an autonomous reactivity control system in the · pdf filean autonomous reactivity control...

20
An Autonomous Reactivity Control System In The Nuclear Burning Wave Reactor Oleksiy Fomin National Science Center "Kharkiv Institute of Physics and Technology", Ukraine e-mail: fomax.ua @ gmail.com IAEA TM on Passive Shutdown Systems for LMFR Vienna, 20-22 October 2015

Upload: truongnhu

Post on 13-Feb-2018

222 views

Category:

Documents


0 download

TRANSCRIPT

An Autonomous Reactivity Control System

In The Nuclear Burning Wave Reactor

Oleksiy Fomin

National Science Center "Kharkiv Institute of Physics and Technology", Ukraine

e-mail: fomax.ua @ gmail.com

IAEA TM on Passive Shutdown Systems for LMFR Vienna, 20-22 October 2015

232Th 233Th

233Pa

233U 234U 235U 236U 237U

T½ = 22.2 min

T½ = 27 days

237Np

T½ = 6.75 days

238U 239U

239Np

239Pu 240Pu 241Pu 242Pu 243Pu

T½ = 23.5 min

T½ = 2,35 days

243Am

T½ = 4.98 hours

241Am

T½ = 14,3 years

Th-U fuel cycle

U-Pu fuel cycle

Nuclear fuel reproduction

An Autonomous Reactivity Control System In The Nuclear Burning Wave Reactor Oleksiy Fomin

IAEA TM on Passive Shutdown Systems for LMFR Vienna, 20-22 October 2015

Lev Feoktistov (USSR, 1988):

Nuclear Burning Wave

L.P. Feoktistov. Preprint IAE-4605/4, 1988.

L.P. Feoktistov. Sov. Phys. Doklady, 34 (1989) 1071.

Fertilezone

Breedingzone

Burningzone

Extinctionzone

Nuclearasheszone

238U (n,) 239U () 239Np () 239Pu (n,fission) ... T1/2 2.35 days

Concept & Analytical approach

Feoktistov

criterion

2

8 8 Pu2 Pua a f

n nD vn N N

t z

88 8 ;a

Nvn N

t

98 8 9

1a

Nvn N N

t

Pu9 PuPu

1a f

NN vn N

t

x z Vt 8 8Pu a

eq Pu Pu

f a

NN

( 1)

ai iPu icr Pu

f

NN

Pu Pu

eq crN N

Goldin & Anistratov (USSR, 1992): Nuclear Burning Wave Deterministic approach

V. Goldin, D. Anistratov. Preprint IMM RAS # 43 U-Pu fuel cycle 1d non-stationary problem

Edward Teller (USA, 1997): Traveling Wave Reactor Monte Carlo simulation

E.Teller. Preprint UCRL-JC-129547, LLNL Th-U fuel cycle

Hiroshi Sekimoto (Japan, 2001): CANDLE Deterministic approach

H.Sekimoto et al., Nucl. Sci. Eng., 139, 306 U-Pu fuel cycle Stationary problem: x = z + Vt

238U

239Pu

Fission Products

NBW Fuel Burn-Up

IAEA TM on Passive Shutdown Systems for LMFR Vienna, 20-22 October 2015

An Autonomous Reactivity Control System In The Nuclear Burning Wave Reactor Oleksiy Fomin

L z

r

R

L

ign

j ext

Breeding zone

Ignition zone

238 U 100 % 238 U

90 %

239 Pu

10 %

2D Non-Stationary Theory of Nuclear Burning Wave

S. Fomin, Yu. Mel’nik, V. Pilipenko, N. Shul’ga, A. Fomin (1st IC “Global 2009”, Paris, paper 9456)

Nuclear Burning Wave

/ / / / / /

/ / /

1 1

1

1 1 1

1 1

( ) ( )

g g gg g g g g g g g g g

a in mod in modg

gG Gg g g j j g g j j j g g g

f f f d l f f l d l l inj l j lg g g

rD Dv t r r r z z

C

( 1) ( 1) ( 1)

g gg glal l l c l l l

g g

NN N

t

Non-Stationary Nonlinear Multi-Group Diffusion Equation of Neutron Transport

Together with Fuel Burn-up Equations and Equations of Nuclear Kinetics

of Precursor Nuclei of Delayed Neutrons

96 6

NN

t

10

1,4,5,6,7

gg

fl l

l g

NN

t

( )j

j j j g g gll l l f f l

g

CC

t

Metal fuel (44%)

