in th e U nited S ta te s and Canada (2 1 ) .

S h e lle n b e rg e r , e t a l . (25) in comparing m ic ro - te s ts w ith s tan d a rd

methods, used lo a f volume as th e c r i t e r io n o f s tre n g th and found a c lo se

c o r r e la t io n between th e lo a f volume o b ta in ed by th e AACC procedure and th e

micro p ro ced u re . These au th o rs f e l t th e r e la t io n s h ip was s u f f i c i e n t ly

s a t i s f a c to r y to j u s t i f y th e use of m icro baking f o r th e purpose o f sc reen in g

wheat samples f o r s t r e n g th in th e e a r ly g e n e ra tio n s .

T ests f o r q u a l i ty can be d iv id ed in to two groups: ( I ) p h y s ica l and

/ chem ical t e s t s perform ed on th e whole g ra in and (2) chem ical, physico­

chem ical, rh e o lo g ic a l , and baking t e s t s perform ed on f l o u r . Experim ental

m illin g t e s t s p rov ide in fo rm atio n on th e p h y s ic a l behav io r o f th e g ra in

du ring th e m ill in g o p e ra tio n . M illin g q u a l i ty t e s t s e v a lu a te such f a c to r s

as tem pering , power re q u ire d in re d u c tio n , and f lo u r y ie ld . To be o f good

m il l in g q u a l i ty a-w heat should have good b o ltin g p ro p e r t ie s ) t h a t i s , th e

f lo u r should flow f r e e ly w ithou t a tendency to agg lom erate . A good m ill in g^ . : v.

- 21 -hard wheat should y ield from 69 to 75 Per cent of a 95 Per cent straight

grade flour with normal ash (14). '

Other physical tests which measure factors Affecting milling quality are test weight"And kernel hardness. Test weight is related to flour yield "awd kernel hardness to the amount of power required to reduce the grain to flour.

Originally several flour constituents were regarded as factors re-•V.

l a te d to f lo u r q u a l i ty . These in c lu d ed s ta r c h , p r o t e in , , f a t s , and min-... ' .• . ' .'\v - • . ' I ; .

e r a l s . The tendency now i s to con fine th e term s tre n g th to a d e s c r ip tio n' ; ■ ' • " yV - ;"

o f p ro te in q u a n tity ahd q u a l i ty . '

The q u a n ti ty o f p ro te in i s g e n e ra lly determ ined by th e K je ldah l p rb -

Cedure. This t e s t i s p re c is e , bu t does r e q u ire e la b o ra te equipment and

tim e . There i s a demand f o r a t e s t th a t w i l l g ive an a c c u ra te estim ate o f■' ■ . . " _ ; ; ■ . / ' . . . . • 7 - ' ; 7p ro te in q u a n ti ty q u ick ly and sim ply . The amount o f p ro te in i s g e n e ra lly■ . • . . ' ' ' / ' ' ; . 7 . ■ ■ ' . • 'V" ; V1accep ted as th e s im p le s t and b e s t s in g le in d ic a to r o f wheat and f lo u r _

bread making q u a l i ty (13)-

The physico -chem ical t e s t s a re g e n e ra lly sim ple , r a p id , and have impor­

t a n t advantages in ro u tin e la b o ra to ry t e s t i n g . They a re capab le o f showingIdifferences between flours,-but it"is frequently difficult to correlate

th e s e d if fe re n c e s w ith q u a l i ty o f f lo u r f o r a given pu rpose ,J . • " • ' . - . '' !

C , i-> - ■). _ \ , , . ■ 1 O '? '. ‘ ‘\j‘Rheological tests are measures of the physical properties of the dough„, , v ■ :■'--I - '

S h o r tly a f t e r 1900 sev e ra l, in s tru m en ts were dev ised to p ro v id e o b je c tiv e• ' -' • ■ . " ■ : : ''

measurements o f dough c h a r a c te r i s t i c s . These in c lu d ed th e Brabender f a p in -■ ■ . . > ■ ■■ , ' \ ; . v ' •.; ■ i " ,

ograph, m ixograph, ex tenspgraph , ex ten so m ete rs , and s e v e ra l m iscellaneous

: ■

- 22 -

d e v ic e s .

The Brabender fa rin o g rap h i s one o f th e most w ide ly used p h y s ica l

dough t e s t in g in s tru m e n ts . I t m easures p l a s t i c i t y and m o b ility o f dough

su b je c te d to p ro longed , r e l a t i v e l y g e n t le , m ixing a c tio n a t co n stan t tem­

p e ra tu re . R es is tan ce o ffe re d by th e dough to th e m ixing b lad es i s t r a n s ­

m itte d th rough a dynamometer to a pen th a t t r a c e s a curve on a moving

c h a r t . This c h a r t i s r e fe r re d to as a " fa rin o g ram " . A com plete d e sc r ip ­

t io n o f t h i s machine i s p re sen ted by Brabender (2 ) . - •

The g e n e ra l fa rin o g rap h p ra c t ic e has been to b rin g a l l doughs to a

c o n s is te n c y o f ^OO B rabender u n i ts as a s tan d a rd a b so rp tio n by’ making a

t i t r a t i o n c u rv e . A bsorption g e n e ra lly in c re a s e s in d i r e c t o rd e r w ith th e

in c re a s in g p ercen tage o f p ro te in and im proving g lu te n q u a l i ty . ; A bsorption

i s determ ined by adding fenough w ater to g iv e a s tan d ard co n sis ten cy of

500 B.U. (B rabender u n its ) a t th e peak o f th e c u rv e . In a d d it io n to d e te r ­

m ining th e q u a n tity o f w ater re q u ire d , o r th e optimum a b s o r p t io n ,’th e

curve shows th e amount o f m ixing re q u ire d to develop th e dough p ro p e rly ,

and th e b eh av io r o f th e dough when m ixed, o r i t s s ta b ility # ,. The behav io r

o f th e dough during m ixing i s measured by v a lu es r e f e r r e d to as s t a b i l i t y

and m ixing to le ra n c e in d ex . S t a b i l i t y i s d e fin ed as th e tim e d if fe re n c e to

th e n e a re s t o n e -h a lf m inute between th e p o in t where th e to p o f th e curve

f i r s t in t e r s e c t s th e $00 B.U. l i n e , and th e p o in t where th e tofc o f th e

curve leav es t h i s l in e a f t e r p ass in g th e peak . The M .T .I. (mixing t o l e r ­

ance index) i s th e d if fe re n c e f r p ^ ^h6 to p o f th e curve a t th s peak to

th e to p o f th e curve f i v e mitttites &ft&r th e peak (13)

A s in g le measure o f q u a l i ty from a fa rin o g rap h curve i s th e v a lo r i -

- 23 -

m eter v a lu e . This i s an em perical q u a l i ty sco re o b ta in ed by means of a

s p e c ia l te m p la te . F ig u re 2 shows th re e ty p ic a l fa rin o g ram s.

