an enzyme leach b-horizon soil geochemical profile over ... · results ... the enzyme leach...

38
OPEN FILE REPORT OPEN FILE REPORT Manitoba Industry, Trade and Mines An Enzyme Leach B-Horizon Soil Geochemical Profile Over the Pipestone Ti-V Deposit (South, Disseminated and North Contact Zones), Pipestone Lake, Manitoba (NTS 63I/5 and 63I/12) OF99-10 By M.A.F. Fedikow

Upload: buidat

Post on 01-May-2018

215 views

Category:

Documents


2 download

TRANSCRIPT

OP

EN

FIL

ER

EP

OR

TO

PE

NF

IL

ER

EP

OR

T

ManitobaIndustry, Tradeand Mines

An Enzyme Leach B-Horizon SoilGeochemical Profile Over the

Pipestone Ti-V Deposit(South, Disseminated and

North Contact Zones),Pipestone Lake, Manitoba

(NTS 63I/5 and 63I/12)

OF99-10

ByM.A.F. Fedikow

Cover:

Georeference:

Keywords:

Soil profile in the vicinity of the Pipestone Lake Ti-V deposit.

NTS area(s) 63I/5 and 63I/12

geochemistry soils

base metals Manitobachlorine Pipestone Lakeenzymes

horizons titaniumleaching vanadium

soil profiles

Suggested reference:Fedikow, M.A.F. 2000: An enzyme leach b-horizon soil geochemical profile over the Pipestone Ti-V

deposit (south, disseminated and north contact zones), Pipestone Lake, Manitoba(NTS 63I/5 and 63I/12); Manitoba Industry, Trade and Mines, Geological Services,Open File Report OF99-10, 34 p.

Open File Report OF99-10

An Enzyme Leach B-Horizon SoilGeochemical Profile Over the Pipestone Ti-VDeposit (South, Disseminated and NorthContact Zones), Pipestone Lake, Manitoba(NTS 63I/5 and 63I/12)by M.A.F. FedikowWinnipeg, 2000

ManitobaIndustry, Tradeand MinesGeological Services

Industry, Trade and Mines

Hon. MaryAnn MihychukMinister

Hugh EliassonDeputy Minister

Geological Services

C.A. KaszyckiDirector

This publication is available in large print, audiotape or braille on request.

TABLE OF CONTENTS

PageSummary .................................................................................................................................................................1Introduction ............................................................................................................................................................1Geological setting of the Pipestone Lake anorthosite complex (PLAC)

and Ti-V-Fe mineralization .....................................................................................................................................1Sample collection and preparation .........................................................................................................................3Sample analysis ......................................................................................................................................................3

Enzyme leach ..............................................................................................................................................3Results ....................................................................................................................................................................5

Field duplicate pairs ......................................................................................................................................5Enzyme leach profiles ..................................................................................................................................5Anomaly:threshold ratios for indicator elements ..........................................................................................10INAA and ICP-AES profiles ........................................................................................................................10

Discussion ..............................................................................................................................................................10Geochemical contribution of parent soil to enzyme leach anomalies .........................................................10Sulphide mineral associations ....................................................................................................................10Niobium, cesium, barium and chlorine anomalies ......................................................................................13

Conclusions ...........................................................................................................................................................13Acknowledgements ................................................................................................................................................13References .............................................................................................................................................................14

FIGURES

Figure 1: Location map for the Pipestone Lake Ti-V deposit enzyme leach survey ...............................................2Figure 2: Local geology of the Pipestone Lake area ...............................................................................................3Figure 3: Detailed geology and the location of the enzyme leach b-horizon sampling transect,

Pipestone Lake Ti-V deposit ..................................................................................................................4Figure 4: Enzyme leach profiles for Cl, Ti, Ni and Cu over the Pipestone Lake Ti-V deposit .................................7Figure 5: Enzyme leach profiles for Zn, Ga, Nb and Cs over the Pipestone Lake Ti-V deposit .............................8Figure 6: Enzyme leach profiles for Ba and Pb over the Pipestone Lake Ti-V deposit ..........................................9Figure 7: Neutron activation profiles for Co, Cr and Ni over the Pipestone Lake Ti-V deposit ..............................11Figure 8: ICP-AES profiles for Cu, Ni and Mg over the Pipestone Lake Ti-V deposit ...........................................12

TABLES

Table 1: Descriptive statistics for elements greater than the lower limit of detection (LLD) ..................................6Table 2: Comparison of parent soil types and levels of concentration of indicator elements

at these sites .........................................................................................................................................9Table 3: Anomaly:threshold ratios for indicator elements over the Pipestone Lake Ti-V deposit ........................10Table 4: Spearman correlation coefficients for enzyme leach indicator elements,

Mn and semi-quantitative Cl (SQCl) ....................................................................................................12

APPENDICES

Appendix I: Enzyme leach field sample descriptions .........................................................................................15Appendix II: Enzyme leach/ICP-MS analytical data for sampling transect L31+50

and field duplicates .......................................................................................................................16Appendix III: Enzyme leach element profiles over the Pipestone Lake Ti-V deposit ...........................................22Appendix IV: Neutron activation and inductively coupled plasma-atomic emission

spectrometry analytical data for sampling transect L31+50 .........................................................32

iii

SUMMARY

The Pipestone Lake Ti-V-Fe deposit comprises disseminated to near-solid ilmenite and magnetite withina late Archean sill-like layered intrusion known as thePipestone Lake Anorthosite Complex (PLAC). Thedeposit is described as comprising 730 000 000 tons ofwhich 685 000 000 tons averages 70.74 m true width,6325 m length with a grade of 8.37% ilmenite, 17.89% magnetite and 0.2% vanadium pentoxide. Included in thegrade and tonnage is 243 000 000 tons in the MainCentral Zone and the Disseminated Zone that grades 9.28% ilmenite, 23.6% magnetite and 0.28% vanadium pentoxide (Gossan Resources Limited, 1998).A magmatic origin for the Fe-Ti-V mineralization is indicated.

A single transect of 27 b-horizon soil samples wascollected at 25 m sample spacings from hand-dug pits.These were analyzed using the enzyme leach procedureto document single and multisample, low- to moderate-contrast geochemical anomalies over the deposit.Indicator elements comprise the commodity element Ti,late, structurally controlled sulphide-bound metals (Ni,Cu, Pb, Ga, Zn), Nb (Nb-bearing rutile?), Cl, Cs and Baintroduced during late potassium metasomatism.Chlorine forms the widest anomalous response on thetransect and encompasses both the South and Disseminated Zones. The highest contrast anomaly-forming metals include Cu and Cs.

The enzyme leach responses over the DisseminatedZone is a "composite" signature, with the magnitude ofthe anomaly related, in part, to the composition of the parent material. Neutron activation (INAA) and inductively coupled plasma-atomic emission spectrometry (ICP-AES) document high Ni, Co, Cr, Cuand Mg in one of the soil samples marked by an enzymeleach anomaly. The soil at this site is a chrome greenresiduum of the mafic-ultramafic host rocks to the mineralization. This suggests that at least a portion of theenzyme leach anomaly is controlled by metal strippingfrom a detrital component in the soil derived from thePLAC. Enzyme leach responses, however, are markedby multisample, higher contrast anomalies rather than asingle sample spike in INAA and ICP-AES data.

An enzyme leach geochemical survey can assist inthe exploration of repetitions and/or extensions of thisstyle of mineralization particularly since host rocks havebeen overprinted with a late potassium metasomaticprocess and a suite of related sulphide-bound metals.The broad Cl anomaly may be the most useful of the indicator elements for exploration purposes.

INTRODUCTION

Surficial deposits, such as till, lacustrine sand, silt,clay and peat represent serious impediments to mineralexploration. Although the analysis of various size fractions of glacial till, and to some degree boulder tracing, has been successful in delineating gold- andbase metal-enriched heavy metal dispersion fans, the

explorationist is still required to search "up-ice" or withinthe areal influence of these dispersion trains for thesource of the anomalies. In some instances, the till dispersion fans can attain considerable areal dimensions(cf. Kaszycki, 1989). The recent development of geochemical techniques based on sequential, phase-specific and partial digestions coupled with analyticaltechnological advances that permit routine part per billionanalysis has provided an opportunity to "see through"transported and other types of overburden. Anomaliesdefined in this manner generally occur directly over, or inthe immediate vicinity of, the mineralized zone. Theenzyme leach approach to geochemical prospecting represents a commercially available technique that hasapplication to blind and/or buried mineralization. Thisanalytical technique formed the basis for the orientationsurvey conducted over the Pipestone Lake Ti-V deposit.

GEOLOGICAL SETTING OF THE PIPESTONE LAKEANORTHOSITE COMPLEX (PLAC) AND Ti-V-Fe MINERALIZATION

The Pipestone Lake Anorthosite Complex is locatedon the south shore of Pipestone Lake in the Cross Lakeregion of central Manitoba (Fig.1) and is within or proximal to the Cross Lake greenstone belt. The lateArchean PLAC is a sill-like layered intrusion that is 17 kmlong, and averages 800 m in width and contains greenschist to lower amphibolite facies mineral assemblages.

It is flanked to the north by basalt and minor sedimentary rocks of the Pipestone Lake Group and tothe south by tonalite gneiss of the Whiskey Jack GneissComplex (Fig. 2). Numerous east-trending shears areobserved in the area.

The geological setting of the Ti-V-Fe mineralizationwithin the Pipestone Lake Anorthosite Complex has beenthe focus of renewed interest since the publication ofManitoba Energy and Mines Open File Report OF92-1(Cameron, 1992). This report concentrated primarily onthe geological mapping of the PLAC and was subsequently followed up by studies of the characteris-tics of the Ti-V-Fe oxide mineralization in the western partof the PLAC (Peck et al., 1994a, b) and in the central andeastern portions of the PLAC (Jobin-Bevans et al., 1995,1996). Recently, Peck et al. (1998) discuss new insightsinto the PLAC and contained Ti-V-Fe oxide mineraliza-tion.

The disseminated and massive oxide mineralizationin the PLAC form four separate and distinct, laterally continuous layers and layered sequences. The SouthZone is characterized by disseminated, near-solid tosolid oxide ilmenite and magnetite mineralization within interlayered leucogabbro, gabbro, and melagabbro. TheMain Central Zone comprises near-solid to solid oxidelayers that interdigitate with oxide mineralization-bearinggabbro and melagabbro. It varies in thickness from <1 to>20 m. The Main Central Zone is overlain by theDisseminated Zone that comprises a homogeneousmelagabbro layer with a consistent (>10%) content of

1

2

Figure 1: Location map for the Pipestone Lake Ti-V deposit enzyme leach survey.

ilmenite. The lower portion of the Disseminated Zone ismagnetite-enriched. The most northerly of the oxide mineralized zones in the North Contact Zone comprisesoxide-enriched garnetiferous sequences of melagabbro,gabbro, minor leucogabbro and pyroxenite. The NorthCentral Zone is marked by more variable and higherilmenite contents (10-20%) than the underlyingDisseminated Zone. The Disseminated Zone containslate-stage, rare, near-solid to solid ilmenite veins.

Although the current genetic interpretation for the Fe-Ti-V oxide mineralization is magmatic (Peck et al.,1994a), recent field evidence documents solid ilmenite-magnetite stringers that may have been produced as a result of unspecified sedimentary process-es (Jobin-Bevans et al., 1995).

