an assessment of driving seating comfort based on …

23
AN ASSESSMENT OF DRIVING SEATING COMFORT BASED ON NATURAL FIBER MATERIAL BY USING DIGITAL HUMAN MODELLING AND PRESSURE MAPPING TECHNIQUE NUR SYAZWANI BT MOHD NOOR MASTER OF SCIENCE UNIVERSITI MALAYSIA PAHANG

Upload: others

Post on 16-Oct-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

AN ASSESSMENT OF DRIVING SEATING

COMFORT BASED ON NATURAL FIBER

MATERIAL BY USING DIGITAL HUMAN

MODELLING AND PRESSURE MAPPING

TECHNIQUE

NUR SYAZWANI BT MOHD NOOR

MASTER OF SCIENCE

UNIVERSITI MALAYSIA PAHANG

SUPERVISOR’S DECLARATION

We hereby declare that we have checked this thesis and in our opinion, this thesis is

adequate in terms of scope and quality for the award of the degree of Master of Science

in Mechanical Engineering.

_______________________________

(Supervisor’s Signature)

Full Name : TS. DR. ZAKRI BIN GHAZALLI

Position : SENIOR LECTURER

Date :

_______________________________

(Co-supervisor’s Signature)

Full Name : PROF MADYA TS. DR. MOHD RUZAIMI BIN MAT REJAB

Position : ASSOCIATE PROFESSOR

Date :

STUDENT’S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for

quotations and citations which have been duly acknowledged. I also declare that it has

not been previously or concurrently submitted for any other degree at Universiti

Malaysia Pahang or any other institutions.

_______________________________

(Student’s Signature)

Full Name : NUR SYAZWANI BINTI MOHD NOOR

ID Number : MMM14039

Date :

AN ASSESMENT OF SEATING COMFORT DURING DRIVING BASED ON

HYBRID NATURAL FIBER BY USING DIGITAL HUMAN MODELLING AND

PRESSURE MAPPING TECHNIQUE

NUR SYAZWANI BT MOHD NOOR

Thesis submitted in fulfillment of the requirements

for the award of the degree of

Master of Science

Faculty of Mechanical & Manufacturing Engineering

UNIVERSITI MALAYSIA PAHANG

JULY 2019

ii

ACKNOWLEDGEMENTS

By the name of Allah, the Most Gracious, the Most Merciful. Praise be to Allah, the

Lord of the World; peace and blessings of Allah be upon the noblest of the Prophets and

Messengers, our Prophet MOHAMMED and his family, companions and who follows

him until the last day.

First and foremost, I would like to extend my gratitude to my supervisor, Ts.Dr. Zakri

bin Ghazalli, for his guidance, knowledge and financial support since the first day of

this study. I would also like to thank my co-supervisor, Prof Madya Ts.Dr. Mohd

Ruzaimi bin Mat Rejab, for their support throughout this study.

Besides that, I would like to thank the Faculty of Mechanical Engineering and all staff

especially who handle postgraduate students from the beginning. I really appreciate the

help from the laboratory staff and undergraduate students. Special thanks to my

postgraduate friends for your support and concern.

Last but not least, I would like to acknowledge with gratitude the support and love from

my family- my parents, husband, son and siblings. They all kept me going, and my

journey would have been impossible without them

iii

ABSTRAK

Posisi kedudukan yang selesa adalah indikasi yang penting semasa memandu

terutamanya ketika memandu pada masa yang lama. Tempat duduk yang selesa menjadi

sesuatu yang sangat diberi perhatian dan hal ini membezakan antara pesaing-pesaing

dalam bidang pembuatan kereta. Salah satu kunci penting dalam penghasilan kerusi

kereta adalah bahan pembuatan kerusi kereta iaitu busa poliuretan (PU) fleksibel dan

ianya digunakan dengan sangat meluas. Pada masa kini, perkembangan produk yang

boleh diperbaharui untuk mengurangkan penggunaan produk berasaskan petroleum

menjadi isu penting terutamanya untuk alam sekitar. Matlamat kajian ini adalah untuk

mengkaji keselesaan semasa memandu berdasarkan penggunaan hibrid bahan semula

jadi dengan menggunakan kaedah model digital manusia dan teknik pemetaan tekanan.

Dalam kajian ini, PU yang dicampur serat semulajadi telah dihasilkan bertujun untuk

menyelidik sifat-sifat mekanikal komposit. PU terhasil melalui percampuran dua bahan

kimia polyol dan isocyanate dengan nisbah 1:0.6. Sebanyak tiga jenis serat semulajadi

dipilih untuk dicampurkan besama PU iaitu “empty fruit bunch” (EFB), kenaf dan juga

sabut kelapa dengan komposisi berlainan (5wt%, 10wt%, 15wt% and 20wt%) sebelum

sifat mekanikal komposit itu diuji. Berdasarkan keputusan yang diperoleh, PU yang

dicampurkan bersama EFB (5wt%) memiliki sifat terbaik dan ianya lebih menjimatkan

berbanding komposit yang lain. Selepas diuji sifat bahan, sebuah model kerusi kereta

telah difabrikasi menggunakan komposit yang telah dipilih mengikut saiz dan juga

bentuk kerusi kereta komersial bersaiz kecil. Eksperimen pemetaan tekanan dijalankan

pada kedua-dua kerusi kereta tersebut untuk membandingkan pengagihan tekanan di

antara manusia dan kerusi kereta. Sebanyak 20 orang subjek digunakan untuk

eksperimen ini yang dipilih secara rawak terdiri daripada pelajar-pelajar Universiti