Dough development tim e

[a b il i tyT~MTX

Dough development tim e

S t a b i l i t y

F ig u re 2 . T ypical farinogram s of lo n g , medium, and sh o r t dough development tim e f lo u r s w ith s t a b i l i t y , m ixing t o l ­erance in d ex , and dough development tim e in d ic a te d .

- 24 -

Numerous f a c to r s o th e r than v a r ie ty have been found to in f lu e n c e

f lo u r fa r in o g ra m .c h a r a c t e r i s t i c s . As. th e p ro te in content in c re a s e s , th e

dough developm ent tim e , a b so rp tio n , v a lo r im e te r v a lu e , and th e s t a b i l i t y

a ls o in c re a s e . The m ixing to le ra n c e index decreases w ith in c re a s in g pro­

t e i n c o n te n t .

Mixing s t a b i l i t y is t h e f l o u r c h a r a c te r i s t i c " in g r e a te s t demand by

com m ercial b a k e rs . This demand i s cau sin g th e m il le r s t ro u b le because

long dough development tim e w heats a re in s h o r t supp ly . A c tu a lly , bakers

would p re fe r to have a medium dough development tim e wheat w ith c o n sid e r­

a b le to le ra n c e t o m ixing . Such a f lo u r would re q u ire l e s s power to mix

th an a long m ixing f l o u r . However, o n ly th e long dough development tim e' ■ ■ ■

f lo u r s u s u a l ly e x h ib it good to le ra n c e to m ix ing , w h ile v a r i e t i e s having

s h o r t dough developm ent tim es g e n e ra lly have low s t a b i l i t y . I f a baker

were to re c e iv e f lo u r m ille d o n ly from a wheat v a r ie ty w ith a s h o r t mixing

tim e , good b read cou ld be produced i f th e dough were handled c o r r e c t ly .

Mixing would have to be j u s t to peak developm ent, because i f over mixed,

th e q u a l i ty o f th e .b re a d would s u f f e r .

The mixograph i s .a n o th e r p h y s ic a l dough te s t in g machine in f a i r l y

wide use today. It is a miniature type of high speed dough mixer withfo u r v e r t i c a l .p la n e ta ry p in s rev o lv in g about th re e s ta t io n a r y p in s in th e

bottom of a bow l. This machine .was designed by Swanson and Working (26 ) .)

As th e g lu te n develops, a g ra d u a lly in c re a s in g fo rce i s re q u ire d to

push th e re v o lv in g p in s th rough th e dough. Ihe in c re a se d fo rc e i s measured

by th e tendency to r o ta te th e bowl which i s p laced in th e c e n te r of a le v e r

system . A reco rd of the to rq u e produced on th e le v e r system i s made on a

c h a r t moving a t a c o n stan t r a te o f speed.

The mixograph i s no t a p re c is io n in s tru m e n t, b u t i t w i l l se rve to g ive

a good e s tim a te of mixing tim e and v a r ie ty ty p e . F igure 3 shows ty p ic a l

mixograph c u rv e s .

- 2 5 -

F igu re 3 . T ypical mixograph curves showing d if fe re n c e s be­tween d i f f e r e n t ty p e s o f w heat. (14)

Johnson, e t a l . (10 ) , in s tu d y in g th e r e la t io n s h ip between mixograms

and b ak ing , found th e h e ig h t , w id th , weakening an g le , and th e a re a under

th e curve c o r r e la te d w ith p ro te in co n ten t and lo a f volume. I t was con­

cluded however, th a t lo a f volumes were more c lo se ly r e la te d to p ro te in

co n ten t th an to any of the mixogram v a lues o b ta in e d . These workers f e l t

t h a t th e mixogram r e f le c te d baking s tre n g th because of a h igh c o r re la t io n

between lo a f volume and p ro te in con ten t and between p ro te in c o n ten t and

- 26 -Vt

mixogram v a lu e s .

M o rris , e t a l . ( l 6 ) , in a n ■e v a lu a tio n o f s o f t w h ea ts , concluded th a t

th e b e s t measurement to exp ress g lu te n s tre n g th was th e a re a under th e

mixogram. Swanson (29) s ta te d t h a t th e main c h a r a c te r i s t i c o f mixograph

curves were determ ined by th e in h e re n t q u a l i t i e s o f v a r i e t i e s . W ithin a

v a r ie ty , th e cu rves were in flu en c ed by th e p ro te in co n ten t and by absorp ­

t i o n . A two p e r cen t v a r ia t io n in a b so rp tio n was observed to n o ta b ly a f f e c t

th e h e igh t o f th e cu rv e , b u t th e main p a t te rn was n o t a f f e c te d .

P h y s ic a l dough t e s t in g d ev ices do n o t re p la ce th e baking t e s t . They

a re used to p rov ide p re c is e d a ta on s p e c i f ic p ro p e r tie s o f th e dough th a t

cannot be o b ta in ed from o th e r t e s t s . I t i s recogn ized by most au th o rs

t h a t th e d a ta o b ta in ed from p h y s ic a l dough t e s t s and t h a t o b ta in ed from

baking t e s t s f r e q u e n tly vary w ide ly . This v a r ia t io n makes th e p re d ic tio n

o f baking q u a l i ty from p h y s ic a l dough d a ta r a th e r u n c e r ta in .

- Q u a lity o f b read baked from a g iven sample o f f lo u r i s considered th e

f i l i a l c r i t e r io n fo r judg ing q u a l i ty . E xperim ental bak ing has been p ra c t ic e d

in Europe f o r approx im ate ly 100 y e a r s , b u t in th e U nited S ta te s only s in c e

about I9 0 0 . In th e U nited S ta te s , b read i s made by two g e n e ra l p ro ced u res .

They a re th e s t r a ig h t dough process arid th e sponge dough p ro c e ss . E xperi­

m en ta lly th e s e may in v o lv e commercial s iz e d lo av es , pup lo a v es (100 grams

of f lo u r ) o r m icro loaves ( as l i t t l e as 8 grams of f lo u r ) (1 3 ) . The

q u a l i ty of f lo u r from hard wheat i s ev a lu a te d by a b so rp tio n , (2) lo a f v o l­

ume, (3) e x te rn a l lo a f c h a ra c te r is t ic s * a n d (4) in te r n a l lo a f c h a r a c t e r i s t i c s .