For more detail regarding the geology and nature ofthe oxide mineralized zones in the PLAC, the reader isdirected to the publications cited above. The preceedinggeological description was derived from Jobin-Bevans etal. (1995).

SAMPLE COLLECTION AND PREPARATION

A total of 27 b-horizon soil samples and two duplicatepairs were collected from hand-dug pits on the samplingtransect (Fig. 3). Line 31+50 was selected for sample collection since it crosscuts the South, Disseminated andNorth Contact Zones. Samples were collected from stations 25 m apart and consist of approximately 1 kg of

damp inorganic silty clay, sand and silt b-horizon material that was stored in medium-sized ZIPLOCTM

freezer bags. Parent material collected at site GR-23 is distinctly different from other samples collected along thetransect. The sample comprises chrome green silt interpreted to represent weathered mafic-ultramaficrocks of the PLAC. B-horizon was encountered at anaverage depth of about 30 cm. Care was taken toexclude all organic material from the sample. Samplingwas undertaken in late September and ambient air temperature was constant at approximately 15oC.Sample preparation was undertaken in the laboratories ofthe Geological Services Branch. Samples were air driedon plastic, disposable plates and sieved to obtain the -60mesh size fraction. The -60 mesh size fraction was forwarded to Activation Laboratories Ltd. (Ancaster,Ontario) for multi-element ICP-MS analysis subsequentto enzyme leach extraction. Samples from stations1+50N, 6+25N, 6+50N, 6+75N and 7+00N on the sampling transect were unavailable due to wet swampand disturbed ground.

SAMPLE ANALYSIS

Enzyme leachThe enzyme leach process is a phase-specific leach

that preferentially attacks amorphous manganese oxidecoatings on mineral grains, thereby liberating trace metals that are trapped in this material. Amorphous

3

Figure 2: Local geology of the Pipestone Lake area (modified after Cameron, 1992).

4

Figu

re 3

:Det

aile

d ge

olog

y an

d th

e lo

catio

n of

the

enzy

me

leac

h b-

horiz

on s

ampl

ing

trans

ect,

Pipe

ston

e La

ke T

i-V d

epos

it.

5

manganese oxide represents an efficient chemical sieveor trap for cations, anions and polar molecules becauseof its large surface area and the random distribution ofsurface charges. The trace elements that are trapped orcomplexed on the amorphous manganese oxides areinterpreted to represent the chemical signatures ofburied, oxidizing mineralization at depth, rather than signatures originating from a transported overburdensource, such as till. It should be noted, however, thatwhere b-horizon development takes place in till the geochemical signature within the b-horizon may bestrongly affected by the weathering of till and the resulting subsequent downward movement of metals.This effect could produce a "transported" till geochemicalsignature in combination with the site specific mineralization-related geochemical signatures and acomposite signature overall. The possible contribution ofparent sediment composition to the overall enzyme leachsignature is not well understood.

Most of the amorphous manganese oxide is developed in the b-horizon, where studies in both aridand humid geological and climatic environments haveestablished that mineral particles within this soil horizonare coated with this authigenic material. The a-soil horizon may not reflect geochemical anomalies identifiedin the b-horizon since the a-horizon may be fairly rapidlyleached of its metallic components. Leached metals arecarried downwards, perhaps as humic- or fulvic-acidcompounds (humates/fulvates?), and trapped or sievedas they encounter the amorphous Mn-oxide coatings on mineral grains in the b-horizon. The chemical composition of the a-horizon can also be significantlyimpacted by the metal content of vegetation contributinglitter to the forest floor. This litter will reflect metalsobtained by vegetation during nutrient acquisition fromsoil horizons tapped by root systems. Accordingly, the a-horizon geochemical signature can reflect the ability ofvarious species to acquire and store metals until suchtime as they are dropped to the forest floor, decomposeand move downward in the soil profile. This source ofmetal may therefore reflect a transported metal signaturerepresenting a clastic component within an exotic till atdepth rather than a buried mineralization signature.

In the vicinity of oxidizing mineralization, the diffusionof relatively volatile metal phases, or metal transport bygases such as Hg-vapour, CO2, Rn, He, N, O2, CO4, Arand S-compounds, undoubtedly occurs as a result of anumber of processes. Metal transport may be effected bydevelopment of an electrochemical or self-potential cell,or possibly as components in soil gases derived frommantle de-gassing (cf. Gold and Soter, 1980; "geogas",Malmquist and Kristiansson, 1984; "earth-gas", Wang etal., 1997). The role of shallow groundwater as the trans-port medium for metals from source to surface is alsobeing investigated (Stewart Hamilton, pers. comm.).Metals carried by one or more of these mechanisms willenrich the amorphous Mn-oxide in the b-horizon in met-als.

The leachate from the b-horizon soil is analyzed byICP-MS for multiple elements at detection limits in the

parts per billion range. Clark (1992, 1993) provides theory and application of the enzyme leach method.

RESULTS

B-horizon soil sample descriptions and the analyticaldata derived from the enzyme leach/ICP-MS procedure,including field duplicate pairs, is presented in AppendicesI and II, respectively. Analyses below the lower limit ofdetection (<LLD) were converted to half the value of theLLD for graphical and statistical procedures. All elements>LLD were plotted against a lithologic section throughthe Pipestone Ti-V deposit, thereby transecting the SouthZone, the Disseminated Zone and the North ContactZone. Enzyme leach response over the North ContactZone could not be properly assessed due to the presence of wet and disturbed swamps that preventedsample collection. Appendix III includes profiles for allelements over the mineralized zones. Neutron activationand inductively coupled plasma-emission spectrometryanalytical data for samples collected from transectL31+50 are presented in Appendix IV. Descriptive statistics for enzyme leach data are given in Table 1.

Field duplicate pairsThe enzyme leach/ICP-MS analytical data from two

b-horizon soil duplicate pairs at stations 31+50, 2+25Nand 31+50, 5+25N on the sampling transect are generally reproducible. The b-horizon at these two sitescomprise light reddish brown clay at 2+25N and a brownsilty clay that is mixed with less oxidized equivalents dueto frost heaving at 5+25N. Duplicates at these two siteswere collected 1 m apart. Manganese contents in theduplicate pairs exhibit the most variability whereas allother elements across the observed measured concen-tration range are reproducible. Manganese varies from130 ppb to 458 ppb in the duplicate pair from 2+25N andfrom 275 ppb to 107 ppb at 5+25N. The elements <LLDin the field duplicate pairs are Be, Sc, Ge, Se, Ru, Pd,Cd, In, Sn, Te, Tm, Lu, Ta, W, Re, Os, Pt, Au, Hg, Tl andBi.

Enzyme leach profilesFigures 4 through 6 illustrate the elevated responses

of elements with proximity to known mineralized zones.These anomalies are plotted for comparative purposesagainst a threshold value derived from a probability plotfor each element.

A broad 6 sample, Cl anomaly encompasses theDisseminated Zone and remains elevated (10,197 to 15,213 ppb) up to the edge of the North Contact Zone(Table 2; Fig. 4). The commodity element Ti forms a sin-gle sample anomaly of 3301 ppb over the DisseminatedZone (Fig. 4) with a lesser response of 1459 ppb over theSouth Zone. If the threshold as determined for Ti usingprobability plots is accurate and represents the upperlimit of background variation then the single sampleresponse over the South Zone is invalid.

Single sample anomalous responses for Ni (128ppb), and Cu (483 ppb) in Figure 4, Nb (16 ppb), Cs (15

6

Table 1: Descriptive statistics for elements greater than the lower limit of detection (LLD).

Element Minimum Maximum Median Arith. Mean Standard Deviation

SQLi (10) 5 144 44 43 30SQBe (20) 10 10

SQCl (3000) 1500 15213 3273 5004 4315 SQSc (100) 50 50SQTi (100) 50 3301 383 516 612

V (5) 2.5 428 117 132 99Mn (10) 69 2074 290 577 545Co (1) 3 41 9 13 10Ni (5) 2.5 128 31 36 24

Cu (5) 2.5 483 40 56 85Zn (10) 13 91 23 28 18Ga (1) 0.5 16 4 4 3Ge (1) 0.5 2 0.5 0.6 0.3As (5) 2.5 28 12 12 6Se (30) 15 15Br (30) 15 593 68 110 126Rb (1) 10 149 34 48 34Sr (1) 71 498 216 248 98Y (1) 1 72 32 33 19

Zr (1) 0.5 227 75 83 53Nb (1) 0.5 16 3 3 3Mo (1) 0.5 19 2 3 4Ru (1) 0.5 0.5Pd (1) 0.5 3 0.5 0.9 0.6

Ag (0.2) 0.1 0.8 0.3 0.3 0.2Cd (0.2) 0.1 0.7 0.1 0.2 0.1In (0.2) 0.1 0.1Sn (1) 0.5 3 0.5 0.8 0.8Sb (1) 0.5 6 2 2 1Te (1) 0.5 2 0.5 0.6 0.3I (10) 5 94 48 45 25

Cs (1) 0.5 15 0.5 1.5 3Ba (1) 220 968 421 440 142La (1) 2 129 65 59 33Ce (1) 4 307 82 93 68Pr (1) 0.5 40 21 17 10Nd (1) 2 150 69 66 39Sm (1) 0.5 36 15 16 9Eu (1) 0.5 8 3 3 2Gd (1) 0.5 43 14 16 10Tb (1) 0.5 4 2 2 1Dy (1) 0.5 19 7 8 5Ho (1) 0.5 3 1 1 1Er (1) 0.5 11 5 5 3Tm (1) 0.5 2 0.5 0.7 0.3Yb (1) 0.5 8 3 4 2Lu (1) 0.5 2 0.5 0.6 0.3Hf (1) 0.5 6 2 2 2Ta (1) 0.1 1 0.5 0.5 0.1W (1) 0.5 2 0.5 0.8 0.5

Re (0.1) 0.05 0.05Os (1) 0.5 0.5Pt (1) 0.5 0.5

Au (0.1) 0.05 0.05SQHg (1) 0.5 0.5

Tl (1) 0.5 1 0.5 0.5 0.2Pb (1) 1 28 7 8 5Bi (1) 0.5 0.5Th (1) 0.5 33 13 14 7U (1) 0.5 9 3 4 2

A value of one half the LLD was used for calculations where analyses were less than the LLD. All values in parts per billion. Bracketed figure represents the LLD for that element.

7

Figure 4: Enzyme leach profiles for Cl, Ti, Ni and Cu over the Pipestone Lake Ti-V deposit.

Figure 5: Enzyme leach profiles for Zn, Ga, Nb and Cs over the Pipestone Lake Ti-V deposit.

8

9

Figure 6: Enzyme leach profiles for Ba and Pb over the Pipestone Lake Ti-V deposit.

Sample Cl Ti Ba Cu Ni Zn Co Pb Ga Nb Cs

GR-16 (31+50, 4+00N)hematitic grey clay NA 1459 638 80 NA 82 NA 21 NA NA NA

GR-23 (31+50, 5+75N) 15213 3301 NA 483 128 91 41 28 16 16 15hematitic grey clay interlayered

with Cr-green silt-fine sand

GR-24 (31+50, 6+00N) 11836 995 NA 104 NA NA NA 13 10 NA NAlight brown silt with hematitic blotches

Table 2: Comparison of parent soil types and levels of concentration of indicator elements at these sites.