Malaysia Pahang (UMP) untuk sesi memandu. Subjek-subjek dikehendaki memandu

sepanjang jalan di dalam kampus UMP Pekan selama 20 minit sebelum diminta untuk

menjawab soalan tentang tahap keselasaan semasa memandu untuk kedua-dua buah

kereta. Enam bahagian badan diambil kira untuk diuji iaitu punggung kanan dan kiri,

paha kanan dan kiri serta bahagian atas dan bawah belakang. Bahagian punggung

menpunyai tekanan paling tinggi di antara ke enam-enam bahagian yang telah diuji dan

bahagian belakang adalah yang paling rendah. Subjek yang berat mempunyai tekanan

lebih tinggi sebanyak 22% dan lebih luas kawasan tekanannya berbanding subjek yang

lebih ringan. Purata tekanan kesemua subjek menaik selepas memandu dan hal ini

menunjukkan jika pemandu memandu dengan lebih lama, pemandu akan merasa lebih

tidak selesa akibat daripada ketidakselesaan otot yang dialami. Kedua-dua tempat duduk

kereta mempunyai tahap keselesaan yang hampir sama berdasarkan kajian penilaian and

pemetaan tekanan. Justeru, komposisi hibrid menggunakan bahan semula jadi sesuai

digunakan sebagai bahan satu pilihan alternatif untuk pembuatan tempat duduk kereta.

iv

ABSTRACT

Seating comfort is one of the important indicators while driving especially for a prolong

drive. Seat comfort is crucial factor among the competitors of car seat manufacturers.

One key factor in producing a comfortable car seat is the material of car seat cushion. A

commonly used material in the automotive industry is flexible polyurethane (PU) foam.

Currently, the development of renewable products to reduce the usage of petroleum

based product has become an essential issue, especially to the environment. This study

aims to investigate seating comfort during driving based on hybrid natural fiber by

using digital human modelling and pressure mapping technique. The current study

attempted to study PU foam filled with natural filler to investigate the mechanical

properties of the composite. The PU was mixed with polyol and isocyanate with a ratio

of 1:0.6. Three natural fibers were chosen to mix with the PU, which are empty fruit

bunched (EFB), kenaf and coir were mixed with different proportions (5wt%, 10wt%,

15wt% and 20wt%) before tested for their mechanical properties . Based on the result

obtained, PU reinforced with EFB (5wt%) had good properties, and it was more

economical as compared to the other two fillers. A mock-up car seat model was

fabricated from the chosen composite which mimicked the size and design of an

existing commercial car seat for small cars. Pressure mapping experiment was

conducted on both seats to study the pressure distributions of human and seat

interaction. A total of 20 healthy subjects with driving experience were randomly

selected among Universiti Malaysia Pahang (UMP) students to do the driving session

for the pressure distribution experiment. Subjects were required to drive along UMP

Pekan route for about 20 minutes before they answered a questionnaire on comfort for

both seats. Six main body parts were investigated for pressure distributions which are

right buttock, left buttock, right thigh, left thigh, upper back and lower back. Among

these six body parts, the average pressure distribution was higher at buttock area (ischial

tuberosities), and the least was at the upper back of the body. Heavier subjects had

higher average pressure by 22% compared to the lighter subjects, and the area of the

pressure was wider. The average pressure of all subjects increased as the time of driving

increased. This shows that if the period of driving is longer, the driver might feel

discomfort as the pressure increases, which can cause muscle discomfort to the driver.

Both car seats had almost same comfort level regarding to the evaluation and pressure

mapping study. Hence, hybrid composition material can be used as an alternative

material to develop car seat.