The e x te rn a l ev a lu a tio n s a re made on symmetry, c ru s t c o lo r , and b reak and

sh re d . The in te r n a l c h a r a c te r i s t i c s in c lu d e crumb c o lo r , g ra in , and te x ­

tu r e .

The m icro-bak ing te ch n iq u e u s in g 25 grams o r le s s f lo u r has lim ite d

b u t v a lu ab le a p p l ic a t io n . I t s main use i s in s tu d y in g p la n t b re e d e rs '

samples where th e amount o f m a te r ia l f o r t e s t in g i s very l im i te d . H a rris

and Sanderson (7) in t h e i r comparison o f th e 100 gram method w ith th e 25

gram method concluded th a t th e m ic ro - te s t was u s e fu l in d i f f e r e n t i a t in g

between s tro n g and weak wheat v a r i e t i e s . The in ten d ed use o f th e f lo u r

g e n e ra l ly must be known b e fo re a s a t i s f a c to r y in te r p r e ta t io n can be made

o f any baking t e s t .

Bread making i s a complex p h y s ic a l p ro cess c o n s is tin g o f th e absorp­

t i o n o f w a te r , th e change in dough c o n s is te n cy through m ix ing , and th e

fo rm atio n of gas bubbles and t h e i r expansion . The f i n a l lo a f o f b read i s

judged w ith p h y s ic a l measurements such as s iz e , g ra in , te x tu r e , and appear­

an ce . M ille r and Johnson (13) s t a t e , " th e re i s reason to b e lie v e th a t

p h y s ic a l dough t e s t s p rov ide th e b e s t p o te n t ia l means f o r a s s e s s in g f lo u r

q u a l i ty " .

■ S a t is f a c to ry baking r e s u l t s depend n o t o n ly on th e c h a r a c te r i s t i c s o f

th e f l o u r , bu t a lso on th e methods u sed . S ince th e b aker n e i th e r wants to

no r can a f fo rd th e c o s t o f working ou t a s a t i s f a c to r y method f o r o b ta in in g

th e b e s t r e s u l t s from every f lo u r which i s encountered , s tan d a rd baking ■

indexes f o r q u a l i ty have been e s ta b l is h e d . Wheat l o t s a re t e s t e d f o r t h e i r

a b i l i t y to meet th e requ irem ent o f th e se m il l in g and bak ing in d ex es . I t

rem ains th a t th e b re e d e r must produce w heats th a t w i l l meet th e se s tan d a rd s

- 27 -

MATERIALS AND METHODS

A c ro ss was made in I 950 between th e v a r ie ty Yogo and s e le c t io n 221

from a Turkey/Oro c ro s s . The group of samples used f o r t h i s s tu d y r e s u l te d

from th e progeny o f a s p e c i f ic p la n t of Yogo crossed w ith a s p e c if ic p la n t

o f Turkey /0 r o - 22l . Seeds from th e p la n ts were space p la n te d a t S p rin g -

h i l l , n ea r Bozeman, Montana. P la n ts showing dwarf smut r e s is ta n c e were

s e le c te d from each row, and th e r e s u l t in g seed was in o c u la te d w ith common

smut and grown in p la n t rows a t Bozeman in 1953«. T h ir ty - th re e Fg derived

l in e s were s e le c te d a s having r e s is ta n c e to sm ut.

These in d iv id u a l l in e s were handled accord ing to a method proposed

by Heyne and F inney ( 9 ) j whereby a f a i r l y . la rg e q u a n ti ty o f seed can be

produced from s o -c a l le d Fg d e riv ed l i n e s . This method c o n s is ts o f space

p la n tin g th e seeds fo r th e second g e n e ra tio n ; in o rder t h a t each p la n t can

be h a rv e s te d in d iv id u a l ly . In th e nex t seaso n , o r th e t h i r d g e n e ra tio n , an

in c re a se o f each Fg i s o b ta in e d . W ithout making s e le c t io n s , s u f f ic ie n t

seed i s produced in th e F4 g e n e ra tio n to p rov ide m a te r ia l th a t can be ev alu ­

a te d w ith m ill in g and baking t e s t s . The procedure may be re p e a te d in th e

F^ i f s u f f i c i e n t seed i s n o t o b ta in ed in th e F^. S e le c tio n s a re made in

th e F^ o r Fg g e n e ra tio n choosing th e Fg d e riv ed l in e s th a t have su p e r io r

p h y s ic a l , b ak in g , and agronomic c h a r a c te r i s t i c s .

This m o d if ica tio n of th e l in e or p ed ig ree method o f b reed ing p rov ides

a procedure whereby macro methods can be u t i l i z e d to determ ine th e q u a l i ty

c h a r a c te r i s t i c s of th e progeny o f a new c ro s s . These p ro ced u res , however,

make i t n e c e ssa ry to c a r ry a la rg e amount of m a te r ia l th rough th e F^ o r Fg

- 28 -

- 29 -

generation, which could be discarded i f the material could be evaluated

correctly in an earlier generation with a small amount of grain„

The Fg derived lin es used in th is study were grown at Bozeman in 1J53~

54, and at Bozeman, Creston and Havre in 1954-55° Fifty-head selections

were made from each of the 33 plant rows in the f a l l of 1955° Twenty-head

se lection s from each of the Fg lin es were seeded in head rows in the f a l l

of 1955 at Bozeman and in rod rows, replicated four tim es, in the f a l l of

1956 at Bozeman and Huntley. Doughball data for each of the 33 lin es were

obtained on seed from the 1953s 54s 55 and 56 crops from each location.

Protein information was also obtained for the same years and locations.

Samples representing the original 33 smut resistant lin es were obtained

by compositing the 1957 seed of the 20 selections from each lin e grown at

Bozeman and Huntley. These composite samples were evaluated for quality

with farinograph and baking t e s t s .

The doughball t e s t meets the requirements of a te s t for the early gen­

eration material in that i t requires only a small amount of seed. The re­

l ia b i l i t y of th is te s t in predicting the quality potential of a lin e was the

reason for making the comparisons evaluated in this, study.