"NA" indicates that element was not anomalous at that site. All concentration levels in parts per billion.

ppb and 5 ppb) in Figure 5, and Ba (968 ppb) (Fig. 6) are documented over the Disseminated Zone. Anomalies forGa (16 ppb and 10 ppb) (Fig. 5) and Pb (28 ppb and 13 ppb) (Fig. 6) are also documented over this Zone.Distinctive anomalous responses are obtained for Zn (82ppb and 50 ppb), Ga (10 ppb) (Fig. 5) and Pb (21 ppb)(Fig. 6) over the South Zone.

Anomaly:threshold ratios for indicator elementsGeochemical contrast for indicator elements is

determined on the basis of anomaly:threshold ratios andsummarized in Table 3. Ratios are rounded to the nearest unit. In general, the geochemical contrast for the indicator elements is in the range of 2-3. This isthe case for the commodity element Ti, the sulphide-related suite as well as Cl, Nb and Ba. Cu and Cs are theexception with threshold ratios of 8 and 5, respectively.

INAA and ICP-AES profilesFigures 7 and 8 summarize the anomalous

responses for INAA and ICP-AES data over the mineralized zones. Cr (687 ppm), Ni (362 ppm) and Co(50 ppm) in the INAA data document a single sample"spike" over the Disseminated Zone. This same samplesite is marked by a Cu (89 ppm), Ni (381 ppm) and Mg(4.02%) spike in ICP-AES data. These responses arecontrolled by the mineralogy of the soil sample collectedat this site. The b-horizon is a chrome green, silt to finesand and is derived in part from the weathering and erosion of the host rocks to the mineralized zone. Thehigh Mg, Ni and Cr are reflecting the mafic-ultramafichost rocks whereas the Cu and Co represent a sulphidecomponent in clastic material in the b-horizon.

DISCUSSION

Geochemical contribution of parent soil to enzyme leach anomaliesIndividual b-horizon soil sample descriptions from

sites along transect 31+50 are presented in Appendix Iand document three distinctive types of material that

characterize b-horizon soils over the sampling transect.These are variably oxidized clay, sand and silt. A uniquesoil composition is observed at site GR-23 where ahematitic silt is intermixed with a chrome green silt interpreted to represent a weathered or erosional remnant of the mafic-ultramafic rocks that host oxidemineralization at the PLAC. This chrome green silt wasnot observed in any of the other sample pits on the transect.

Interestingly, the highest contrast signatures, albeitsingle sample responses, for most of the elements interpreted to be indicative of the Disseminated Zonecoincide with the sample of chrome green silt (site GR-23). Anomalous responses associated with thisgreen silt are also observed in samples where a mafic-ultramafic detrital character is not present. Examplesinclude hematitic grey clay at site GR-16 (31+50,4+001N) and light brown silt with hematitic blotches atsite GR-24 (31+50, 6+00N). The indicator elements andtheir concentration levels in each of the three samplesdescribed above are summarized in Table 2.

The geochemical response at site GR-23 suggests a significant contribution of some of the indicator elementsto the overall enzyme leach signature at site GR-23 fromthe parent chrome-green silt. The signature at site GR-23, however, is interpreted to be composite withadditional indicator element concentrations being addedto the sample as they are transported via shallow groundwater or ascending metal-enriched vapours aswell as from parent material. This is substantiated by therecognition of anomalous geochemical responses tozones of oxide mineralization that comprise similar elements (eg. Cl, Ti and Cu) at sites GR-16 and GR-24.The elements Cl-Ti-Cu are moderately correlatedin a Spearman correlation matrix (Table 4).

Sulphide mineral associationsThe observation of anomalous responses for the

metals Ni, Cu, Pb, Ga and Zn over the Disseminated andSouth zones is surprising given the nature of thePipestone Lake Ti-V deposit. The ilmenite-magnetite

Anomaly:threshold Ratio

Cu 483 65 8Cs 15 3 5Pb 28 10.6 3Ga 16 6.2 3Zn 91 35 3Cl 15213 10080 2Ti 3301 2070 2Ni 128 69 2Ba 968 600 2Nb 16 7 2

10

Table 3: Anomaly:threshold ratios for indicator elements over the Pipestone Lake Ti-V deposit.

Element Anomaly (ppb) Threshold (ppb)

Elements are ranked from highest to lowest contrast. Ratios are rounded to the nearest unit.

11

Figure 7: Neutron activation profiles for Co, Cr and Ni over the Pipestone Lake Ti-V deposit.

12

Element Spearman Correlation Coefficients

Mn SQClSQTi 0.355 0.456SQCl -0.02 1

Ni 0.698 0.256Cu 0.392 0.361Zn 0.184 -0.035Ga 0.205 0.296Nb 0.335 0.281Cs 0.089 0.312Ba 0.256 0.019Pb 0.465 0.33

Figure 8: ICP-AES profiles for Cu, Ni and Mg over the Pipestone Lake Ti-V deposit.

Table 4: Spearman correlation coefficients for enzyme leachindicator elements, Mn and semi-quantitative Cl (SQCl).

13

oxide mineralogy of these disseminated to near-solidmineralized zones are not associated with sulphide mineralization. Subsequent to the recognition of theenzyme leach patterns for the elements Ni, Cu, Pb, Ga,Zn over this deposit, a re-examination of diamond drilllogs revealed the presence of disseminated pyrite,pyrrhotite and chalcopyrite over core intervals of up to18.5 m (e.g. DDH PL155, 162.5-223.3 ft.) in severallithologies of the PLAC. The sulphide mineralization isdescribed as trace abundance and is associated withshear zones. An east-trending set of shear zones and north-trending brittle faults documented by Cameron (1992) and Jobin-Bevans et al. (1995) may provide pathways for hydrothermal fluid interaction withthe Fe-oxide-rich PLAC and the subsequent formation of disseminated sulphides. These sulphur- and sulphide-bound metals are interpreted to be the cause for enzymeleach Cu, Pb, Ga, Zn (and in part the Ni) anomalies over predominantly oxide mineralization in theDisseminated and South Zones of the Pipestone Lakedeposit.

Niobium, cesium, barium and chlorine anomaliesA single sample Nb response of 16 ppb and the two

sample Cs responses of 15 ppb over the DisseminatedZone as well as a 5 ppb (threshold = 3.5 ppb) responsein the area north of the Disseminated Zone are documented. Although specific examinations for mineralscontaining these elements has not been undertaken it isprobable that the Nb response is attributed to the presence of Nb-bearing rutile (R. Gunter, pers. comm.,1999). The Cs and Ba signature is likely related to the metasomatic effects of the intrusion of a garnet-muscovite-tourmaline granite between 2653-2639 Ma inthe Cross Lake greenstone belt (Mezger et al., 1990).

CONCLUSIONS

This brief orientation survey provides a preliminaryassessment of the usefulness of enzyme leach analyticalmethods in resolving a geochemical signature related tooxide mineralization as occurs within the Pipestone Ti-Vdeposits. Results indicate:1. The South and Disseminated Zones have

distinctive enzyme leach geochemical signa-tures that include Ti (commodity element), Ni,Cu, Pb, Ga and Zn (sulphide-related elements),Nb, Cs, Ba and Cl (alteration and mineralizationelements).

2. The enzyme leach response for Ti, Ni and Cu is interpreted to be a "composite" signature reflecting both primary and secondary geochemical contributions from mafic-ultramafic host rocks of the PLAC andascending metal-enriched vapours from mineralized zones.

3. In this study Cl forms an extensive halo characterized by a high contrast, six sampleresponse that encompasses both the South

and Disseminated Zones. All other indicator elements form one or two sample anomaliesover the mineralized zones.

4. On the basis of anomaly:threshold ratios, indicator elements can be ranked from highest to lowest contrast as follows:Cu>Cs>Pb=Ga=Zn>Cl=Ti=Ni=Ba=Nb.

5. INAA and ICP-AES analyses document the presence of a single sample Mg, Ni, Cr, Coand Cu anomaly over the deposit. This response (site GR-23) is attributed to a mafic-ultramafic component and a sulphidemineral detrital assemblage in the b-horizon.

6. An enzyme leach geochemical survey israpid and cost-effective and, on the basis ofthis orientation survey in the area of the Pipestone Lake Ti-V deposit, has the potentialto reduce large areas of exploration interestto more localized zones suitable for diamonddrill testing.

7. An enzyme leach geochemical survey in thePLAC can be particularly useful where Ti-V mineralization has post-depositional structurally-related sulphide mineralization or secondary(alteration) minerals associated with primaryoxide mineralization. In the absence of post-depositional sulphides, the survey would havebeen less diagnostic.

8. The moderate contrast of enzyme leach indicator elements over this significant zone ofoxide mineralization suggests that the magnitude of the geochemical responsedoes not correlate to the volume and grade of the mineralized target but may be more profoundly affected by the style (oxide/sulphide)of the mineralization.

ACKNOWLEDGEMENTS

Jim Campbell and Richard Gunter of GossanResources Ltd. are thanked for the opportunity to undertake this study. Gossan Resources Ltd. is alsothanked for financial support and access to drill logs andgeological maps. Graham Carlyle is thanked for his enthusiastic assistance with sample collection. ChristineKaszycki and Ric Syme provided constructive criticism.Kelly Proutt typed the manuscript and Bonnie Lenton produced the figures.

14

REFERENCES

Cameron, H.D.M. 1992: Pipestone Lake AnorthositeComplex: geology and studies of titanium-vanadiummineralization; Manitoba Energy and Mines,Geological Services, Open File Report OF92-1, 134 p.

Clark, J.R. 1992: Detection of bedrock-related geochem-ical anomalies at the surface of transported over-burden; Explore, v. 76, p. 4-11.

1993: Enzyme-induced leaching of B-horizon soilsfor mineral exploration in areas of glacial overburden;Institution of Mining and Metallurgy, Transactions,Section B: Applied Earth Science, v. 102, p. B19-B29.

Gold, T. and Soter, S. 1980: The deep earth-gas hypoth-esis; Scientific American, v. 242, no. 6, p.154-165.

Gossan Resources Limited. 1998: Annual Report.

Jobin-Bevans, L.S., Peck, D.C., Cameron, H.D.M., andMcDonald, J.P. 1995: Geology and oxide mineraloccurrences of the central and eastern portions ofthe Pipestone Lake Anorthosite Complex; in Reportof Activities, 1995, Manitoba Energy and Mines,Geological Services, p. 74-83.

Jobin-Bevans, L.S., Peck, D.C., and Halden, N.M. 1996:Detailed geological mapping in the central portion ofthe Pipestone Lake Anorthosite Complex; in Reportof Activities, 1996, Manitoba Energy and Mines,Geological Services, p. 75-84.

Kaszycki, C.A. 1989: Surficial geology and till composi-tion, northwestern Manitoba; Geological Survey ofCanada, Open File 2118, 48 p.

Malmqvist, L. and Kristiansson, K. 1984: Experimentalevidence for an ascending microflow of geogas in theground; Earth and Planetary Science Letters, v. 70,no. 2, p. 407-416.