v

TABLE OF CONTENT

DECLARATION

TITLE PAGE

ACKNOWLEDGEMENTS ii

ABSTRAK iii

ABSTRACT iv

TABLE OF CONTENT v

LIST OF TABLES viii

LIST OF FIGURES ix

LIST OF SYMBOLS xi

LIST OF ABBREVIATIONS xii

CHAPTER 1 INTRODUCTION 1

1.1 Introduction 1

1.2 Significance of the Study 3

1.3 Problem Statement 3

1.4 Objectives 4

1.5 Scopes of the Study 5

1.6 Structure of Thesis 5

CHAPTER 2 LITERATURE REVIEW 7

2.1 Introduction 7

2.2 Comfortable of Car Seat 7

2.3 Material Selection of Car Seat 13

vi

2.3.1 Polyurethane Foam 13

2.3.2 Natural Fibers 16

2.4 Computational Modelling for Seating Comfort 17

2.4.1 Human Modelling 17

2.4.2 Modelling of the Car Seat 20

2.5 Anthropometric data 22

2.6 Pressure Distribution during seating 23

2.7 Subjective method 25

2.8 Summary 26

CHAPTER 3 METHODOLOGY 27

3.1 Introduction 27

3.2 Research Framework 27

3.3 Survey 29

3.3.1 Questionnaire Development 29

3.4 Human Modelling 30

3.5 Natural Fiber Material Selection 32

3.5.1 Mechanical Testing 35

3.6 Fabrication of mock-up car seat 39

3.7 Anthropometric Data Collection 41

3.8 Pressure Mapping 43

3.9 Subjects and Subjective Data Collection 44

3.10 Questionnaire Design 46

3.11 Summary 47

vii

CHAPTER 4 RESULTS AND DISCUSSION 48

4.1 Introduction 48

4.2 Preliminary Result of Survey 48

4.3 Computational Analysis of Seated Human 51

4.4 Material Testing of Car Seat 54

4.4.1 Density Testing 54

4.4.2 Tensile Strength 56

4.4.3 Compression Force Deflection Test 57

4.4.4 Scanning Electron Microscopic (SEM) 58

4.5 Pressure mapping 60

4.6 Subjective evaluation 64

4.7 Summary 66

CHAPTER 5 CONCLUSION 67

5.1 Introduction 67

5.2 Conclusions 67

5.3 Contribution to the Society 68

5.4 Recommendations for Future Work 69

REFERENCES 71

APPENDIX A 79

APPENDIX B 80

APPENDIX C 96

APPENDIX D 98

viii

LIST OF TABLES

Table 2.1 An overview studies of seating comfort 10

Table 2.2 Dimension of car according to the segment 11

Table 2.3 Advantages and disadvantages of flexible polyurethane (PU) foam 16

Table 2.4 Mechanical properties of natural fibers 17

Table 3.1 Population characteristic of European and Malaysian population 32

Table 3.2 Neat Foam Formulation 33

Table 3.3 Properties of natural fibers (Abdul Khalil et al., 2008, Khalil et al.,

2010, Koronis et al., 2013, Lingenthiren, 2014) 33

Table 3.4 Body part measurement taken for anthropometric data 42

Table 3.5 Demographic detail of subjects 45

Table 4.1 Density of natural fiber reinforced PU foam with different

composition 56

Table 4.2 Tensile strength of natural fiber reinforced PU foam with different

compositions 57

Table 4.3 Compression strength of natural fiber reinforced PU foam with

different compositions 58

Table 4.4 Mean of cell size 60

Table 4.5 Average pressure of seat pan and back seat during driving 62

Table 4.6 Average pressure of seat pan and back seat 62

Table 4.7 Correlation value of seat A and Seat B 63

Table 4.8 Reliability test using Cronbach’s α 64

Table 4.9 P-value ANOVA Single factor 64

ix

LIST OF FIGURES

Figure 2.1 Specification of standard, compact, and mini sized cars by Japan

International Standard (JIS) 9

Figure 2.2 Difference of space between mini car and standard-size car

(measuring unit in milimeter) 9

Figure 2.3 Comfort study distribution according to the segment of vehicles

from 1991-2015 10

Figure 2.4 Percentage of cars sold in Malaysia by year 12

Figure 2.5 Plastic distribution throughout a car 14

Figure 2.6 Application of flexible polyurethane foam technology 15

Figure 2.7 Seated human model developed by Anybody Human Modelling 20

Figure 2.8 The structure of car seat 21

Figure 2.9 Division of car seat 21

Figure 2.10 Static anthropometric measurement for standing and seated posture 23

Figure 2.11 Pressure distribution of six body parts 24

Figure 2.12 Parts of body division for pressure mapping 24

Figure 3.1 Method for developing car seat and assessing drivers comfort 28

Figure 3.2 A sample of questionnaire 30

Figure 3.3 Standing human model 31

Figure 3.4 Seated human model 31

Figure 3.5 Polyol 33

Figure 3.6 Isocyanate 34

Figure 3.7 Schematic representation of free rising PU foam preparation 34

Figure 3.8 Flow chart for material preparation and testing 35

Figure 3.9 Foam cut into 25mm x 25mm x 25mm for density test 36

Figure 3.10 Composite PU foam for tensile strength test 37

Figure 3.11 Tensile machine 37

Figure 3.12 Composite foam for compression strength test 38

Figure 3.13 Specimen deformed at 50% thickness 39

Figure 3.14 Mock up car seat by using composite PU with 5wt% EFB fiber 40

Figure 3.15 Final product of car seat by using composite PU with 5wt% EFB

fiber 40

Figure 3.16 Anthropometric data measurement 41

Figure 3.17 Anthropometer set 42

Figure 3.18 Pressure mapping devices 43

x

Figure 3.19 Flow chart for subjective data collection 44

Figure 3.20 Posture of driver in static position and during driving 46

Figure 4.1 Comparison of discomfort during and after driving a mini size car 49

Figure 4.2 Percentage of discomfort body area 49

Figure 4.3 Musculoskeletal of seated human (a) European (b) Malaysian 51

Figure 4.4 Maximum muscle activity envelope 52

Figure 4.5 Muscle activity envelope (a) Trunk; (b) Right leg; and (c) Left leg 53