The doughball te s t used in th is study was the "modified” method out­

lin ed by Laubach (12), which i s a modification of the procedure discussed

by Cutler and Worzella:. (5) . The modified doughball method that was used was

as fo llow s: f iv e m ill i l i t e r s of a yeast solution (60 grams of fresh com-

pressed yeast per 100 cc. of d is t i l le d water), one m il l i l i t e r of a potassium

bromate solution (one gram of KBrO per 500 CCi of d is t i l le d water), and

/

— 30 —

.05 grams of g lucose were added to te n grams o f whole wheat meal th a t had

been ground in a W iley m il l to pass th rough a one m ill im e te r s ie v e . This

m ix tu re was kneaded in to a doughball by working w ith th e thumb o f one hand

and th e palm of th e o th e r . When th e doughball s t a r te d to s t i c k , i t was th en

p laced in a 250 m l. beaker co n ta in in g 150 m l. o f d i s t i l l e d w a ter a t 30° C.

The beakers were p laced in a fe rm en ta tio n c ab in e t which was kep t a t a con­

s ta n t tem p era tu re o f 30° C. The tim e was reco rded when th e doughball was

p laced in th e w ater and ag a in when th e doughball d is in te g r a te d . The d i f f e r ­

ence o f th e recorded tim es was used as th e doughball tim e in d ex .

The doughball tim e d a ta ob ta ined w ere ev a lu a ted as means o f s e le c t in g

th e l in e s th a t were su p e r io r in q u a l i ty . This e v a lu a tio n was made by\

comparing th e se va lu es w ith fa rin o g rap h and baking d a ta o b ta in ed from seed

grown in 1957• There were tw e n ty -f iv e l in e s from which bo th doughball and

baking d a ta were a v a ila b le f o r com parisons. C o rre la tio n c o e f f ic ie n ts were

c a lc u la te d f o r th e r e la t io n s h ip between th e doughball. v a lu es and s t a b i l i t y .

S t a b i l i t y was chosen as th e b e s t c r i t e r io n , because i t ig g e n e ra lly accep ted

th a t m il le r s rank s t a b i l i t y o r to le ra n c e above a l l o th e r f a c to r s when con-

s id e r in g v a r i e t i e s , p a r t i c u la r ly th o se from Montana. ■ .■■ ■■

Ari a ttem p t was made to convert o r a d ju s t th e doughball v a lu es to aV / / - . • • • ‘

uniform p ro te in le v e l because i t was f e l t t h a t t h i s type o f an ad justm ent : •; / ' ' .

would overcome th e e f f e c t o f p ro te in c o n ten t on th e v a lu es o b ta ined from

th e fe rm e n ta tio n tim e t e s t . The approach to making th i s adjustm ent, was to' : . . ' ' ' . V . - ' 1 ' ’ : ' -t- ; ■ '

c a lc u la te re g re s s io n c o e f f ic ie n ts f o r th e t im e -p ro te in r e la t io n s h ip f o r th e

in d iv id u a l l in e s u s in g d a ta from th e v a rio u s y ears and lo c a t io n s . In t h i s

c a lc u la t io n , th e p ro te in l e v e l was considered as th e independent v a r ia b le

and th e doughball v a lu e as th e dependent v a r ia b le .

The average doughball tim e v a lu es f o r a l l years and lo c a t io n s were

th e n a d ju s te d to th r e e p ro te in l e v e l s , namely; 10 p er c e n t, 14 p er cen t

(mean p ro te in le v e l o f a l l sam ples), and 20 p e r c e n t. R eg ression l in e s

w ere drawn f o r each in d iv id u a l Fg d e riv ed l i n e .

The a d ju s te d doughball va lues were t e s t e d f o r c o r r e la t io n w ith s t a ­

b i l i t y . These c o r r e la t io n c o e f f ic ie n ts were compared to th e c o e f f ic ie n ts

o b ta in ed from th e re la t io n s h ip s between a c tu a l tim e va lu es and s t a b i l i t y .

S ca tterg ram s w ere drawn showing th e r e la t io n s h ip between doughball

tim e and s t a b i l i t y f o r th e v a rio u s y ears and lo c a t io n s . These diagrams

were used to determ ine which l in e s would su rv iv e when s e le c te d on th e

b a s is of doughball d a ta p ro g re s s iv e ly th ro u g h th e y e a r s .

- 31 -

— 32 —

RESULTS AND DISCUSSION

The doughball tim e v a lu es o b ta in ed f o r th e v a rio u s y ea rs and lo ca ­

t io n s a re p re sen te d in Table I . These values were o b ta in ed accord ing to

th e p rocedures o u tlin e d in th e m a te r ia ls and m ethods.

Table I . Wheat meal fe rm en ta tio n tim e v a lu e s , o b ta ined from Fgd e riv e d l in e s o f Yogo 2T Turkey/Oro 221 grown a t v a rio u s lo c a t io n s , 1953-1956«

Bozeman Bbzeman Bozeman C reston Havre C reston H untleyLine No 1953 1954 1955 1955- 1955 1956 1956

36 72* Sg 55 124 138 112 . 2.5237 l l 8 128 93 94 177 99 I0638 6 l 77 40 104 106 76 13539 59 33 62 134 112 149 14841 49 82 35 121 132 104 14243 66 . 57 162 126 123 14246 92 109 06 114 149 141 19147 9p 115 78 113 127 153 18148 76 139 72 129 I63 200 23049 100 §5 51 45 131 144 14851 97 81 60 105 152 193 l8853 52 HO 60 107 l l 8 95 15754 52 112 51 87 133 92 18355 56 106 58 120 127 109 15956 97 137 73 122 154 140 IgO57 52 119 95 125 135 116 18358 99 128 148 130 153 237

S T 3152123

8865

IbO125

13914b

155l i b

196215

61 64 HO 51 114 127 125 l8062 39 100 53 13b 124 122 18663 52 138 46 188 140 24764 57 lo6 92 152 173 114 19265 30 134 98 l l 8 122 432 20A66 57 178 ' 42 l 6 l 187 ■ 7 5 228

Average 71 & 122%

141 127 , 183

^V alues a re expressed in .m in u te s .

- 33 -

The p ro te in co n ten t o f th e in d iv id u a l l in e s was o b ta in ed fo r each y e a r

and lo c a t io n . These v a lues a re p re sen ted in Table I I . The re la t io n s h ip s

between th e se p ro te in v a lu es and doughball v a lu es were q u ite v a r ia b le .

The 1953 Bozeman crop was th e on ly group w ith a s ig n i f ic a n t r e la t io n s h ip

betw een p ro te in co n ten t and doughball v a lu e .