Mezger, K., Bohlen, S.R., and Hanson, G.N. 1990:Metamorphic history of the Archean Pikwitonei gran-ulite domain and the Cross Lake subprovince,Superior Province, Manitoba, Canada; Journal ofPetrology, v. 31, p. 483-517.

Peck, D.C., Cameron, H.D.M., and Corkery, M.T. 1994a:Geological environments and characteristics of Ti-V-Fe oxide mineralization in the western part of thePipestone Lake Anorthosite Complex; in Report ofField Activities, 1994, Manitoba Energy and Mines,Geological Services, p. 113-129.

Peck, D.C., Cameron, H.D.M., and Corkery, M.T. 1994b:Geology and mineral occurrences in the western part of the Pipestone Lake AnorthositeComplex (parts of NTS 63I/4 and 63I/5); ManitobaEnergy and Mines, Geological Services, PreliminaryMap 1994K-1, scale 1:5 000.

Peck, D.C., Messing, C., Halden, N.M., and Chandler, C.1998: New insights into the petrogenesis of thePipestone Lake Anorthosite Complex and its Ti-V-Feoxide deposits (parts of 63I/5 and 63I/12); in Reportof Activities, 1998, Manitoba Energy and Mines,Geological Services, p.127-134.

Wang, X., Cheng, Z., Lu, Y., Xu, L., and Xie, X. 1997:Nanoscale metals in Earth gas and mobile forms ofmetals in overburden in wide-spaced regional exploration for giant deposits in overburden terrains; Journal of Geochemical Exploration, v. 58, no. 1, p. 63-72.

Appendix 1: Enzyme leach field sample descriptions.

Sample Grid Coordinates Description

GR-1 L31+50, 0+25N grey, visibly unoxidized "pebbly" clay with rootlets

GR-2 L31+50, 0+50N grey, visibly unoxidized "pebbly" clay with rootlets

GR-3 L31+50, 0+75N weakly limonitic grey clay, minor rootlets

GR-4 L31+50, 1+00N "pebbly" weakly hematitic light brown clay

GR-5 L31+50, 1+25N reddish brown "pebbly" clay

GR-6 L31+50, 1+50N no sample possible, wet swamp

GR-7 L31+50, 1+75N "pebbly" reddish brown clay

GR-8 L31+50, 2+00N hematitic and limonitic fine sand

GR-9 L31+50, 2+25N light reddish brown "pebbly" clay (DUPLICATE SITE)

GR-10 L31+50, 2+50N light reddish brown "pebbly" clay, minor rootlets

GR-11 L31+50, 2+75N light reddish brown "pebbly" clay, rootlets

GR-12 L31+50, 3+00N chocolate brown, fine "pebbly" clay

GR-13 L31+50, 3+25N brown "pebbly" clay, minor rootlets

GR-14 L31+50, 3+50N reddish brown clay, minor rootlets

GR-15 L31+50, 3+75N reddish brown "pebbly" clay;sample pit bottoms on outcrop

GR-16 L31+50, 4+00N reddish grey, "pebbly" clay, rootlets

GR-17 L31+50, 4+25N dark reddish brown "pebbly" clay

GR-18 L31+50, 4+50N reddish greyish brown "pebbly" clay

GR-19 L31+50, 4+75N dark reddish brown "pebbly" clay

GR-20 L31+50, 5+00N dark reddish brown "pebbly" clay, minor rootlets

GR-21 L31+50, 5+25N brown silty clay, frost mixing (DUPLICATE SITE)

GR-22 L31+50, 5+50N hematitic-limonitic silt

GR-23 L31+50, 5+75N hematitic silt interlayered with chrome green silt

GR-24 L31+50, 6+00N hematitic blotches in light brown silt

GR-25 L31+50, 6+25N no sample possible, wet swamp

GR-26 L31+50, 6+50N no sample possible, wet swamp

GR-27 L31+50, 6+75N no sample possible, wet swamp

GR-28 L31+50, 7+00N no sample possible, wet swamp

GR-29 L31+50, 7+25N limonitic-hematitic silt

GR-30 L31+50, 7+50N limonitic fine sand, rounded granitoid pebbles

GR-31 L31+50, 7+75N limonitic fine sand, rounded granitoid pebbles

GR-32 L31+50, 8+00N limonitic fine sand, 10 cm leached zone capping sand

15

16

Sam

ple

Dis

tanc

e G

rid R

efer

ence

S.Q

.Li

S.Q

.Be

S.Q

.Cl

S.Q

.Sc

S.Q

.Ti

VM

nC

oN

iC

u

Z

nLL

D10

20

3000

100

100

510

15

510

GR

125

L31+

50, 0

+25N

2910

1054

650

383

9020

7428

4846

23G

R 2

50L3

1+50

, 0+5

0N38

1034

2350

408

65

1

568

3039

3120

GR

375

L31+

50, 0

+75N

2310

5483

5026

215

727

28

3346

21G

R 4

100

L31+

50, 1

+00N

4610

1500

5024

528

277

312

3636

19G

R 5

125

L31+

50, 1

+25N

7410

1500

5055

015

015

3830

4954

34G

R 6

150

L31+

50, 1

+50N

no s

ampl

e-w

et s

wam

pG

R 7

175

L31+

50, 1

+75N

144

1036

0550

497

428

219

725

1835

GR

820

0L3

1+50

, 2+0

0N12

1015

0050

297

2937

412

1731

31G

R 9

225

L31+

50, 2

+25N

3310

1500

5053

777

458

2226

3021

GR

10

250

L31+

50, 2

+50N

2710

1500

5047

510

370

718

3038

26G

R 1

127

5L3

1+50

, 2+7

5N47

1015

0050

23

615

169

79

6860

18G

R 1

230

0L3

1+50

, 3+0

0N87

1030

8550

301

253

205

629

4523

GR

13

325

L31+

50, 3

+25N

4410

1500

5030

518

923

25

2840

26G

R 1

435

0L3

1+50

, 3+5

0N55

1089

3950

617

146

215

631

7250

GR

15

375

L31+

50, 3

+75N

4410

3273

5083

071

290

2038

3827

GR

16

400

L31+

50, 4

+00N

5410

1500

5014

5911

1

108

028

6080

82G

R 1

742

5L3

1+50

, 4+2

5N79

1039

5550

359

244

198

635

5625

GR

18

450

L31+

50, 4

+50N

5610

1500

5043

193

1021

1646

4232

GR

19

475

L31+

50, 4

+75N

5510

1063

050

213

172

393

1063

4221

GR

20

500

L31+

50, 5

+00N

1710

1104

250

297

123

223

733

3418

GR

21

525

L31+

50, 5

+25N

6810

1019

750

408

119

275

825

4717

GR

22

550

L31+

50, 5

+50N

1010

1058

950

293

4714

94

1217

13G

R 2

357

5L3

1+50

, 5+7

5N60

1015

213

5033

0133

3

159

341

128

483

91G

R 2

460

0L3

1+50

, 6+0

0N29

1011

836

5099

511

737

811

4510

434

GR

25

625

L31+

50, 6

+25N

no s

ampl

e-w

et s

wam

pG

R 2

665

0L3

1+50

, 6+5

0Nno

sam

ple-

wet

sw

amp

GR

27

675

L31+

50, 6

+75N

no s

ampl

e-w

et s

wam

pG

R 2

870

0L3

1+50

, 7+0

0Nno

sam

ple-

wet

sw

amp

GR

29

725

L31+

50, 7

+25N

1410

3827

5050

5810

985

3040

14G

R 3

075

0L3

1+50

, 7+5

0N5

1015

0050

502.

569

38

-530

GR

31

775

L31+

50, 7

+75N

510

1500

5050

1327

29

109

18G

R 3

280

0L3

1+50

, 8+0

0N5

1015

0050

506

112

32.

5-5

14Fi

eld

Dup

licat

es

Sam

ple

Dis

tanc

eG

rid R

efer

ence

S.Q

.Li

S.Q

.Be

S.Q

.Cl

S.Q

.Sc

S.Q

.Ti

VM

nC

oN

iC

u

Zn

LLD

1020

3000

100

100

510

15

5

1

0G

R 9

-122

5L3

1+50

, 2+2

5N36

1015

0050

564

7513

016

2530

22

GR

9-2

225

L31+

50, 2

+25N

3310

1500

5053

777

458

2226

30

2

1G

R 2

1-1

525

L31+

50, 5

+25N

6810

1019

750

408

119

275

825

47

1

7G

R 2

1-2

525

L31+

50, 5

+25N

6910

9960

5048

811

710

74

3159

13

App

endi

x II:

Enz

yme

leac

h/IC

P-M

S an

alyt

ical

dat

a fo

r sam

plin

g tr

anse

ct L

31+5

0 an

d fie

ld d

uplic

ates

. All

data

in p

arts

per

bill

ion

(ppb

).

App

endi

x II:

Enz

yme

leac

h/IC

P-M

S an

alyt

ical

dat

a fo

r sam

plin

g tr

anse

ct L

31+5

0 an

d fie

ld d

uplic

ates

. All

data

in p

arts

per

bill

ion

(ppb

). (C

ontin

ued)

17

Fiel

d D

uplic

ates

Sam

ple

D

ista

nce

Grid

Ref

eren

ce

Ga

Ge

As

SeB

rR

bSr

YZr

Nb

Mo

LLD

11

530

301

11

1

11

GR

9-1

225

L31+

50, 2

+25N

50.

56

1549

8433

331

134

30.

5G

R 9

-222

5L3

1+50

, 2+2

5N3

0.5

815

4387

203

27

14

13

0.5

GR

21-

152

5L3

1+50

, 5+2

5N3

0.5

1115

126

2736

620

636

3G

R 2

1-2

525

L31+

50, 5

+25N

30.

514

15

1

2234

408

2657

22

Sam

ple

D

ista

nce

Grid

Ref

eren

ce

Ga

Ge

As

SeB

rR

bSr

YZr

Nb

Mo

LLD

11

530

301

11

11

1G

R 1

25L3

1+50

, 0+2

5N3

118

1526

133

327

4611

43

8G

R 2

50L3

1+50

, 0+5

0N4

0.5

915

4830

189

2010

43

3G

R 3

75L3

1+50

, 0+7

5N4

0.5

1215

104

2729

347

753

3G

R 4

100

L31+

50, 1

+00N

30.

516

1568

2229

647

643

4G

R 5

125

L31+

50, 1

+25N

60.

510

1515

3521

572

227

52

GR

615

0L3

1+50

, 1+5

0Nno

sam

ple-

wet

sw

amp

GR

717

5 L3

1+50

, 1+7

5N5

0.5

1415

1550

378

1453

419

GR

820

0L3

1+50

, 2+0

0N3

0.5

615

5783

200

1523

21

GR

9-2

225

L31+

50, 2

+25N

30.

58

1543

8720

327

141

30.

5G

R 1

025

0L3

1+50

, 2+5

0N4

0.5

1215

312

3419

029

104

32

GR

11

275

L31+

50, 2

+75N

30.

514

1559

318

498

3258

26

GR

12

300

L31+

50, 3

+00N

40.

517

1515

228

308

4155

33

GR

13

325

L31+

50, 3

+25N

51

1415

121

3619

938

633

2G

R 1

435

0L3

1+50

, 3+5

0N4

0.5

1215

192

2620

648

111

30.

5G

R 1

537

5L3

1+50

, 3+7

5N6

0.5

915

3367

220

4213

44

0.5

GR

16

400

L31+

50, 4

+00N

100.