Figure 4.6 Effect of natural fiber on density 55

Figure 4.7 Tensile strength of composite PU foam 56

Figure 4.8 Compression strength of composite natural fiber 57

Figure 4.9 Unfilled PU Foam 58

Figure 4.10 (a) PU/Kenaf 5wt% (b) PU/Kenaf 20wt% 59

Figure 4.11 (a) PU/EFB 5wt% (b) PU/EFB 15wt% 59

Figure 4.12 (a) PU/Coir 5wt% (b) PU/Coir 15wt% 59

Figure 4.13 Pressure distribution of the subject (a) Heavy subject (b) Light

subject 61

Figure 4.14 Continued 61

Figure 4.15 Subject’s pressure data taken (a) Before driving and (b) After

driving 63

Figure 4.16 Average discomfort scale for car seat A and seat B 65

xi

LIST OF SYMBOLS

ρ Density

fi Muscle force

c Coefficient matrix

d Inertia force

Ni Strength of muscle

xii

LIST OF ABBREVIATIONS

AMS AnyBody Modelling System

ANOVA Analysis of variance

ASDQ Automotive seating discomfort questionnaire

BPM Body Pressure map

CAD Computer aided design

CAE Computer aided engineering

CNS Central nervous system

DHM Digital human modelling

EFB Empty fruit bunches

FEA Finite element analysis

FEM Finite element method

ISOPA European Isocyanate Producers Association

JIS Japan International Standard

LB Lower back

MPV Multi-purpose vehicle

MSD Musculoskeletal disorder

PU Polyurethane foam

SEM Scanning electron microscopic

SUV Sports utility vehicle

UMP Universiti Malaysia Pahang

VSCS Vehicle seat discomfort survey

71

REFERENCES

Abdul Khalil, H., Siti Alwani, M., Ridzuan, R., Kamarudin, H. & Khairul, A. 2008. Chemical

composition, morphological characteristics, and cell wall structure of Malaysian oil

palm fibers. Polymer-Plastics Technology and Engineering, 47, 273-280.

Ahmad, F., Choi, H. S. & Park, M. K. 2015. A review: Natural fiber composites selection in

view of mechanical, light weight, and economic properties. Macromolecular Materials

and Engineering, 300, 10-24.

Al-Oqla, F. M. & Sapuan, S. M. 2014. Natural fiber reinforced polymer composites in industrial

applications: feasibility of date palm fibers for sustainable automotive industry. Journal

of Cleaner Production, 66, 347-354.

Andreoni, G., Santambrogio, G. C., Rabuffetti, M. & Pedotti, A. 2002. Method for the analysis

of posture and interface pressure of car drivers. Applied Ergonomics, 33, 511-522.

AnyScript Model Repository 7.1. AnyBody 3.0. Aalborg, D. 2009. AnyBodyTechnology A/S.

Atikler, U. & Tihminlioglu, F. 2016. Influence of Surface Treatment of Fillers on Mechanical,

Surface, and Water Sorption Behavior of Natural-Fiber-Reinforced Polypropylene

Composites. Spherical and Fibrous Filler Composites, 8.

Bahrambeygi, H., Rabbi, A., Nasouri, K., Shoushtari, A. M. & Babaei, M. R. 2013.

Morphological and Structural Developments in Nanoparticles Polyurethane Foam

Nanocomposite's Synthesis and Their Effects on Mechanical Properties. Advances in

Polymer Technology, 32, E545-E555.

Barone, S. & Curcio, A. 2004. A computer-aided design-based system for posture analyses of

motorcycles. Journal of Engineering Design, 15, 581-595.

Bhise, V. D. 2011. Ergonomics in the automotive design process, CRC Press.

Bhise, V. D. 2012. Ergonomics in the automotive design process, Boca Raton, CRC Press

Taylor & Francis Group.

Blair, G. R., So, R., Milivojevich, A. & Van Heumen, J. 1998. Automotive Seating Comfort:

Investigating the Polyurethane Foam Contribution-Phase 1. SAE Technical Paper.

Bolstad, G., Benum, B. & Rokne, A. 2001. Anthropometry of Norwegian light industry and

office workers. Applied Ergonomics, 32, 239-246.

Brigham, F. 1975. Some quantitative considerations in questionnaire design and analysis.

Applied ergonomics, 6, 90-96.

Chen, S. & Jiang, Y. 2016. The acoustic property study of polyurethane foam with addition of

bamboo leaves particles. Polymer Composites.

ChinaStandardsGB/T10000-1988 1988. Human dimensions of Chinese adults. Administration

of Technology Supervision. People’s Republic of China (in simplified Chinese).

Ciloglu, H., Alziadeh, M., Mohany, A. & Kishawy, H. 2015. Assessment of the whole body

vibration exposure and the dynamic seat comfort in passenger aircraft. International

Journal of Industrial Ergonomics, 45, 116-123.

72

da Silva, L., Bortolotti, S. L. V., Campos, I. C. M. & Merino, E. A. D. 2012. Comfort model for

automobile seat. Work: A Journal of Prevention, Assessment and Rehabilitation, 41,

295-302.

Damsgaard, M., Rasmussen, J., Christensen, S. T., Surma, E. & de Zee, M. 2006. Analysis of

musculoskeletal systems in the AnyBody Modeling System. Simulation Modelling

Practice and Theory, 14, 1100-1111.

Daruis, D., Deros, B. M., Nor, M. J. M. & Hosseini Fouladi, M. Relationship between objective

and subjective methods in evaluating static discomfort of car driver seat. Advanced

Materials Research, 2012a. Trans Tech Publ, 4997-5003.