Table I I . Per cen t p ro te in o f Fg d e riv ed l in e s o f Yogo X Turkey/Oro 221 grown a t v a rio u s lo c a t io n s , 1953-1956»

Line NoBozeman

1953Bozeman

• 1954Bozeman

1955C reston

1955Havre1955

C reston 1956 •

H untley1956

36 10 .9 14.2 14 .0 13.9 13.2 I2 .4 20.A37 IO .9 1 3 .3 12.5 13.6 13.2 13.6 20.83° 11.8 14 .1 11 .9 13 .9 12.8 11.6 21 .639 11.2 14 .4 11.8 14 .9 13.8 13.6 20. 6 .41 11.4 13.7 12 .3 13.5 13.8 13.2 20.843 13.2 34.0 ' 11.2 14.0 13 .1 12.5 21 .446 10 .9 14.1 11.7 13.8 13.4 13.1 20.247 11.8 14 .1 10.6 13.9 13 .3 13.7 20.848 12.5 13 .0 10.7 13.5 12.2 13.2 21.049 11.2 13.6 11.7 ■ 13-9

13.2 13.8 20 .451 11.9 13 .9 11.9 14.8 12.7 13.1 2 0 .b53 10.2 14.5 11.2 14.5 13 .8 13.8 20.854 11.1 14.8 12.2 14.5 13.9 13.4 21 .055 10.5 14,5 14.5 13 .4 12.5 12.8 20.256 13.9 14.7 10.9 13.3 12 .9 13.2 21.257 10.9 15.3 12.5 14 .3 12.6 13 .1 20.850 13.5 13.7 11 .0 13 .0 13.2 13 .4 20.259 11.8 13 .1 10.6 13.2 11.9 12 ,4 21.060 10.5 14.6 11 .4 13.9 13.2 12 .3 21.161 11.9 14 .1 12.6 14.5 13.5 12 .7 . 20.362 11.1 14 .0 11 .9 14 .3 12.6 13.7 20.1

§3 11.8 14.5 11.0 13 .3 13.7 21.164 12.3 14 .0 12 .0 14 .4 13,4 1 2 .9 20.965 10 .8 14 .8 11.6 13.7 12.9 13.9 21.066 10 .3 14.8 12 .3 13 .6 13.0 13.8 20.9

Average 11.5 14 .1 11.8 13.9 13.1 13 .2 20.8

The fa rin o g ra p h curves o b ta in ed from th e l in e com posites grown a t

Bozeman in 1957 a re shown in F igu re 4 « The s t a b i l i t y v a lu es o b ta ined from

th e se curves and th e lo a f volume d a ta o b ta in ed from th e bake t e s t a re

p re sen te d in Table I I I . The l in e com posites were a ls o grown a t H untley in

1957, b u t th e s t a b i l i t y v a lu es o b ta in ed from th e se samples were a l l v e ry

h ig h ; and i t was f e l t th a t th e Bozeman 1957 fa rin o g rap h d a ta were more

u s e fu l in s tu d y in g th e d if fe re n c e in s t a b i l i t y o f th e re s p e c tiv e l i n e s .

- 34 -

Table I I I . F arinograph and baking d a ta o b ta ined from Fg derived l in e s o f Yogo X Turkey/Oro 221 grown a t Bozeman, Montana, in 1957«

Line A rr iv a l LoafNo. Time Peak S t a b i l i t y Volume .

36 4«5 6.5 5.0 8805«5 7«5 3.0 Sg?

3& 5 .5 6.5 3.0 88039 : 4.0 5 «o 2.0 88741 4 .5 5 .0 1.5 82043 4«5 6.0 4«5 86246 5 «o 9«o 10.0 §9747 5.0 6.5 5«2 §7548 6.5 9«5 8.5 - §5749 5 .0 G.o 4«5 §5051 5 «o 6.0 4«5 88053 4 .5 5«5 3«5 88754 4.0 6.0 5«5 85055 5 «o • 6.0 2,5 §2756 4«5 5«5 2.5 89257 4 «Q 5«5 82058 5 «o 7«5 B.o §7559 6 .0 7«5 3«5 84560 7«0 12.0 11,5 885Gi 6.0 8.0 6.5 85062 5.0 6.5 3-5 790§3 4 .5 6.0 3 .0 82564 5-5 8.0 8.0 8275.0 6.5 5-0 795GG 7.0 . 9 -o 5 -o 827

- 35 -

r58

Turkey/Oro

F igure 4 * Farinograph curves o b ta in ed from Fg d e riv ed l in e s ofYogo X Turkey/Oro 221 grown a t Bozeman, Montana, in 1957•

C o rre la tio n c o e f f ic ie n ts were c a lc u la te d f o r th e r e la t io n s h ip between

in d iv id u a l doughball tim e v a lu es and th e s t a b i l i t y d a ta o b ta in ed from th e

l in e s grown in 1%7 Bbzeman. The d i f f e r e n t com binations and th e co­

e f f i c i e n t s c a lc u la te d a re g iven in Table IW„ There was an apparen t r e l a t i o n ­

s h ip between th e p ro te in le v e l and .the amount of c o r r e la t io n between dough-

b a l l tim es and s t a b i l i t y . An average doughball tim e was c a lc u la te d f o r

each l i n e , u s in g th e v a lu es from seven y e a r - lo c a tio n o b se rv a tio n s . A c o r r e la t io n c o e f f ic ie n t was c a lc u la te d f o r th e r e la t io n s h ip o f t h i s average

v a lue and s t a b i l i t y . This c o e f f ic ie n t i s a ls o g iven in Table IW.

- 36 -

Table IV'„ C o rre la tio n c o e f f ic ie n ts o f doughball tim es a t v a rio u s lo c a t io n s w ith 1957 Bozeman s t a b i l i t y v a lu e s .

L oca tion and Year Average P ro te in r - v a lu e

Bozeman - 1953 11 .5Bozeman 1954 14 .1 .286Bozeman 1955 11.8 .227Havre 1955 13 .1 .208C reston 195b 13.2 .337H untley .1956 20 .8 •4b7*•Average, o f a l l y ea rs ,x lo c a t io n s .3735% le v e l - .39b1% le v e l - .505

To in v e s t ig a te th e p o s s ib i l i t y of a b e t t e r r e la t io n s h ip between j

doughball v a lu es and s t a b i l i t y a t a uniform p ro te in l e v e l , re g re s s io n

c o e f f ic ie n ts were c a lc u la te d fo r each l i n e . These re g re s s io n c o e f f i­

c ie n ts were o b ta in ed by co n sid e rin g th e p ro te in co n ten t a s the

independent v a r ia b le and th e doughball tim e as the dependent v a r ia b le .

-The re g re s s io n c o e f f ic ie n ts o b ta in ed a re p re sen ted in Table V.