518

1581

107

322

6516

67

7G

R 1

742

5L3

1+50

, 4+2

5N4

0.5

2215

171

2224

850

573

3G

R 1

845

0L3

1+50

, 4+5

0N4

0.5

1415

133

4421

649

148

32

GR

19

475

L31+

50, 4

+75N

40.

517

1511

617

336

5890

22

GR

20

500

L31+

50, 5

+00N

30.

511

1528

110

173

3881

23

GR

21-

152

5L3

1+50

, 5+2

5N3

0.5

1115

126

2736

620

636

3G

R 2

255

0L3

1+50

, 5+5

0N5

0.5

615

1523

124

1345

30.

5G

R 2

357

5L3

1+50

, 5+7

5N16

228

1515

149

261

3614

016

7G

R 2

460

0L3

1+50

, 6+0

0N10

0.5

1815

1561

173

3175

60.

5G

R 2

562

5L3

1+50

, 6+2

5Nno

sam

ple-

wet

sw

amp

GR

26

650

L31+

50, 6

+50N

no s

ampl

e-w

et s

wam

pG

R 2

767

5 L3

1+50

, 6+7

5Nno

sam

ple-

wet

sw

amp

GR

28

700

L31+

50, 7

+00N

no s

ampl

e-w

et s

wam

pG

R 2

972

5L3

1+50

, 7+2

5N2

0.5

1115

1519

212

721

10.

5G

R 3

075

0L3

1+50

, 7+5

0N0.

50.

52.

515

1530

711

0.5

0.5

0.5

GR

31

775

L31+

50, 7

+75N

10.

52.

515

1584

155

36

0.5

0.5

GR

32

800

L31+

50, 8

+00N

0.5

0.5

2.5

1515

9985

10.

50.

50.

5

Sam

ple

Dis

tanc

eG

rid R

efer

ence

Ru

PdA

gC

dIn

SnSb

TeI

Cs

Ba

LLD

11

0.2

0.2

0.2

11

110

11

GR

125

L31+

50, 0

+25N

0.5

10.

40.

40.

12

50.

594

0.5

357

GR

250

L31+

50, 0

+50N

0.5

10.

40.

30.

10.

52

0.5

380.

534

8G

R 3

75L3

1+50

, 0+7

5N0.

50.

50.

10.

10.

10.

52

0.5

551

421

GR

410

0L3

1+50

, 1+0

0N0.

50.

50.

10.

10.

10.

54

0.5

611

512

GR

512

5L3

1+50

, 1+2

5N0.

53

0.8

0.3

0.1

0.5

20.

562

156

3G

R 6

150

L31+

50, 1

+50N

no s

ampl

e-w

et s

wam

pG

R 7

175

L31+

50, 1

+75N

0.5

0.5

0.3

0.1

0.1

0.5

30.

549

257

1G

R 8

200

L31+

50, 2

+00N

0.5

0.5

0.1

0.3

0.1

0.5

20.

526

0.5

492

GR

9-2

225

L31+

50, 2

+25N

0.5

10.

50.

10.

10.

52

0.5

320.

544

4G

R 1

025

0L3

1+50

, 2+5

0N0.

51

0.4

0.1

0.1

22

0.5

480.

532

4G

R 1

127

5L3

1+50

, 2+7

5N0.

50.

50.

30.

10.

10.

52

0.5

850.

540

4G

R 1

230

0L3

1+50

, 3+0

0N0.

50.

50.

10.

10.

10.

52

0.5

400.

548

8G

R 1

332

5L3

1+50

, 3+2

5N0.

50.

50.

30.

10.

10.

52

0.5

571

498

GR

14

350

L31+

50, 3

+50N

0.5

10.

40.

20.

10.

52

0.5

610.

541

0G

R 1

537

5L3

1+50

, 3+7

5N0.

52

0.5

0.1

0.1

0.5

10.

536

147

1G

R 1

640

0L3

1+50

, 4+0

0N0.

52

0.6

0.4

0.1

32

0.5

602

638

GR

17

425

L31+

50, 4

+25N

0.5

0.5

0.1

0.1

0.1

0.5

60.

572

0.5

388

GR

18

450

L31+

50, 4

+50N

0.5

20.

60.

70.

10.

51

0.5

480.

533

7G

R 1

947

5L3

1+50

, 4+7

5N0.

51

0.3

0.1

0.1

0.5

20.

558

0.5

402

GR

20

500

L31+

50, 5

+00N

0.5

0.5

0.3

0.2

0.1

0.5

21

540.

533

3G

R 2

1-1

525

L31+

50, 5

+25N

0.5

0.5

0.4

0.1

0.1

12

0.5

863

471

GR

22

550

L31+

50, 5

+50N

0.5

0.5

0.1

0.1

0.1

0.5

12

192

267

GR

23

575

L31+

50, 5

+75N

0.5

0.5

0.5

0.2

0.1

32

0.5

515

968

GR

24

600

L31+

50, 6

+00N

0.5

0.5

0.4

0.1

0.1

22

0.5

445

521

GR

25

625

L31+

50, 6

+25N

no s

ampl

e-w

et s

wam

pG

R 2

665

0L3

1+50

, 6+5

0Nno

sam

ple-

wet

sw

amp

GR

27

675

L31+

50, 6

+75N

no s

ampl

e-w

et s

wam

pG

R 2

870

0L3

1+50

, 7+0

0Nno

sam

ple-

wet

sw

amp

GR

29

725

L31+

50, 7

+25N

0.5

0.5

0.1

0.1

0.1

0.5

0.5

0.5

50.

526

6G

R 3

075

0L3

1+50

, 7+5

0N0.

50.

50.

10.

40.

10.

50.

50.

55

0.5

320

GR

31

775

L31+

50, 7

+75N

0.5

0.5

0.1

0.4

0.1

0.5

0.5

0.5

50.

535

6G

R 3

280

0L3

1+50

, 8+0

0N0.

50.

50.

10.

20.

10.

50.

50.

55

0.5

220

18

Fiel

d D

uplic

ates

Sam

ple

Dis

tanc

eG

rid R

efer

ence

Ru

PdA

gC

dIn

SnSb

TeI

Cs

Ba

LLD

11

0.2

0.2

0.2

11

110

11

GR

9-2

225

L31+

50, 2

+25N

0.5

10.

40.

10.

10.

52

0.5

311

517

GR

9-2

225

L31+

50, 2

+25N

0.5

10.

50.

10.

10.

52

0.5

320.

544

4G

R 2

1-1

525

L31+

50, 5

+25N

0.5

0.5

0.4

0.1

0.1

12

0.5

863

471

GR

21-

252

5L3

1+50

, 5+2

5N0.

50.

50.

20.

10.

10.

50.

50.

565

0.5

451

App

endi

x II:

Enz

yme

leac

h/IC

P-M

S an

alyt

ical

dat

a fo

r sam

plin

g tr

anse

ct L

31+5

0 an

d fie

ld d

uplic

ates

. All

data

in p

arts

per

bill

ion

(ppb

). (C

ontin

ued)

19

App

endi

x II:

Enz

yme

leac

h/IC

P-M

S an

alyt

ical

dat

a fo

r sam

plin

g tr

anse

ct L

31+5

0 an

d fie

ld d

uplic

ates

. All

data

in p

arts

per

bill

ion

(ppb

). (C

ontin

ued)

Sam

ple

Dis

tanc

eG

rid R

efer

ence

LaC

ePr

Nd

SmEu

Gd

TbD

yH

oEr

LLD

11

11

11

11

11

1G

R 1

25L3

1+50

, 0+2

5N66

124

2177

205

243

112

7G

R 2

50L3

1+50

, 0+5

0N34

9710

379

28

15

13

GR

375

L31+

50, 0

+75N

6974

2292

245

222

112

7G

R 4

100

L31+

50, 1

+00N

9610

530

106

255

243

102

7G

R 5

125

L31+

50, 1

+25N

129

307

4015

036

843

419

311

GR

615

0L3

1+50

, 1+5

0Nno

sam

ple-

wet

sw

amp

GR

717

5L3

1+50

, 1+7

5N31

648

317

27

0.5

30.

52

GR

820

0L3

1+50

, 2+0

0N32

667

276

26

0.5

30.

52

GR

9-2

225

L31+

50, 2

+25N

5011

317

6114

314

37

15

GR

10

250

L31+

50, 2

+50N

4482

1453

143

131

61

4G

R 1

127

5L3

1+50

, 2+7

5N62

6415

5813

313

16

14

GR

12

300

L31+

50, 3

+00N

7150

2387

214

202

92

5G

R 1

332

5

L31+

50, 3

+25N

6845

2182

214

182

92

6G

R 1

435

0L3

1+50

, 3+5

0N63

8624

9624

423

211

27

GR

15

375

L31+

50, 3

+75N

6912

122

8921

422

211

27

GR

16

400

L31+

50, 4

+00N

129

269

3613

329

731

417

310

GR

17

425

L31+

50, 4

+25N

8155

2598

244

222

112

6G

R 1

845

0L3

1+50

, 4+5

0N67

140

2178

194

212

102

7G

R 1

947

5L3

1+50

, 4+7

5N10

010

432

128

336

323

153

10G

R 2

050

0L3

1+50

, 5+0

0N66

8721

8118

417

210

26

GR

21-

152

5L3

1+50

, 5+2

5N47

7512

429

210

15

0.5

3G

R 2

255

0L3

1+50

, 5+5

0N29

547

297

27

0.5

40.

52

GR

23

575

L31+

50, 5

+75N

9517

721

6915

314

27

14

GR

24

600

L31+

50, 6

+00N

7895

1864

143

131

71

4G

R 2

562

5L3

1+50

, 6+2

5Nno

sam

ple-

wet

sw

amp

GR

26

650

L31+

50, 6

+50N

no s

ampl

e-w

et s

wam

pG

R 2

767

5L3

1+50

, 6+7

5Nno

sam

ple-

wet

sw

amp

GR

28

700

L31+

50, 7

+00N

no s

ampl

e-w

et s

wam

pG

R 2

972

5L3

1+50

, 7+2

5N15

213

133

0.5

30.

51

0.5

0.5

GR

30

750

L31+

50, 7

+50N

24

0.5

30.

50.

50.

50.

50.

50.

50.

5G

R 3

177

5L3

1+50

, 7+7

5N7

172

61

0.5

20.

51

0.5

0.5

GR

32

800

L31+

50, 8

+00N

24

0.5

20.

50.

50.

50.

50.

50.

50.

5Fi

eld

Dup

licat

es

Sam

ple

Dis

tanc

eG

rid R

efer

ence

LaC

ePr

Nd

SmEu

Gd

TbD

yH

oEr

LLD

11

11

11

11

11

1G

R 9

-122

5L3

1+50

, 2+2

5N65

146

2175

163

173

92

5G

R 9

-222

5L3

1+50

, 2+2

5N50

113

1761

143

143

71

5G

R 2

1-1

525

L31+

50, 5

+25N

4775

1242

92

101

50.