Pb-Bi coolant (36%)

CM - Fe (20%)

jext ~ 1015 cm-2 s-1

toff = 400 days

( 1 8);, l

Example: Metallic fuel 232Th (62%) + 238U (38%) volume fraction = 55%,

fuel porosity p = 0.20; Coolant (Pb-Bi eutectic) vol. frac. = 30%,

Constr. materials (Fe) vol. frac. = 15%; R = 215 cm

L z

r

R

L зап

Jext

Breeding zone

Ignition zone

238 U 50 % 238 U

90 %

239 Pu

10 %

232Th 50 %

IAEA TM on Passive Shutdown Systems for LMFR Vienna, 20-22 October 2015

An Autonomous Reactivity Control System In The Nuclear Burning Wave Reactor Oleksiy Fomin

NBW reactor with mixed Th-U-Pu fuel cycle

Fuel burn-up for Th-U-Pu cycle

An Autonomous Reactivity Control System In The Nuclear Burning Wave Reactor Oleksiy Fomin

IAEA TM on Passive Shutdown Systems for LMFR Vienna, 20-22 October 2015

Reactor composition (vol. frac.):

Fuel = 55% (FTh = 62%, p = 0.20), Coolant = 30%, CM = 15%, R = 215 cm

- negative feedback on reactivity - intrinsic safety

- long-term (decades) operation without refueling and external control

- possibility of 232Th and 238U utilization as a fuel

- fuel burn-up depth for both 238U and 232Th ≈ 50%

- neutron flux in active zone ≈ 2·1015 n/сm2s

- neutron fluence during the whole reactor campaign ≈ 3·1024 n/сm2

- energy production density in active zone ≈ 200 W/сm3

- total power at the steady-state regime ≈ 1.2 GW

- wave velocity at the steady-state regime ≈ 2 сm/year

- possibility of nuclear waste burn out (expected)

IAEA TM on Passive Shutdown Systems for LMFR Vienna, 20-22 October 2015

An Autonomous Reactivity Control System In The Nuclear Burning Wave Reactor Oleksiy Fomin

Main features of NBW reactor with mixed Th-U-Pu fuel cycle

Perturbation of integral neutron flux Fint (1022 cm/s) caused by an external neutron source

via time t (days). The source with intensity Qext = 21011 (cm-3 s-1) starts at t0 = 0 days,

lasts during 1 hour and is situated at 160 < z < 170 cm

-10 0 10 20 30 40 50 60 70 80

5

10

15

20

25

30 a)

int

t-t0

Stability of the NBW Regime

R = 230 cm

≈ 2.5 days

IAEA TM on Passive Shutdown Systems for LMFR Vienna, 20-22 October 2015

An Autonomous Reactivity Control System In The Nuclear Burning Wave Reactor Oleksiy Fomin

Evolution of the volume-averaged neutron flux Fav (1015 cм-2 с-1) and concentrations Nav (1017 cm-3)

of the main fissile and intermediate nuclides in the fuel of mixed ThUPu cycle with time t (days) at the

initial stage of the neutron flux perturbation t0 = 3650 days. The averaged nuclide concentrations: NNp

is for 239Np, NPa = NPa - 53.1·1017 cm-3, is for 239Pu is for 233U.

-1 0 1 2 3 4 5 6 7 8

1

2

3

4

t - t0

av

0

1

2

4

5

6

7

8

~

~

NNp

NPa

NPu

NU

~

Nav

av

Negative Reactivity Feedback: Stability of the NBW Regime

0Pu Pu Pu 1t

N N N

0

U U U 1,

tN N N

≈ 2.5 days

An Autonomous Reactivity Control System In The Nuclear Burning Wave Reactor Oleksiy Fomin

IAEA TM on Passive Shutdown Systems for LMFR Vienna, 20-22 October 2015

Variation of the reactivity ρ (dollars) with time t (days)

along the variation of the volume-averaged neutron flux Fav (1015 cм-2 с-1)

Negative Reactivity Feedback: Stability of the NBW Regime

-1 0 1 2 3 4 5 6 7 8

1

2

3

4

t - t0

av

-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

av

An Autonomous Reactivity Control System In The Nuclear Burning Wave Reactor Oleksiy Fomin

IAEA TM on Passive Shutdown Systems for LMFR Vienna, 20-22 October 2015

Temperature and Power Analysis (U-Pu cycle)