. The average doughball v a lu es were a d ju s te d to th re e p ro te in le v e ls

by u sin g th e re s p e c tiv e re g re s s io n c o e f f ic ie n t s . These a d ju s te d v a lues

a re a ls o g iven in Table ¥ .

- 37 -

Table V. R egression c o e f f ic ie n ts and doughball v a lu es a d ju s te d to uniform p ro te in le v e ls from d a ta o f Fg d eriv ed l in e s o f Yogo X Turkey/Oro 221 grown a t v a r io u s lo c a t io n s , 1953- 195^°

Line No. byxAverage doughball v a lu es(u n ad ju s ted )

A djusted doughball va lu es IOfo I 14% I 20%

36 6 .69 107.3 79.9 107.1 146.837 5.50 125.0 103.0 125.4 158.038 7.02 85.6 57.5 86 .1 I27.739 6.87 108.2 70 .0 106.1 158.741 3 .11 95.0 57.6 94.7 148.743 b .51 103.0 75.7 102,2 I4O.846 10.53 126.0 §4.9 127.8 190.247 9.65 122.2 83.5 122.8 l8 0 .048 13.10 144.2 95.6 148,9 . 226.649 7 .25 100.6 71.5 101.0 144.051 9.08 125.2 87.9 124.8 , S g .?53 ,9.97 99.9 59.0 99.6 ,158.754 13.33 101.5 42.8 97.9 . ,176.055 7.91 105.0 72.6 104.8 151,756 »22 130.5 - 90,8 128.3 ,183.0 '57 10.62 117.9 7 3 J 116.5 :179.558 16.62 137.9 71 .4 I39.I 237.659 7,5& 147.7 121.9 152.8 197.760 14.66 U 9 .0 6 l .8 121,5 2O8.461 ■ 11.34 111.3 63,7 409,8 ..,177.462 14.82 198.6 49.2 ■ ' 197.5§3 -18.90 135.3 1 "3 2 .6 I0 9 .6 221.6 -64 i1 .1 1 I35.3 87.3 132.5 . 19§.465 14.55 . 120.5 120 ,0 206.266 . 16.30 132.6

' • ' : , , ■65.8 132.1 „ 228.8

,r-( tim e vs s t a b i l i t y • • .373 .145 ■ ’ .444*

The a d ju s te d values were c o r re la te d w ith s t a b i l i t y ; and a much b e t t e r

r e la t io n s h ip e x is te d when th e v a lu es were a d ju s te d to 20 p e r cen t p ro te in

th an a t 14 p er c e n t„ This b e t t e r r e la t io n s h ip , which e x is te d a t a h ig h e r

le v e l o f p ro te in th an a t a low er l e v e l , was in agreement w ith th e t r e n d

observed when th e in d iv id u a l y e a r by lo c a t io n r e la t io n s h ip s w ith s t a b i l i t y

were s tu d ie d .

R egression l in e s f o r each of th e Fg d e riv ed l in e s were drawn f o r th e

a d ju s te d v a lu es o b ta in ed by ap p ly in g th e r e s p e c t iv e re g re s s io n c o e f f ic ie n t

to the. av erag e doughball v a lu e s . These re g re s s io n l in e s a re shown in

F ig u re 5« There appears t o be a grouping of th e s e l in e s in to th o se having

above av erage s t a b i l i t y and th o se having low s t a b i l i t y . The s tro n g e r th e

s t a b i l i t y , th e s te e p e r th e l i n e .

I t would appear from th e low c o r r e la t io n between doughball tim e and

s t a b i l i t y when in d iv id u a l y e a r ly lo c a t io n s w ere considered ^ tha t s e v e ra l 1

y e a rs o r lo c a t io n s a re n ecessa ry b e fo re a r e l i a b l e p re d ic tio n o f q u a l i ty

can be made from th e d o u g h b a ll. S ca tterg ram s o f each lo c a tio n -y e a r were

drawn showing th e r e la t io n s h ip between doughball tim es and s t a b i l i t y .

These sca tte rg ra m s a re p re sen te d in F igure 6 .

I t i s ap p aren t from th e se sca tte rg ram s t h a t th e l in e s having good

s t a b i l i t y would no t be d isca rd ed i f s e le c t io n s were made on th e b a s is of

doughball tim e . The b a s is fo r s e le c t io n accord ing to doughball d a ta was

to use a v a lue re p re se n tin g th e mean le s s te n per c e n t. That i s , i f th e

mean doughball v a lu e o f a p a r t i c u la r lo c a t io n were 100, th e le v e l f o r

s e le c t io n would have been 90.

A t r u e measure o f th e v a lue o f th e doughball as a means o f s e le c t in g

l in e s w ith d e s ir a b le c h a r a c te r i s t i c s cannot be mad^ w ith c o r r e la t io n ,

- 38 -

Dou

ghba

ll ti

me

- 39 -

P ro te in le v e l (%)

F igure 5 » R egression l in e s showing th e r e la t io n s h ip o f th e in d iv id u a l Fg d eriv ed l i n e doughball va lu es and p ro te in c o n te n t.

136417

— 40 —

« •

___ i_!

:

• »

* * - r

• 0

?

• t y" •

• ' . *.

Bozeman1954

Bozeman1953

# •

e «

C

I•

• • 1 * y

♦ , 0

* #

• • • •

C

«1

• .

5 » y0 * '

»

Havre1955

&# •

I

I C reston1955C

,

• •

* , y

I •% I

# •

K

•* •

’ » * » V

#

• • : •

H untley1956

. ' #

I

• ^

Average

• # #

E

• • • ' . V• H . : * * Bozeman

1955

:

•* #

F •&

» •

• -. •

•»♦

• # y

C reston1956

X« •

4

:S

4 —

* y« , »• j•,«

" :•

Average ad ju s ted to 20 p er cent p ro te in

X a x is = s t a b i l i t y Y a x is = doughball tim e

F igu re 6 . R e la tio n sh ip s among doughball tim es and s t a b i l i t y of Fg d e riv ed l in e s o f Yogo X Turkey/Oro 221 grown a t s e v e ra l lo c a t io n s in Montana, 1953- 1956•

— 4-1 “

c o e f f ic ie n ts a lo n e . An e v a lu a tio n was made to determ ine th e l in e s which

would have su rv ived s e le c t io n on th e b a s is o f doughball d a ta through th e

p e rio d o f y ea rs invo lved in t h i s s tu d y . The r e s u l t s of t h i s s e le c t io n

s u rv iv a l e v a lu a tio n a re p re sen ted in Table VI.