53

GR

21-

252

5L3

1+50

, 5+2

5N52

6212

4810

210

15

13

20

App

endi

x II:

Enz

yme

leac

h/IC

P-M

S an

alyt

ical

dat

a fo

r sam

plin

g tr

anse

ct L

31+5

0 an

d fie

ld d

uplic

ates

. All

data

in p

arts

per

bill

ion

(ppb

). (C

ontin

ued)

Sam

ple

Dis

tanc

eG

rid R

efer

ence

TmYb

LuH

fTa

WR

eO

sPt

Au

S.Q

.Hg

LLD

11

11

11

0.1

11

0.1

1G

R 1

25L3

1+50

, 0+2

5N1

51

30.

51

0.05

0.5

0.5

0.05

0.5

GR

250

L31+

50, 0

+50N

0.5

30.

53

0.5

0.5

0.05

0.5

0.5

0.05

0.5

GR

375

L31+

50, 0

+75N

15

0.5

20.

50.

50.

050.

50.

50.

050.

5G

R 4

100

L31+

50, 1

+00N

0.5

50.

52

0.5

10.

050.

50.

50.

050.

5G

R 5

125

L31+

50, 1

+25N

17

16

0.5

10.

050.

50.

50.

050.

5G

R 6

150

L31+

50, 1

+50N

no s

ampl

e-w

et s

wam

pG

R 7

175

L31+

50, 1

+75N

0.5

10.

51

0.5

10.

050.

50.

50.

050.

5G

R 8

200

L31+

50, 2

+00N

0.5

0.5

0.5

0.5

0.5

0.5

0.05

0.5

0.5

0.05

0.5

GR

9-2

225

L31+

50, 2

+25N

0.5

30.

55

0.5

0.5

0.05

0.5

0.5

0.05

0.5

GR

10

250

L31+

50, 2

+50N

0.5

30.

53

0.5

0.5

0.05

0.5

0.5

0.05

0.5

GR

11

275

L31+

50, 2

+75N

0.5

30.

51

0.5

0.5

0.05

0.5

0.5

0.05

0.5

GR

12

300

L31+

50, 3

+00N

0.5

40.

51

0.5

0.5

0.05

0.5

0.5

0.05

0.5

GR

13

325

L31+

50, 3

+25N

0.5

40.

52

0.5

10.

050.

50.

50.

050.

5G

R 1

435

0L3

1+50

, 3+5

0N1

60.

52

0.5

0.5

0.05

0.5

0.5

0.05

0.5

GR

15

375

L31+

50, 3

+75N

15

0.5

50.

50.

50.

050.

50.

50.

050.

5G

R 1

640

0L3

1+50

, 4+0

0N2

82

50.

51

0.05

0.5

0.5

0.05

0.5

GR

17

425

L31+

50, 4

+25N

0.5

50.

51

0.5

0.5

0.05

0.5

0.5

0.05

0.5

GR

18

450

L31+

50, 4

+50N

16

0.5

40.

50.

50.

050.

50.

50.

050.

5G

R 1

947

5L3

1+50

, 4+7

5N1

60.

52

0.5

10.

050.

50.

50.

050.

5G

R 2

050

0L3

1+50

, 5+0

0N0.

55

0.5

30.

50.

50.

050.

50.

50.

050.

5G

R 2

1-1

525

L31+

50, 5

+25N

0.5

20.

52

0.5

20.

050.

50.

50.

050.

5G

R 2

255

0L3

1+50

, 5+5

0N0.

52

0.5

20.

51

0.05

0.5

0.5

0.05

0.5

GR

23

575

L31+

50, 5

+75N

0.5

30.

54

12

0.05

0.5

0.5

0.05

0.5

GR

24

600

L31+

50, 6

+00N

0.5

30.

52

0.5

20.

050.

50.

50.

050.

5G

R 2

562

5L3

1+50

, 6+2

5Nno

sam

ple-

wet

sw

amp

GR

26

650

L31+

50, 6

+50N

no s

ampl

e-w

et s

wam

pG

R 2

767

5L3

1+50

, 6+7

5Nno

sam

ple-

wet

sw

amp

GR

28

700

L31+

50, 7

+00N

no s

ampl

e-w

et s

wam

pG

R 2

972

5L3

1+50

, 7+2

5N0.

50.

50.

50.

50.

50.

50.

050.

50.

50.

050.

5G

R 3

075

0L3

1+50

, 7+5

0N0.

50.

50.

50.

50.

50.

50.

050.

50.

50.

050.

5G

R 3

177

5L3

1+50

, 7+7

5N0.

50.

50.

50.

50.

50.

50.

050.

50.

50.

050.

5G

R 3

280

0L3

1+50

, 8+0

0N0.

50.

50.

50.

50.

50.

50.

050.

50.

50.

050.

5Fi

eld

Dup

licat

es

Sam

ple

Dis

tanc

eG

rid R

efer

ence

TmYb

LuH

fTa

WR

eO

sPt

Au

S.Q

.Hg

LLD

11

11

11

0.1

11

0.1

1G

R 9

-122

5L3

1+50

, 2+2

5N0.

54

0.5

40.

50.

50.

050.

50.

50.

050.

5G

R 9

-222

5L3

1+50

, 2+2

5N0.

53

0.5

50.

50.

50.

050.

50.

50.

050.

5G

R 2

1-1

525

L31+

50, 5

+25N

0.5

20.

52

0.5

20.

050.

50.

50.

050.

5G

R 2

1-2

525

L31+

50, 5

+25N

0.5

20.

51

0.5

10.

050.

50.

50.

050.

5

21

Appendix II: Enzyme leach/ICP-MS analytical data for sampling transect L31+50 and field duplicates. All data in parts per billion (ppb). (Continued)

Sample Distance Grid Reference Tl Pb Bi Th ULLD 1 1 1 1 1GR 1 25 L31+50, 0+25N 0.5 8 0.5 17 7GR 2 50 L31+50, 0+50N 0.5 8 0.5 11 4GR 3 75 L31+50, 0+75N 0.5 6 0.5 9 3GR 4 100 L31+50, 1+00N 0.5 6 0.5 10 8GR 5 125 L31+50, 1+25N 0.5 8 0.5 33 7GR 6 150 L31+50, 1+50N no sample-wet swampGR 7 175 L31+50, 1+75N 0.5 9 0.5 12 3GR 8 200 L31+50, 2+00N 0.5 4 0.5 8 3GR 9-2 225 L31+50, 2+25N 0.5 8 0.5 19 4GR 10 250 L31+50, 2+50N 0.5 8 0.5 14 3GR 11 275 L31+50, 2+75N 0.5 4 0.5 12 2GR 12 300 L31+50, 3+00N 0.5 6 0.5 10 2GR 13 325 L31+50, 3+25N 0.5 5 0.5 9 2GR 14 350 L31+50, 3+50N 0.5 7 0.5 15 4GR 15 375 L31+50, 3+75N 0.5 9 0.5 25 5GR 16 400 L31+50, 4+00N 0.5 21 0.5 21 9GR 17 425 L31+50, 4+25N 0.5 6 0.5 8 2GR 18 450 L31+50, 4+50N 0.5 8 0.5 19 4GR 19 475 L31+50, 4+75N 0.5 7 0.5 14 2GR 20 500 L31+50, 5+00N 0.5 5 0.5 11 2GR 21-1 525 L31+50, 5+25N 0.5 9 0.5 15 3GR 22 550 L31+50, 5+50N 0.5 6 0.5 19 8GR 23 575 L31+50, 5+75N 0.5 28 0.5 19 6GR 24 600 L31+50, 6+00N 0.5 13 0.5 21 3GR 25 625 L31+50, 6+25N no sample-wet swampGR 26 650 L31+50, 6+50N no sample-wet swampGR 27 675 L31+50, 6+75N no sample-wet swampGR 28 700 L31+50, 7+00N no sample-wet swampGR 29 725 L31+50, 7+25N 0.5 3 0.5 4 0.5GR 30 750 L31+50, 7+50N 0.5 1 0.5 0.5 0.5GR 31 775 L31+50, 7+75N 0.5 4 0.5 5 0.5GR 32 800 L31+50, 8+00N 0.5 1 0.5 0.5 0.5

Field Duplicates

Sample Distance Grid Reference Tl Pb Bi Th ULLD 1 1 1 1 1GR 9-1 225 L31+50, 2+25N 0.5 8 0.5 19 5GR 9-2 225 L31+50, 2+25N 0.5 8 0.5 19 4GR 21-1 525 L31+50, 5+25N 0.5 9 0.5 15 3GR 21-2 525 L31+50, 5+25N 0.5 7 0.5 13 2

Appendix III: Enzyme leach element profiles over the Pipestone Lake Ti-V deposit.

22

23

Appendix III: Enzyme leach element profiles over the Pipestone Lake Ti-V deposit. (continued)

24

Appendix III: Enzyme leach element profiles over the Pipestone Lake Ti-V deposit. (continued)

25

Appendix III: Enzyme leach element profiles over the Pipestone Lake Ti-V deposit. (continued)

26

Appendix III: Enzyme leach element profiles over the Pipestone Lake Ti-V deposit. (continued)

27

Appendix III: Enzyme leach element profiles over the Pipestone Lake Ti-V deposit. (continued)

28

Appendix III: Enzyme leach element profiles over the Pipestone Lake Ti-V deposit. (continued)

29

Appendix III: Enzyme leach element profiles over the Pipestone Lake Ti-V deposit. (continued)

30

Appendix III: Enzyme leach element profiles over the Pipestone Lake Ti-V deposit. (continued)

31

Appendix III: Enzyme leach element profiles over the Pipestone Lake Ti-V deposit. (continued)