Daruis, D. D. I., Deros, B. M. & Noor, M. J. M. 2012b. Understanding The Effect Of Noise,

Vibration And Seat Discomfort Towards A Passenger’s Vehicle Driver Through Self–

reported Survey. Jurnal Teknologi, 49, 39-53.

Deng, R., Davies, P. & Bajaj, A. K. 2003. Flexible polyurethane foam modelling and

identification of viscoelastic parameters for automotive seating applications. Journal of

Sound and Vibration, 262, 391-417.

Deros, B. M., Daruis, D. D. I. & Nor, M. J. M. 2009. Evaluation of car seat using reliable and

valid vehicle seat discomfort survey. Industrial Engineeering & Management Systems,

8, 121-130.

Diebschlag, W., Heidinger, F., Kurz, B. & Heiberger, R. 1988. Recommendation for ergonomic

and climatic physiological vehicle seat design. SAE Technical Paper.

Dittenber, D. B. & GangaRao, H. V. 2012a. Critical review of recent publications on use of

natural composites in infrastructure. Composites Part A: Applied Science and

Manufacturing, 43, 1419-1429.

Dittenber, D. B. & GangaRao, H. V. S. 2012b. Critical review of recent publications on use of

natural composites in infrastructure. Composites Part A: Applied Science and

Manufacturing, 43, 1419-1429.

Duboeuf, O., Dupuis, R., Aubry, E. & Lauth, M. 2016. Harmonic Vibration Test for the

Analysis of the Dynamic Behaviour of Polyurethane Foams. Dynamic Behavior of

Materials, Volume 1. Springer.

Dunk, N. M. & Callaghan, J. P. 2005. Gender-based differences in postural responses to seated

exposures. Clinical biomechanics, 20, 1101-1110.

Durkin, J. L., Harvey, A., Hughson, R. L. & Callaghan, J. P. 2006. The effects of lumbar

massage on muscle fatigue, muscle oxygenation, low back discomfort, and driver

performance during prolonged driving. Ergonomics, 49, 28-44.

Faruk, O., Bledzki, A. K., Fink, H.-P. & Sain, M. 2012. Biocomposites reinforced with natural

fibers: 2000–2010. Progress in Polymer Science, 37, 1552-1596.

Fazlollahtabar, H. 2010. A subjective framework for seat comfort based on a heuristic multi

criteria decision making technique and anthropometry. Applied Ergonomics, 42, 16-28.

Gayathri, R. & Vasanthakumari, R. Nanomaterials in PU foam for enhanced sound absorption at

low frequency region. Advanced Materials Research, 2014. Trans Tech Publ, 170-175.

73

Ghaderi, E., Maleki, A. & Dianat, I. 2014. Design of combine harvester seat based on

anthropometric data of Iranian operators. International Journal of Industrial

Ergonomics, 44, 810-816.

Grujicic, M., Pandurangan, B., Arakere, G., Bell, W. C., He, T. & Xie, X. 2009. Seat-cushion

and soft-tissue material modeling and a finite element investigation of the seating

comfort for passenger-vehicle occupants. Materials & Design, 30, 4273-4285.

Grujicic, M., Pandurangan, B., Xie, X., Gramopadhye, A. K., Wagner, D. & Ozen, M. 2010.

Musculoskeletal computational analysis of the influence of car-seat design/adjustments

on long-distance driving fatigue. International Journal of Industrial Ergonomics, 40,

345-355.

Gyi, D. E. & Porter, J. M. 1999. Interface pressure and the prediction of car seat discomfort.

Gyi, D. E., Porter, J. M. & Robertson, N. K. B. 1998. Seat pressure measurement technologies:

considerations for their evaluation. Applied Ergonomics, 29, 85-91.

Hargitai, H., Rácz, I. & Anandjiwala, R. D. 2008. Development of hemp fiber reinforced

polypropylene composites. Journal of Thermoplastic Composite Materials, 21, 165-

174.

Harrison, D. D., Harrison, S. O., Croft, A. C., Harrison, D. E. & Troyanovich, S. J. 1999. Sitting

biomechanics part I: review of the literature. Journal of manipulative and physiological

therapeutics, 22, 594-609.

Hilyard, N. & Cunningham, A. 2012. Low density cellular plastics: physical basis of behaviour,

Springer Science & Business Media.

Ho, M.-p., Wang, H., Lee, J.-H., Ho, C.-k., Lau, K.-t., Leng, J. & Hui, D. 2012. Critical factors

on manufacturing processes of natural fibre composites. Composites Part B:

Engineering, 43, 3549-3562.

Holbery, J. & Houston, D. 2006. Natural-fiber-reinforced polymer composites in automotive

applications. Jom, 58, 80-86.

International, A. 2008. Standard Test Methods for Flexible Cellular Materials—Slab, Bonded,

and Molded Urethane Foams. ASTM International, West Conshohocken, PA.

Ippili, R. K., Davies, P., Bajaj, A. K. & Hagenmeyer, L. 2008. Nonlinear multi-body dynamic

modeling of seat–occupant system with polyurethane seat and H-point prediction.

International Journal of Industrial Ergonomics, 38, 368-383.

JASIC. 2012. Research Test Result & Japanese Proposal [Online]. United Nation Economic

For Europe. Available:

http://www.unece.org/fileadmin/DAM/trans/doc/2012/wp29grsp/PSI-05-06.pdf

[Accessed 22 March 2012 2012].