Table V I. Fg d eriv ed l in e s o f Yogo X Turkey/Oro th a t were s e le c te d on th e b a s is of doughball tim e d a ta .

LineNo.

Year and lo c a tio n where grown ( l in e s s e le c te d a re in d ic a te d by a s te r i s k )Boz. Boz.

19541Boz.1955

Havre1955

C reston19551 1956

Hunt.1956

Q u ality r a t in g 1 2 S t a b i l l t y - Loaf Vol

* * * * * * * *

#

****

-#■

***

*#

* * *# * #* # *

* **

* ** * ** * ** * *# # #* * ** ■«■ *

* ** * *

** *

* #** #* * ** * *# # ■#■

# *

*

* * *» #* * ** * ** -H- ** -H *- H - H - H

H HH HH H H H H

0

+

++++

+

++

©

1 Q u a lity r a t i n g : + f o r average o r above and - as below average2 L ines e n c irc le d a re th o se t h a t su rv ived s e le c t io n on b a s is of

doughball t im e .

Tw enty-eight p e r cen t o r seven o f th e l in e s s tu d ie d su rv iv ed s e le c ­

t i o n on th e b a s is o f doughball d a ta . Of th e s e seven l in e s s e le c te d , f iv e

e x h ib ite d bo th above averag e s t a b i l i t y and lo a f volume. One l in e saved

was below av erage in s t a b i l i t y as w e ll as l o a f volum e. Three l in e s having

good s t a b i l i t y were l o s t w ith t h i s c r i t e r io n o f s e le c t io n s . However, a l l

th r e e o f th e se l in e s were below average as f a r as lo a f volume was concerned .

L ine number 5% t h a t was saved having low s t a b i l i t y and low lo a f volume,

was observed to have a re g re s s io n l i n e w ith le s s s lo p e th an th e o th e r l in e s

th a t were s e le c te d . . This in d ic a te s th a t th e doughball v a lu es o f t h i s l i n e

were being in flu en c ed to a g r e a te r degree by th e q u a n t i ty than by th e

q u a l i ty of th e p ro te in p re s e n t.

— 42 —

SUMMARY- 4 3 -

Tw enty-five Fg d e riv ed l in e s from a c ro ss between Ybgo and Turkey/Oro

were used in t h i s s tu d y to examine th e u se fu ln e ss o f th e doughball tim e

t e s t . These l in e s w ere developed accord ing to a method o u tlin e d by Heyne

and F in n e y .(9 ) . With t h i s method, a la rg e q u a n tity of seed i s produced

from so c a l le d Fg d e riv ed l i n e s . .

Doughball tim e v a lu es were^ o b ta in e d a t s e v e ra l lo c a t io n s during the

y e a rs 1953 th rough I 956. These Values were c o r re la te d w ith s t a b i l i t y o f

th e g ra in produced a t Bozeman.in 1957« I t was observed th a t a b e t t e r r e ­

la t io n s h ip e x is te d between doughball tim e and s t a b i l i t y when th e p ro te in

l e v e l o f th e g ra in used was above 14 p e r c e n t. When a l l doughball v a lu es

f o r each l in e were tak en in to c o n s id e ra tio n and th e se v a lu es a d ju s te d to

th e sample mean p ro te in l e v e l , a s ig n i f ic a n t r e la t io n s h ip e x is te d . This

ad ju stm en t was made by c a lc u la t in g re g re ss io n c o e f f ic ie n ts o f each l in e

f o r the r e la t io n s h ip between p ro te in and doughball t im e . The average

doughball v a lu es were a lso a d ju s te d to a 20 p e r cen t p ro te in l e v e l . When

th e se v a lues were c o r r e la te d w ith th e 1957 s t a b i l i t y , a c o e f f ic ie n t of

.502* was o b ta in e d .

The p re d ic t iv e v a lu e of th e doughball t e s t was ev a lu a ted by study ing

th e e f f e c t o f s e le c t io n on th e b a s is o f th e doughball d a ta ob ta ined in

th e e a r ly g e n e ra tio n s . This was done by determ ining which s e le c t io n s

would have been saved when th e l in e s were s e le c te d t h a t had doughball

v a lu es above th e s e le c t io n l e v e l . The s e le c t io n le v e l used was o b ta in ed by

reduc ing th e mean doughball v a lu e by 10 p e r c e n t„ On t h i s b a s is seven l in e s

would have been s e le c te d as having d e s ira b le breadmaking c h a r a c te r i s t i c s .

F iv e o f th e s e seven l in e s s e le c te d had b o th above average s t a b i l i t y and above

average lo a f volume. T h re e .lin e s having good dough s t a b i l i t y were d isc a rd e d ,

bu t th e se l in e s had poor lo a f volume.

D oughball d a ta from se v e ra l y ea rs and lo c a tio n s had to be combined be­

fo r e a s ig n i f ic a n t c o r r e la t io n was o b ta in ed between tim e and s t a b i l i t y .

•The v a lu es o b ta in ed a lso had to be a d ju s te d t o a uniform p ro te in l e v e l . The

l in e s w ith bo th good s t a b i l i t y and lo a f volume were s e le c te d on th e b a s is

o f th e doughball d a ta . S e v e ra l weak s e le c t io n s were saved by using dough­

b a l l d a ta , b u t a l l th e good ones were a lso s e le c te d . The p la n t b reed e r can

a f fo rd t o c a r ry a few poor q u a l i ty l in e s r a th e r th an u se a t e s t th a t would

e lim in a te some l in e s having d e s ira b le c h a r a c te r i s t i c s .

1 - 44 -

(

- 45 -

LITERATURE CITED

1. BAYFIELD,, E. Cr. O bserva tions on th e wheat meal fe rm e n ta tio n t e s t .Jo u r . Am.-Sbc„• Agron. 27524I-250. 1935

2 . BRABEKTDER,# S. W. S tu d ie s w ith th e fa rin o g ra p h fo r p re d ic t in g th e■ most s u i ta b le ty p e s o f American export w heats and f lo u r s fo r m ixing w ith European s o f t wheat f l o u r . C erea l Chem. 9 5 617-627. 1932.

3 . COLEMAN, D-. A.., SNIDER, -S. R ., and DIXON, H. B. The d i a s t a t i ca c t i v i t y o f whole wheat and some o th e r g ra in s as determ ined by th e B lish -S a n d s te d t method. C erea l Chem» 1 1 ; 523- 53^• 1934«

4 . -CUTLER, 0 . H. and WORZELLA, W. W. A m o d ifica tio n o f th e SandersT est f o r m easuring q u a l i ty o f w heats f o r d i f f e r e n t pu rposes.J o u r . Am. Soc. Agron. 23s1000- 1OO9. 1931«

5 . CUTLER, G. H. and WORZELLA, W. W. The wheat meal fe rm e n ta tio n tim et e s t o f q u a l i ty in wheat as adap ted f o r p la n t b reed in g sam ples. C erea l Chem. 10:250-262. 1933.