An Autonomous Reactivity Control System In The Nuclear Burning Wave Reactor Oleksiy Fomin

IAEA TM on Passive Shutdown Systems for LMFR Vienna, 20-22 October 2015

Temperature and Power Analysis

An Autonomous Reactivity Control System In The Nuclear Burning Wave Reactor Oleksiy Fomin

IAEA TM on Passive Shutdown Systems for LMFR Vienna, 20-22 October 2015

An Autonomous Reactivity Control System In The Nuclear Burning Wave Reactor Oleksiy Fomin

IAEA TM on Passive Shutdown Systems for LMFR Vienna, 20-22 October 2015

ARC respond to ULOHS

An Autonomous Reactivity Control System In The Nuclear Burning Wave Reactor Oleksiy Fomin

IAEA TM on Passive Shutdown Systems for LMFR Vienna, 20-22 October 2015

ARC and NBW interaction at ULOHS

An Autonomous Reactivity Control System In The Nuclear Burning Wave Reactor Oleksiy Fomin

IAEA TM on Passive Shutdown Systems for LMFR Vienna, 20-22 October 2015

ARC and NBW interaction at ULOHS

An Autonomous Reactivity Control System In The Nuclear Burning Wave Reactor Oleksiy Fomin

IAEA TM on Passive Shutdown Systems for LMFR Vienna, 20-22 October 2015

ARC at NBW Restart

An Autonomous Reactivity Control System In The Nuclear Burning Wave Reactor Oleksiy Fomin

IAEA TM on Passive Shutdown Systems for LMFR Vienna, 20-22 October 2015

ARC and NBW Feedback at Cooling Restart

Our publications:

S. Fomin et al., Annals of Nuclear Energy, 32 (2005) 1435-1456.

S. Fomin et al., Problems of Atomic Science & Technology, 6 (2005) 106-113.

S. Fomin et al., Nuclear Science & Safety in Europe. Springer (2006) 239-251.

S. Fomin et al., Problems of Atomic Science & Technology, 3 (2007) 156–163.

S. Fomin, Reactor Physics and Technology. PINP WS, St-Perersburg, XL-XLI (2007) 154-198.

S. Fomin et al., Progress in Nuclear Energy, 50 (2008) 163-169.

Yu.Mel’nik et al., Atomic Energy, 107 (2009) 288-295.

S. Fomin et al., Progress in Nuclear Energy, 52 (2011) 800-805.

O. Fomin et al., Proc. Of Glodal 2015, September 20-24 (2015) Paris, Paper 5254.

Our conference activity:

2005 ICENES (Brussels, Belgium) IC058; NATO-ARW NSSE (Yalta, Ukraine); IAEA-RCM ADS (Minsk, Belarus)

2006 ICAPP’06 (Reno, USA) paper 6157; NPAE (Kiev); QEDSP’06 (Kharkov); INES-2 (Yokohama, Japan)

2007 ICAPP’07 (Nice, France) paper 7499; WS PINP (St-Perersburg, Russia); IAEA-RCM ADS (Roma, Italy)

2008 Channeling’08 (Erice, Italy); NATO-ARW SNE (Yalta, Ukraine) | NPQCD (Dnepropetrovsk, Ukraine)

2009 IAEA-RCM ADS (Vienna, Austria), ANIMMA (Marseille, France); Global 2009 (Paris, France) paper 9456

2010 IAEA-RCM ADS (Mumbai, India); PINP WS (St-Perersburg, Russia); ICAPP (San Diego, USA) paper 10302

NPAE (Kiev); IAEA-TWG-FR (Brussels, Belgium); 19 ICPRPRMS (Alushta, Ukraine); INES-3 (Tokyo, Japan)

2011 IAEA-TWG-FR (Beijing, China); NSC KIPT SS (Alushta, Crimea); QEDSP’11 (Kharkov, Ukraine);

IAEA-TWG-FR (Chinnai, India); IAEA-TWG-FR (Vienna, Austria)

2012 IAEA-TWG-FR (Vienna, Austria); IAEA-TWG-FR (Argonne, USA); NPAE-4(Kiev , Ukraine) 2013 FR13 (Paris, France)

An Autonomous Reactivity Control System In The Nuclear Burning Wave Reactor Oleksiy Fomin

IAEA TM on Passive Shutdown Systems for LMFR Vienna, 20-22 October 2015