Jee, S.-c. & Yun, M. H. 2016. An anthropometric survey of Korean hand and hand shape types.

International Journal of Industrial Ergonomics, 53, 10-18.

Kaiser International Limited. Autobook [Online]. Available: https://www.autobook.biz/ 2017].

Kamp, I. 2012. The influence of car-seat design on its character experience. Applied

Ergonomics, 43, 329-335.

74

Karmegam, K., Ismail, M., Sapuan, S., Ismail, N., Shamsul, B. M., Shuib, S. & Seetha, P. 2009.

A study on motorcyclist’s riding discomfort in Malaysia. Engineering e-Transaction, 4,

39-46.

Karwowski, W. 2012. The discipline of human factors and ergonomics. Handbook of Human

Factors and Ergonomics, Fourth Edition, 1-37.

Kaushiva, B. D. 1999. Structure-property relationships of flexible polyurethane foams.

Khalil, H. A., Yusra, A. I., Bhat, A. & Jawaid, M. 2010. Cell wall ultrastructure, anatomy,

lignin distribution, and chemical composition of Malaysian cultivated kenaf fiber.

Industrial Crops and Products, 31, 113-121.

Kolich, M. 1999. Reliability and validity of an automobile seat comfort survey.

Kolich, M. 2000. Ergonomic Modelling and Evaluation of Automobile Seat Comfort. PhD,

University of Windsor, Canada.

Kolich, M. 2003. Automobile seat comfort: occupant preferences vs. anthropometric

accommodation. Applied Ergonomics, 34, 177-184.

Kolich, M., Seal, N. & Taboun, S. 2004. Automobile seat comfort prediction: statistical model

vs. artificial neural network. Applied Ergonomics, 35, 275-284.

Kolich, M. & Taboun, S. 2004. Ergonomics modelling and evaluation of automobile seat

comfort. Ergonomics, 47, 841-863.

Kolich, M. & White, P. 2004. Reliability and validity of a long term survey for automobile seat

comfort. International journal of vehicle design, 34, 158-167.

Koronis, G., Silva, A. & Fontul, M. 2013. Green composites: A review of adequate materials for

automotive applications. Composites Part B: Engineering, 44, 120-127.

Kuorinka, I., Jonsson, B., Kilbom, A., Vinterberg, H., Biering-Sørensen, F., Andersson, G. &

Jørgensen, K. 1987. Standardised Nordic questionnaires for the analysis of

musculoskeletal symptoms. Applied ergonomics, 18, 233-237.

Kuriki, H. U., Mello, E. M., De Azevedo, F. M., Takahashi, L. S. O., Alves, N. & de Faria

Negrão Filho, R. 2012. The relationship between electromyography and muscle force,

INTECH Open Access Publisher.

Kyung, G. & Nussbaum, M. A. 2008. Driver sitting comfort and discomfort (part II):

Relationships with and prediction from interface pressure. International Journal of

Industrial Ergonomics, 38, 526-538.

Kyung, G. & Nussbaum, M. A. 2009. Specifying comfortable driving postures for ergonomic

design and evaluation of the driver workspace using digital human models. Ergonomics,

52, 939-953.

Kyung, G., Nussbaum, M. A. & Babski-Reeves, K. 2008. Driver sitting comfort and discomfort

(part I): Use of subjective ratings in discriminating car seats and correspondence among

ratings. International Journal of Industrial Ergonomics, 38, 516-525.

Lal, S. K. L. & Craig, A. 2001. A critical review of the psychophysiology of driver fatigue.

Biological Psychology, 55, 173-194.

75

Lee, Y. 2000. Applied Korean anthropometric database for product design: clothing design.

Agency for Technology and Standards, MOCIE, Korea.

Levrat, E., Voisin, A., Bombardier, S. & Brémont, J. 1997. Subjective evaluation of car seat

comfort with fuzzy set techniques. International Journal of Intelligent Systems, 12, 891-

913.

Li, X., Ding, L., Zhou, Q., Hu, H. & Zhao, C. 2014. Study on the Evaluation of Automotive

Seat Comfort during Prolonged Simulated Driving. Digital Human Modeling.

Applications in Health, Safety, Ergonomics and Risk Management. Springer.

Lin, Y.-C., Wang, M.-J. J. & Wang, E. M. 2004. The comparisons of anthropometric

characteristics among four peoples in East Asia. Applied Ergonomics, 35, 173-178.

Lingenthiren, K. K., S.Thiruselvam, and Z.Ghazali 2014. Review of Natural Fibers Mechanical

Properties. Bothalia Journal, 3(45).

Liu, C., Qiu, Y. & Griffin, M. J. 2015. Finite element modelling of human-seat interactions:

vertical in-line and fore-and-aft cross-axis apparent mass when sitting on a rigid seat

without backrest and exposed to vertical vibration. Ergonomics, 58, 1207-1219.

Longpré, H. S., Acker, S. M. & Maly, M. R. 2015. Muscle activation and knee biomechanics

during squatting and lunging after lower extremity fatigue in healthy young women.

Journal of Electromyography and Kinesiology, 25, 40-46.