6. HARRIS, R. H. and BRUNER, Cr. H. E ffe c t o f wheat v a r ie ty and growthlo c a t io n upon th e s p e c i f ic volume o f f l o u r . C erea l Chem. 3 2 :416-4 2 0 . 1955 .

7 . HARRIS, R. H. and SANDERSON, T. A. A comparison between th e 100 and25 gram baking m ethods, C erea l Chem. 155251-256. 193®»

8 . HAYES, H. R ., IMMER, F . R,. and BAILEY, C. A. C o rre la tio n s tu d ie sw ith d iv e rs e s t r a in s of sp r in g and w in te r wheat w ith p a r t i c u la r re fe re n c e to in h e r ita n c e o f q u a l i ty . C erea l Chem. 6:85-96» I 928.

9 . HEYNE, E. G. and-FINNEY, K. F . W interw heat b reed in g f o r q u a l i ty inK ansas. C ont. No. 497 , Dept, of Agron. and Gont. No. 248, Dept, o f F lo u r and-Feed M il l in g ,In d . Kansas Agr. Exp. S ta . 1954«

■1 0 . JOHNSON, J . A ., SWANSON, C. 0 . , and BAYFIELD, E. Cr. The c o r re la t io n o f mixograms w ith baking re s u l ts , . C ereal Chem. 20:625-644» 1953«

11 . KOLAR, J . J . The u se o f th e wheat meal fe rm en ta tio n t im e t e s t inwheat improvement programs a s a means of e v a lu a tin g m illin g and baking q u a l i ty of h a rd red w in te r w heats. S p e c ia l Problem,

• Montana S ta te C o lleg e . 1950 (u n p u b lish ed ).

- 46 -

12 . LAUBAGH, W. F . The use o f th e wheat meal fe rm e n ta tio n tim e t e s t inwheat improvement programs a s a means of e v a lu a tin g m illin g and baking q u a l i ty of hard re d w in te r w heats. Special- Problem .Montana S ta te C o lleg e . 1953« (unpublished)

13 . MILLER, B. S . and JOHNSON, J . A. A review of methods f o r determ in ingth e q u a l i ty o f wheat and f l o u r fo r breadm aking. Kansas S ta te C ollege Tech. B u lle t in 76 . 1954«

14. MILLER, B. S-. and JOHNSON, J , A. T estin g wheat f o r q u a l i ty . BakersD ig e s t. 1956.

15 . MILLER, H ., EDGAR, J . , and WHITESIDE, A. G. An improved sm a ll-s c a ledough expansion t e s t f o r th e e s tim a tio n o f wheat q u a l i ty . C erealChem. 31:433-438. I954 .

16. MORRIS, V. H ., BODE, C. E . , and HEIZER.,. H. K. The u se of th e mixo-gram in e v a lu a tin g q u a l i ty in s o f t wheat v a r i e t i e s . Gerfeal Chem.2 1 :49 -57 . 1944.

17. PINCKNEY, A.. J . , GREENAWAY, W. T„, and ZELENY, L. F u r th e r develop­ment in th e sed im en ta tio n t e s t f o r wheat q u a l i ty . C erea l Chem. 3 4 :16- 25 . 1957.

1 8 . POOL, J . R. Marching w ith th e g ra s s e s . U niv. N ebr. P re s s . L inco ln ,N ebraska. 1944«

19. REITZ> L. P . Aims o f th e p la n t s c i e n t i s t in b reed in g wheat fo rq u a l i ty . C erea l S cience Today. 2 :148- 151 . 1957«

2 0 . SCHAFFER, W. R. The Zeleny sed im en ta tio n t e s t a p p lie d to Germanw heats. C e rea l Science Today. 2 : l 6- 19« 1957« ■

2 1 . SCHLEHUBER, A. M. P rog ress in b reed in g fo r b read wheat q u a li tyin North America. C ereal S cience Today. 2 :246-249 . 1957«

2 2 . SEEBORG, E. F . and BAHMORE, M. A. A new f iv e gram m ill in g q u a l i tyt e s t and i t s use in wheat b reed in g . C ereal Chem. 34 ;299~303«1957«

23. PELSHEN-KE, P , A s h o r t method f o r d e te rm in a tio n o f g lu te n q u a l i tyo f w h ea t. C erea l Chem. .10 :9 0 -9 6 . 1933«

24. SHELLENBERGER, J . A. The s to ry o f wheat development in Kansas.C erea l Science Today. 2 :7 4 -7 7 . 1957«

I

25. SHELLENBERGER, J t, A ., SHOGRENs M.s and LAUDEs H. . H. M icrotechniquesa p p lie d to w heat q u a l i ty e v a lu a tio n . Jo u r, Am. Soc. Agron.50;151-153. 1958.

2 6 . SWANSONs C. 0 . and WORKING, E. B. T estin g th e q u a l i ty o f f lo u r byth e re c o rd in g dough m ixer. C erea l Chem. 1 0 :1- 2 9 . 1933*

2 7 . SWANSON, C0 0 , F a c to rs th a t in f lu e n c e r e s u l t s in th e wheat mealfe rm e n ta tio n tim e t e s t . C erea l Chem. 14 :41 9 ° 1937°

28 . SWANSON, C. 0 , Wheat and f lo u r q u a l i ty . Burgess P u b lish in g Co.M inneapolis , Minn. I 938.

2 9 . SWANSON, C. 0 . F a c to rs which in f lu e n c e th e p h y s ic a l p ro p e r tie s of dough * E ffe c t o f p ro te in con ten t and ab so rp tio n on th e p a tte rn

. o f curves made on reco rd ing dough m ixer. C erea l Chem. 18:615-627. 1941

. SWANSON, C. 0 . C o llo id a l a sp e c ts o f dough. The M il le r . A p ril I ,1946. -

- 47 -

30

»

MONTANA STATE UNIVERSITY LIBNARIES

762 1001 2795 8

T I '

N378 —B193e 136417cop. 2

Baldridge. D. E. ,An examination of the wheat me ferm entation time t e s t as a to o l fo r e v a lu a tin g ...

Il

IMAMK ANO AOOKKeKm m ii 7* INTERLIBRARY LOAN

' -5

/ I / . ?

I ' ^ yc3