32

Elem

ent

Uni

tsG

R-1

GR

-2

G

R-3

GR

-4

G

R-5

GR

-6G

R-7

GR

-8

G

R-9

-1

GR

-9-2

R

E G

R-9

-2

G

R-1

0

GR

-11

G

R-1

2

GR

-13

G

R-1

4

GR

-15

G

R-1

6

GR

-17

G

R-1

8

GR

-19

G

R-2

0

GR

-21-

1

G

R-2

1-2

GR

-22

G

R-2

3

GR

-24

G

R-2

5G

R-2

6G

R-2

7G

R-2

8G

R-2

9

GR

-30

G

R-3

1

GR

-32

GR

-9-1

G

R-9

-2

GR

-21-

1

G

R-2

1-2

GR

-9-2

R

E G

R-9

-2

Met

res

25 50 75 100

125

150

175

200

225

225

225

250

275

300

325

350

375

400

425

450

475

500

525

525

550

575

600

625

650

675

700

725

750

775

800

225

225

525

525

225

225

Grid

Ref

eren

ce

L31+

50, 0

+25N

L31+

50, 0

+50N

L31+

50, 0

+75N

L31+

50, 1

+00N

L31+

50, 1

+25N

L31+

50, 1

+50N

L31+

50, 1

+75N

L31+

50, 2

+00N

L31+

50, 2

+25N

L31+

50, 2

+25N

L31+

50, 2

+25N

L31+

50, 2

+50N

L31+

50, 2

+75N

L31+

50, 3

+00N

L31+

50, 3

+25N

L31+

50, 3

+50N

L31+

50, 3

+75N

L31+

50, 4

+00N

L31+

50, 4

+25N

L31+

50, 4

+50N

L31+

50, 4

+75N

L31+

50, 5

+00N

L31+

50, 5

+25N

L31+

50, 5

+25N

L31+

50, 5

+50N

L31+

50, 5

+75N

L31+

50, 6

+00N

L31+

50, 6

+25N

L31+

50, 6

+50N

L31+

50, 6

+75N

L31+

50, 7

+00N

L31+

50, 7

+25N

L31+

50, 7

+50N

L31+

50, 7

+75N

L31+

50, 8

+00N

L31+

50, 2

+25N

L31+

50, 2

+25N

L31+

50, 5

+25N

L31+

50, 5

+25N

L31+

50, 2

+25N

L31+

50, 2

+25N

Ag

PPM

0.6

0.7

0.7

0.8

0.6

NS

0.7

0.5

0.6

0.6

0.6

0.5

0.5

0.6

0.7

0.6

0.5

0.5

0.6

0.6

0.5

0.6

0.5

0.4

0.6

0.4

0.5

NS

NS

NS

NS

0.4

0.6

0.5

0.4

0.6

0.6

0.5

0.4

0.6

0.6

Hg

PPB

54 40 25 26 23 NS 15 14 17 35 NA 36 45 29 26 26 15 38 38 32 28 31 18 19 5 39 10 NS

NS

NS

NS 15 3 6 3 17 35 18 19 35 NA

Mn

PPM

606

547

555

710

711

NS

384

253

360

412

427

474

538

560

668

508

377

491

482

569

578

516

326

332

196

947

287

NS

NS

NS

NS

220

190

212

154

360

412

326

332

412

427

Sr

PPM

148

163

158

172

149

NS

180

200

153

167

176

154

165

162

161

153

187

160

154

161

159

151

200

200

221

133

228

NS

NS

NS

NS

200

225

204

211

153

167

200

200

167

176

Bi

PPM

-5 -5 -5 -5 -5 NS -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 NS

NS

NS

NS -5 -5 -5 -5 -5 -5 -5 -5 -5 -5

Cd

PPM

-0.5

-0.5

-0.5

-0.5

-0.5

NS

-0.5

-0.5

-0.5

-0.5

-0.5

-0.5

-0.5

-0.5

-0.5

-0.5

-0.5

-0.5

-0.5

-0.5

-0.5

-0.5

-0.5

-0.5

-0.5

-0.5

-0.5

NS

NS

NS

NS

-0.5

-0.5

-0.5

-0.5

-0.5

-0.5

-0.5

-0.5

-0.5

-0.5

V PP

M10

296 12

112

511

7N

S 92 54 104

93 94 102

103

125

118

121

82 103

119

105

120

107

57 58 35 109

50 NS

NS

NS

NS 24 36 43 30 104

93 57 58 93 94

Ca % 1.15

1.06

1.14

1.21

1.12 NS

2.63

1.31

0.78

0.95

0.97

1.16

4.51

1.08

1.25 1

1.08

0.98

1.37

1.13

1.21

1.44

3.46

6.22

1.42

4.63

2.34 NS

NS

NS

NS

8.15

1.31

1.24

1.16

0.78

0.95

3.46

6.22

0.95

0.97

P %0.

037

0.02

80.

033

0.03

0.03

1N

S0.

017

0.01

20.

020.

017

0.01

80.

024

0.04

80.

038

0.03

20.

030.

020.

027

0.03

30.

035

0.02

60.

024

0.03

50.

036

0.04

60.

047

0.05

2N

SN

SN

SN

S0.

037

0.03

50.

035

0.04

2

0.02

0.01

70.

035

0.03

6

0.01

70.

018

Al % 8

8.05

9.37

9.91

9.03 NS

7.97

5.48 9

8.35 8.4

8.55

8.01

9.69

9.53

9.65

7.41

8.55

9.82

8.65

9.54

8.81 5.8

5.74

4.97

4.35

5.47 NS

NS

NS

NS

3.75 4.8

4.98

4.72 9

8.35 5.8

5.74

8.35 8.4

Ti % 0.39

0.39

0.41

0.42

0.39 NS

0.34

0.23

0.39

0.38

0.38

0.39

0.35 0.4

0.4

0.41

0.34

0.39 0.4

0.39

0.41

0.37

0.25

0.25

0.19 0.5

0.23 NS

NS

NS

NS

0.13

0.17

0.19

0.15

0.39

0.38

0.25

0.25

0.38

0.38

Mg %

1.36

1.27

1.69

1.85

1.61 NS

1.29

0.63

1.42

1.21

1.25

1.44

1.74

1.86

1.73

1.64

1.02

1.33

1.84

1.44

1.75

1.51

1.48

1.64

0.41

4.02

0.94 NS

NS

NS

NS

2.02

0.31

0.43 0.3

1.42

1.21

1.48

1.64

1.21

1.25

K % 2.7

2.64 2.9

2.99

2.71 NS

2.47

1.47

2.52

2.73

2.68

2.58

2.14

2.96

2.87

2.77

2.42

2.64

2.75

2.81

2.74

2.23

1.59

1.66

1.72

0.98

1.65 NS

NS

NS

NS

1.36 1.4

1.38

1.46

2.52

2.73

1.59

1.66

2.73

2.68

YPP

M22 14 20 24 20 N

S 17 7 14 10 11 19 40 24 22 17 13 22 28 20 25 20 13 13 10 13 12 NS

NS

NS

NS 8 7 7 6 14 10 13 13 10 11

Be

PPM 2 2 2 2 2 NS 2 -2 2 2 2 2 2 2 2 2 -2 2 2 2 2 2 -2 -2 -2 -2 -2 NS

NS

NS

NS -2 -2 -2 -2 2 2 -2 -2 2 2

S % 0.03

0.02

0.02

0.02

0.02 NS

0.03

0.02

0.02

0.02

0.03

0.02

0.05

0.02

0.03

0.02

0.02

0.02

0.02

0.02

0.02

0.03

0.04

0.06

0.02

0.04

0.02 NS

NS

NS

NS

0.07

0.02

0.01

0.02

0.02

0.02

0.04

0.06

0.02

0.03

Mo

PPM

-2 -2 -2 -2 -2 NS -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 NS

NS

NS

NS -2 -2 -2 -2 -2 -2 -2 -2 -2 -2

Cu

PPM

23 20 31 34 32 NS 22 16 29 19 19 27 41 37 33 34 16 27 39 23 31 23 19 22 6 89 20 NS

NS

NS

NS 3 2 7 2 29 19 19 22 19 19

Zn

PPM

80 72 95 103

102

NS 74 46 73 65 68 75 81 98 98 90 57 76 102

83 93 77 38 40 16 56 28 NS

NS

NS

NS 11 12 22 12 73 65 38 40 65 68

Pb

PPM

21 21 24 25 23 NS 20 13 22 21 21 21 18 24 24 20 19 21 22 22 23 21 13 14 13 6 12 NS

NS

NS

NS 8 12 13 13 22 21 13 14 21 21

Ni

PPM

49 46 58 64 58 NS 43 29 51 44 44 50 56 61 59 57 36 52 59 52 61 53 30 32 15 381

27 NS

NS

NS

NS 11 13 26 12 51 44 30 32 44 44

App

endi

x IV

: Neu

tron

act

ivat

ion

and

indu

ctiv

ely

coup

led

plas

ma-

atom

ic e

mis

sion

spe

ctro

met

ry

anal

ytic

al d

ata

for s

ampl

ing

tran

sect

L31

+50.

Hg

data

by

flow

inje

ctio

n (F

IMS)

.

ICP-

AES

Fiel

d D

uplic

ate

Pairs

Ana

lytic

al D

uplic

ates

33

Elem

ent

Uni

ts

GR

-1

G

R-2

GR

-3

G

R-4

GR

-5

G

R-7

GR

-8

G

R-9

-1

GR

-9-2

G

R-1

0

GR

-11

G

R-1

2

GR

-13

G

R-1

4

GR

-15

G

R-1

6

GR

-17

G

R-1

8

GR

-19

G

R-2

0

GR

-21-

1

G

R-2

1-2

GR

-22

G

R-2

3

GR

-24

G

R-2

5G

R-2

6G

R-2

7G

R-2

8G

R-2

9

GR

-30

G

R-3

1

GR

-32

GR

-9-1

G

R-9

-2

GR

-21-

1

G

R-2

1-2

Met

res

25 50 75 100

125

175

200

225

225

250

275

300

325

350

375

400

425

450

475

500

525

525

550

575

600

625

650

675

700

725

750

775

800

225

225

525

525

Grid

Ref

eren

ce

L31+

50, 0

+25N

L31+

50, 0

+50N

L31+

50, 0

+75N

L31+

50, 1

+00N

L31+

50, 1

+25N

L31+

50, 1

+50N

L31+

50, 1

+75N

L31+

50, 2

+25N

L31+

50, 2

+25N

L31+

50, 2

+50N

L31+

50, 2

+75N

L31+

50, 3

+00N

L31+

50, 3

+25N

L31+

50, 3

+50N

L31+

50, 3

+75N

L31+

50, 4

+00N

L31+

50, 4

+25N

L31+

50, 4

+50N

L31+

50, 4

+75N

L31+

50, 5

+00N

L31+

50, 5

+25N

L31+

50, 5

+25N

L31+

50, 5

+50N

L31+

50, 5

+75N

L31+

50, 6

+00N

L31+

50,6

+25N

L31+

50, 6

+50N

L31+

50, 6

+75N

L31+

50, 7

+00N

L31+

50,7

+25N

L31+

50, 7

+50N

L31+

50, 7

+75N

L31+

50, 8

+00N

L31+

50, 2

+00N

L31+

50, 2

+25N

L31+

50, 5

+25N

L31+

50, 5

+25N

Ca %

1 2 -1 -1 -1 -1 3 -1 2 -1 1 4 -1 -1 -1 -1 2 -1 -1 2 2 4 6 -1 4 2 0 0 0 0 8 2 1 -1 2 -1 4 6

Au

PPB

2 4 -2 5 -2 2 -2 -2 -2 -2 4 -2 -2 -2 -2 -2 -2 -2 2 -2 -2 -2 -2 -2 -2 -2 0 0 0 0 -2 -2 -2 -2 -2 -2 -2 -2

Cr

PPM 5 113

103

118

132

123

100

94 113

106

118

95 147

122

132

88 109

128

117

123

110

80 77 48 687

63 0 0 0 0 40 37 65 29 113

106

80 77

Cs

PPM 1 9 7 9 9 9 6 2 8 7 9 7 11 8 9 5 7 10 8 9 8 3 3 1 2 2 0 0 0 0 1 -1 1 -1 8 7 3 3

Hf

PPM

1 5 6 5 5 5 6 8 6 6 6 5 6 6 6 6 5 6 6 5 6 6 6 9 6 7 0 0 0 0 7 6 7 4 6 6 6 6

Fe %

0.01 5.2

4.77

5.82

6.32

6.07

4.53

2.95

5.42

4.51

5.54 5.5

6.89

5.75

6.03

3.65

4.65

6.32 5.4

5.92 5.3

3.09

3.15

1.51

7.76

2.24 0 0 0 0

1.36

1.39

2.27

1.12

5.42

4.51

3.09

3.15

Hg

PPM 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 0 0 -1 -1 -1 -1 -1 -1 -1 -1

Ir PPB 5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 0 0 0 0 -5 -5 -5 -5 -5 -5 -5 -5

Mo

PPM 1 -1 -1 -1 2 -1 2 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 3 -1 -1 2 -1 1 -1 -1 0 0 0 0 -1 -1 -1 -1 -1 -1 2 -1