Lusted, M., Healey, S. & Mandryk, J. 1994. Evaluation of the seating of Qantas flight deck

crew. Applied ergonomics, 25, 275-282.

Majid, N. A. B. A., Abdullah, M. F. E., Jamaludin, M. S., Notomi, M. & Rasmussen, J. 2013.

Musculoskeletal analysis of driving fatigue: The influence of seat adjustments. Current

Trends in Ergonomics, 10, 373-378.

Makhsous, M., Hendrix, R., Crowther, Z., Nam, E. & Lin, F. 2005. Reducing whole-body

vibration and musculoskeletal injury with a new car seat design. Ergonomics, 48, 1183-

1199.

Manentca, I. & Corlett, E. N. 1973. A Model of Vehicle Comfort and a Method for its

Assessment. Ergonomics, 16, 849-854.

Mehta, C. R. & Tewari, V. K. 2010. Damping characteristics of seat cushion materials for

tractor ride comfort. Journal of Terramechanics, 47, 401-406.

Meijer, K., Oomen, P., Rausch, J., Annegarn, J., Rasmussen, J. & Siebertz, K. 2010. A

Comparison of Two Different Strength Scaling Methods for Multi Body Modeling.

Milivojevich, A., Blair, G. R., J.-G & Heumen, J. D. v. 1999. Automotive seating comfort;

defining comfort properties in polyurethane foam. 01.

Mills, N. J. 2007. Chapter 9 - Seating case study. In: MILLS, N. J. (ed.) Polymer Foams

Handbook. Oxford: Butterworth-Heinemann.

Mohamad, D., Deros, B. M., Ismail, A. R. & Daruis, D. D. I. Development of a Malaysian

anthropometric database. Conference on Manufacturing Technology and Management,

2010a.

76

Mohamad, D., Deros, B. M., Wahab, D. A., Daruis, D. D. & Ismail, A. R. 2010b. Integration of

comfort into a driver's car seat design using image analysis. American Journal of

Applied Sciences, 7, 937.

Mohanty, A., Misra, M. & Drzal, L. 2002. Sustainable bio-composites from renewable

resources: opportunities and challenges in the green materials world. Journal of

Polymers and the Environment, 10, 19-26.

Murata, S., Ito, H. & Sopher, S. 2014. Polyurethane-Free Lightweight Automotive Seat. SAE

International Journal of Materials and Manufacturing, 7, 655-661.

Na, S., Lim, S., Choi, H.-S. & Chung, M. K. 2005. Evaluation of driver's discomfort and

postural change using dynamic body pressure distribution. International Journal of

Industrial Ergonomics, 35, 1085-1096.

Netravali, A. N., Huang, X. & Mizuta, K. 2007. Advanced'green'composites. Advanced

Composite Materials, 16, 269-282.

Olesen, C. G., de Zee, M. & Rasmussen, J. 2014. Comparison between a computational seated

human model and experimental verification data. Applied Bionics and Biomechanics,

11, 175-183.

Oliviero, M., Verdolotti, L., Stanzione, M., Lavorgna, M., Iannace, S., Tarello, M. &

Sorrentino, A. 2017. Bio‐based flexible polyurethane foams derived from succinic

polyol: Mechanical and acoustic performances. Journal of Applied Polymer Science,

134, 45113.

Otmani, S., Pebayle, T., Roge, J. & Muzet, A. 2005. Effect of driving duration and partial sleep

deprivation on subsequent alertness and performance of car drivers. Physiology &

Behavior, 84, 715-724.

Oudenhuijzen, A., Tan, K. & Morsch, F. 2004. The relationship between comfort and knee

angles. SAE Technical Paper.

Park, S. J., Kim, C.-B., Kim, C. J. & Lee, J. W. 2000. Comfortable driving postures for

Koreans. International Journal of Industrial Ergonomics, 26, 489-497.

Park, S. J., Min, S. N., Subramaniyam, M., Lee, D.-H., Lee, H. & Kim, D. G. 2014. Analysis of

body pressure ratio for evaluation of automotive seating comfort. SAE Technical Paper.

Paul, G., Miller, J. & Pendlebury, J. A finite element model of seat cushion indentation with a

soft tissue human occupant model. Proceedings, 2nd International Digital Human

Modeling Symposium, 2013. University of Michigan & Pennsylvania State University.

Pheasant, S. & Haslegrave, C. M. 2016. Bodyspace: Anthropometry, ergonomics and the design

of work, CRC Press.

Porter, J. M., Gyi, D. E. & Tait, H. A. 2003. Interface pressure data and the prediction of driver

discomfort in road trials. Applied Ergonomics, 34, 207-214.

Ramesh, M., Palanikumar, K. & Reddy, K. H. 2017. Plant fibre based bio-composites:

Sustainable and renewable green materials. Renewable and Sustainable Energy

Reviews, 79, 558-584.

77

Rasmussen, J., Torholm, S. & de Zee, M. 2009. Computational analysis of the influence of seat

pan inclination and friction on muscle activity and spinal joint forces. International

Journal of Industrial Ergonomics, 39, 52-57.

Rasmussen, J., Zee, M. d., Damsgaard, M., Christensen, S. T., Marek, C. & Siebertz, K. A

general method for scaling musculo-skeletal models. International symposium on

computer simulation in biomechanics, 2005.