Rb

PPM

15 182

201

175

196

182

172

52 184

162

180

154

216

179

183

146

194

180

190

182

152

76 91 57 53 71 0 0 0 0 49 43 48 57 184

162

76 91

Ni

PPM

20 -33

-27

-28

-29

-29

-25

-20

-28

-26

-31

100

184

-29

-28

-24

-27

-28

70 -29

67 -20

-20

-20

362

-20 0 0 0 0 -20

-20

-20

-20

-28

-26

-20

-20

Na %

0.01

1.14

1.27

1.06

1.14

1.05

1.31

1.75

1.07

1.27

1.14

1.09

1.15

1.02

1.07

1.41

1.05

0.97

1.21

0.99

0.98

1.49

1.43

1.79

1.11

1.76 0 0 0 0

1.42

1.61

1.65

1.59

1.07

1.27

1.49

1.43

Sb PPM

0.1

0.4

0.5

0.4

0.5

0.4

0.4

0.3

0.5

0.3

0.4

0.6

0.4

0.4

0.4

0.2

-0.1

0.6

0.4

0.4

0.4

0.2

0.2

0.3

-0.1

-0.1 0 0 0 0 0.2

0.1

-0.1

-0.1

0.5

0.3

0.2

0.2

Sc PPM

0.1

16.5

15.1

17 17.6

16.4

13.1 8 15 13.2

17 14.6

18.9

16.4

17.6

11.7

16.5

17.6

16.9

16.8

15.6

9.9

9.7

5.7

17.4

7.3 0 0 0 0 4.1

3.7

5.6

3.3

15 13.2

9.9

9.7

Se PPM 3 -3 -3 -3 -3 3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 0 0 0 0 -3 -3 -3 -3 -3 -3 -3 -3

Ag

PPM 5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 0 0 0 0 -5 -5 -5 -5 -5 -5 -5 -5

As

PPM

0.5

5.3

5.3

7.1

6.9

9.3

6.9

4.5

7.5

6.5

8.2

9.5

8.7

8.2

8.9

2.5

4.7

8.3

6.2

7.7

8.6

4.9

4.8

2.8

5.4

4.4 0 0 0 0 3.7

2.2

2.9

1.7

7.5

6.5

4.9

4.8

Br

PPM

0.5

8.3

4.2

5.6

4.4

4.8

2.5

3.4

3.9

3.4

6.5

9.7

5.1

5.7

5.4

2.1

2.2

8.3

5.6

7.3

9.5

6.7

6.5

2.4 3 4.3 0 0 0 0 3.4

1.4

-0.5

1.6

3.9

3.4

6.7

6.5

Ba

PPM

50 640

680

670

700

680

650

620

660

730

760

550

860

680

720

770

770

710

750

680

720

610

600

510

300

470 0 0 0 0 400

430

410

400

660

730

610

600

Co

PPM 1 20 18 19 23 24 14 10 18 16 21 18 23 20 19 13 17 20 18 22 18 12 12 5 50 7 0 0 0 0 3 4 8 4 18 16 12 12

App

endi

x IV

: Neu

tron

act

ivat

ion

and

indu

ctiv

ely

coup

led

plas

ma-

atom

ic e

mis

sion

spe

ctro

met

ry

anal

ytic

al d

ata

for s

ampl

ing

tran

sect

L31

+50.

Hg

data

by

flow

inje

ctio

n (F

IMS)

. (C

ontin

ued)

INA

A

Det

ectio

n Li

mit

Fiel

d D

uplic

ate

Pairs

34

Elem

ent

Uni

ts

GR

-1

G

R-2

GR

-3

G

R-4

GR

-5

G

R-7

GR

-8

G

R-9

-1

GR

-9-2

G

R-1

0

GR

-11

G

R-1

2

GR

-13

G

R-1

4

GR

-15

G

R-1

6

GR

-17

G

R-1

8

GR

-19

G

R-2

0

GR

-21-

1

G

R-2

1-2

GR

-22

G

R-2

3

GR

-24

G

R-2

5G

R-2

6G

R-2

7G

R-2

8G

R-2

9

GR

-30

G

R-3

1

GR

-32

GR

-9-1

G

R-9

-2

GR

-21-

1

G

R-2

1-2

Met

res

25 50 75 100

125

175

200

225

225

250

275

300

325

350

375

400

425

450

475

500

525

525

550

575

600

625

650

675

700

725

750

775

800

225

225

525

525

Grid

Ref

eren

ce

L31+

50, 0

+25N

L31+

50, 0

+50N

L31+

50, 0

+75N

L31+

50, 1

+00N

L31+

50, 1

+25N

L31+

50, 1

+50N

L31+

50, 1

+75N

L31+

50, 2

+25N

L31+

50, 2

+25N

L31+

50, 2

+50N

L31+

50, 2

+75N

L31+

50, 3

+00N

L31+

50, 3

+25N

L31+

50, 3

+50N

L31+

50, 3

+75N

L31+

50, 4

+00N

L31+

50, 4

+25N

L31+

50, 4

+50N

L31+

50, 4

+75N

L31+

50, 5

+00N

L31+

50, 5

+25N

L31+

50, 5

+25N

L31+

50, 5

+50N

L31+

50, 5

+75N

L31+

50, 6

+00N

L31+

50,6

+25N

L31+

50, 6

+50N

L31+

50, 6

+75N

L31+

50, 7

+00N

L31+

50,7

+25N

L31+

50, 7

+50N

L31+

50, 7

+75N

L31+

50, 8

+00N

L31+

50, 2

+00N

L31+

50, 2

+25N

L31+

50, 5

+25N

L31+

50, 5

+25N

W

PPM 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 2 -1 -1 -1 -1 3 -1 -1 -1 -1 -1 0 0 0 0 -1 -1 -1 -1 -1 -1 -1 -1

Sn %

0.01

-0.0

1-0

.01

-0.0

1-0

.01

-0.0

1-0

.01

-0.0

1-0

.01

-0.0

1-0

.01

-0.0

1-0

.01

-0.0

1-0

.01

-0.0

1-0

.01

-0.0

1-0

.01

-0.0

1-0

.01

-0.0

1-0

.01

-0.0

1-0

.01

-0.0

10 0 0 0

-0.0

1-0

.01

-0.0

1-0

.01

-0.0

1-0

.01

-0.0

1-0

.01

La PPM

0.5

72.2

48.3

59.7

71 61.7

51.3

24 59.9

47.6

70.1

113

75.7

63.2

57.7

43.9

66.9

83.9

63.4

72 55.4

32.8

35.2

18.8

21.8

24.5 0 0 0 0

15.5

11.7

15.3

9.6

59.9

47.6

32.8

35.2

Ce

PPM 3 172

145

122

149

142

98 37 138

115

174

138

151

117

137

101

189

107

184

137

127

57 63 42 50 46 0 0 0 0 35 24 35 20 138

115

57 63

Sm PPM

0.1

8.6

5.6

7.1

8.7

7.2

6.2

2.9

5.6

4.3

8.8

12.5

9.6

7.4

6.9

5.3

8.1

9.9

8.2

8.9

7.7

4.2

4.3 3 4.2

3.6 0 0 0 0 2.4

1.7

2.1

1.5

5.6

4.3

4.2

4.3

Nd

PPM

5 60 36 45 52 46 41 14 44 32 56 85 60 46 44 33 54 68 54 59 49 28 28 18 21 22 0 0 0 0 15 7 10 7 44 32 28 28

Eu PPM

0.2 2 1.3

1.9 2 1.8

1.4

0.7

1.4

1.2

2.1

2.9

2.1

1.8

1.5

1.3 2 2.3

1.7 2 1.8 1 1 0.9

1.2

1.1 0 0 0 0 0.7

0.6

0.6

0.5

1.4

1.2 1 1

Tb PPM

0.5

1.1

-0.5

-0.5

-0.5

0.6

-0.5

-0.5

-0.5

-0.5 1 1 -0.5

-0.5

-0.5

-0.5 1 -0.5

-0.5

-0.5

-0.5

0.6

0.6

-0.5

-0.5

-0.5 0 0 0 0 -0.5

-0.5

-0.5

-0.5

-0.5

-0.5

0.6

0.6

Yb PPM

0.2 3 2.4

2.5 3 2.3

2.2

1.3

1.8

1.8

3.1

3.6 3 2.5

2.3 2 2.7

3.1

2.7

2.8

2.7

1.6

1.5

1.6

1.7

1.5 0 0 0 0 1.2

0.8

1.1

0.7

1.8

1.8

1.6

1.5

Lu PPM

0.05 0.5

0.38

0.48 0.5

0.48

0.41

0.22

0.33

0.31

0.52

0.65 0.6

0.44

0.47

0.37 0.5

0.56 0.5

0.54

0.44

0.27

0.26

0.27

0.27

0.29 0 0 0 0

0.21

0.15

0.21

0.13

0.33

0.31

0.27

0.26

Sr %

0.05

-0.0

5-0

.05

-0.0

5-0

.05

-0.0

5-0

.05

-0.0

5-0

.05

-0.0

5-0

.05

-0.0

5-0

.05

-0.0

5-0

.05

-0.0

5-0

.05

-0.0

5-0

.05

-0.0

5-0

.05

-0.0

5-0

.05

-0.0

5-0

.05

-0.0

50 0 0 0

-0.0

5-0

.05

-0.0

5-0

.05

-0.0

5-0

.05

-0.0

5-0

.05

Ta PPM

0.5

-0.5

1.3

1.4

-0.5 1 -0.5

-0.5

1.2

1.4

1.1

0.8 2 1.8

-0.5

1.3

1.4

-0.5

-0.5

1.6

0.6

-0.5

-0.5

-0.5

1.1

1.4 0 0 0 0 -0.5

-0.5

-0.5

-0.5

1.2

1.4

-0.5

-0.5

U

PPM

0.5

3.2

2.1

3.1

4.7

2.5

1.9

0.7

2.9

2.6

2.2

2.7

3.3

-0.5

3.3

2.1

2.5

3.2

2.7

3.1

3.4

0.8

0.8

1.2

-0.5

-0.5 0 0 0 0 -0.5

0.9

1.1

-0.5

2.9

2.6

0.8

0.8

Th PPM

0.2

21.2

18 23.4

25 23.6

17.7

7.6

21.2

20.4

23.5

21.3

27.5

22.8

25.5

16 22.7

25.4

25.5

24.6

24.6

10.2

11.8

5.6 6 7.3 0 0 0 0 4.2

4.5

6.5

3.2

21.2

20.4

10.2

11.8

Zn PPM

50 147

146

132

129

156

118

67 107

105

144

121

109

92 153

75 115

145

107

123

121

-50

-50

-50

82 -50 0 0 0 0 -50

-50

-50

-50

107

105

-50

-50

App

endi

x IV

: Neu

tron

act

ivat

ion

and

indu

ctiv

ely

coup

led

plas

ma-

atom

ic e

mis

sion

spe

ctro

met

ry

anal

ytic

al d

ata

for s

ampl

ing

tran

sect

L31

+50.

Hg

data

by

flow

inje

ctio

n (F

IMS)

. (C

ontin

ued)

INA

A

Det

ectio

n Li

mit

Fiel

d D

uplic

ate

Pairs