Reed, M. & Massie, D. L. 1996a. Distribution of automobile trip durations for studies of seat

comfort. SAE Technical Paper.

Reed, M., Saito, M., Kakishima, Y., Lee, N. S. & Schneider, L. W. 1991. An investigation of

driver discomfort and related seat design factors in extended-duration driving. SAE

Technical paper.

Reed, M. P. & Massie, D. L. 1996b. Distribution of automobile trip durations for studies of seat

comfort. SAE Technical Paper.

Rencheng, Z., Nakano, K., Okamoto, Y., Ohori, M., Hori, S. & Suda, Y. 2013. Evaluation of

Sternocleidomastoid Muscle Activity of a Passenger in Response to a Car's

Lateral Acceleration While Slalom Driving. Human-Machine Systems, IEEE

Transactions on, 43, 405-415.

Saadon, S. Sound behavior of polymer foam composite with different composition of wood dust

filler. Malaysia University Conference Engineering Technology, 2014.

Saba, N., Tahir, P. M. & Jawaid, M. 2014. A review on potentiality of nano filler/natural fiber

filled polymer hybrid composites. Polymers, 6, 2247-2273.

Saheb, D. N. & Jog, J. 1999. Natural fiber polymer composites: a review. Advances in polymer

technology, 18, 351-363.

Schmidt, S., Amereller, M., Franz, M., Kaiser, R. & Schwirtz, A. 2014. A literature review on

optimum and preferred joint angles in automotive sitting posture. Applied ergonomics,

45, 247-260.

Shan, C. W., Ghazali, M. I. & Idris, M. I. 2013. Improved vibration characteristics of flexible

polyurethane foam via composite formation. International Journal of Automotive and

Mechanical Engineering, 7, 1031-1042.

Shan, C. W., Idris, M. I. & Ghazali, I. H. Flexible Polyurethane Foams Filled with Coconut Coir

Fibres and Recycled Tyre-Part I: Production and Morphology. Advanced Materials

Research, 2012. Trans Tech Publ, 759-766.

Siefert, A., Pankoke, S. & Wölfel, H. P. 2008. Virtual optimisation of car passenger seats:

Simulation of static and dynamic effects on drivers’ seating comfort. International

Journal of Industrial Ergonomics, 38, 410-424.

Skinner, C. & Ponce, C. 2006. Advanced ComfortTM Seating: A revolution in seating

performance for the automotive industry. UTECH Polyurethane.

Smith, D. R., Andrews, D. M. & Wawrow, P. T. 2006. Development and evaluation of the

Automotive Seating Discomfort Questionnaire (ASDQ). International Journal of

Industrial Ergonomics, 36, 141-149.

78

Standard, M. 2003. MS ISO 7250: 2003 Basic human body measurements for technological

design (ISO 7250: 1996, IDT). Department of Standards Malaysia.

Su, C. & Chu, Z. 2014. Research on Driving Posture Comfort Based on Relation between

Drivers’ Joint Angles and Joint Torques. SAE International Journal of Commercial

Vehicles, 7, 45-49.

Tang, C. Y., Chan, W. & Tsui, C. P. 2010. Finite element analysis of contact pressures between

seat cushion and human buttock-thigh tissue. Engineering, 2, 720.

Thakur, V. K., Thakur, M. K. & Gupta, R. K. 2014. Review: raw natural fiber–based polymer

composites. International Journal of Polymer Analysis and Characterization, 19, 256-

271.

Thomas Jr, R. E., Congleton, J. J., Huchingson, R. D., Whiteley, J. R. & Rodrigues, C. C. 1991.

An investigation of relationships between driver comfort, performance and automobile

seat type during short term driving tasks. International Journal of Industrial

Ergonomics, 8, 103-114.

Thomas, R. E., Congleton, J. J., Huchingson, R., Whiteley, J. R. & Rodrigues, C. 1991. An

investigation of relationships between driver comfort, performance and automobile seat

type during short term driving tasks. International Journal of Industrial Ergonomics, 8,

103-114.

Vergara, M. & Page, A. 2002. Relationship between comfort and back posture and mobility in

sitting-posture. Applied Ergonomics, 33, 1-8.

Verver, M., Van Hoof, J., Oomens, C., Wismans, J. & Baaijens, F. 2004. A finite element

model of the human buttocks for prediction of seat pressure distributions. Computer

methods in biomechanics and biomedical engineering, 7, 193-203.

Verver, M. M., de Lange, R., van Hoof, J. & Wismans, J. S. H. M. 2005. Aspects of seat

modelling for seating comfort analysis. Applied Ergonomics, 36, 33-42.

Wambua, P., Ivens, J. & Verpoest, I. 2003. Natural fibres: can they replace glass in fibre

reinforced plastics? composites science and technology, 63, 1259-1264.

Wang, M.-J. J., Wang, E. M.-y. & Lin, Y.-C. 2002. The anthropometric database for children

and young adults in Taiwan. Applied Ergonomics, 33, 583-585.

Wu, X., Rakheja, S. & Boileau, P. É. 1998. Study of human–seat interface pressure distribution

under vertical vibration. International Journal of Industrial Ergonomics, 21, 433-449.

Zhang, Y.-Q. 2002. Applications of natural silk protein sericin in biomaterials. Biotechnology

advances, 20, 91-100.