· x aaaa bbb ccc aaa bbb ccc tensor analysis in cartesian coordinates tensor characteristics...

Post on 27-May-2020

3 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

• X

aaaaaaaaa

bbbbbbbbb

CCCCCCCCC

⊗⊗⊗⊗⊗⊗⊗⊗⊗

AAAAAAAAA

bbbbbbbbb

CCCCCCCCC

tensor analysis

in cartesian coordinates

• literature

• motivation

• definition of tensors

basis vectors order of tensors (zero to four) identity tensors

• products of tensors

product with scalar dyadic product contraction of tensors

− single contraction− double contraction

d.kuhl, wes.online, university of kasselÜ Ülinear computational structural mechanics • e1 tensors

tensor analysis in cartesian coordinatesÜ 1

• X

aaaaaaaaa

bbbbbbbbb

CCCCCCCCC

⊗⊗⊗⊗⊗⊗⊗⊗⊗

AAAAAAAAA

bbbbbbbbb

CCCCCCCCC

tensor analysis

in cartesian coordinates

• tensor characteristics

symmetric and skew symmetric parts deviatoric and volumetric parts invariantes eigenvalues and eigenvectors coordinate transformation

• differentiation of tensors

derivations gradient & divergence total differential, variation & increment

• GAUSS integral theorem

• calculation rules

d.kuhl, wes.online, university of kasselÜ Ülinear computational structural mechanics • e1 tensors

tensor analysis in cartesian coordinatesÜ 2

• X

rotation e′′′i = Q3 · ei

-

-

-

-

6

rbe1

e2

e3 = e′′′3

e′′′1

e′′′2

γ

γ

e′′i = Q2 · e′′′i = Q2 ·Q3 · ei

-

-

--

-

-

-

6

rbe1

e2

e3

e′′1

e′′2e′′3

β

β

e′i= Q1 ·e′′i = Q1 ·Q2 ·Q3 · ei

-

---

-

---

-

-

6

rbe1

e2

e3

e′1

e′2

e′3α

α

• background: rotation of basis vectore′3 = Q1 ·Q2 · e3 about e1 and e2. coloredrepresentation of third component of e′3 asfunction of rotation angles α ∈ [0, 360o] andβ ∈ [0, 360o]. top: 3d rotation of basis vectorswith γ = 30o, β = −30o and α = 30o

• foreground: illustration of dyadic product oftensors

d.kuhl, wes.online, university of kasselÜ Ülinear computational structural mechanics • e1 tensors

information about title picture ’tensor analysis’Ü 3

• X

aaaaaaaaa

bbbbbbbbb

CCCCCCCCC

⊗⊗⊗⊗⊗⊗⊗⊗⊗

AAAAAAAAA

bbbbbbbbb

CCCCCCCCC

• general tenor analysis

BASAR&KRÄTZIG (1985)

BASAR&WEICHERT (2000)

BETTEN (1987)

DE BOER (1982), DE BOER (2000) (Appendix B)

FLÜGGE (1972)

IBEN (1995)

KLINGBEIL (1989)

LIPPMANN (1996)

SCHADE (1997)

TROSTEL (1993)

WRIGGERS (2001)

• tensor analysis in cartesian coordinates

HOLZAPFEL (2000): Nonlinear Solid Mechanics. AContinuum Approach for Engineering. John Wiley & Sons

BONET&WOOD (1997): Nonlinear Continuum Mechanics forFinite Element Analysis. Cambridge University Press

d.kuhl, wes.online, university of kasselÜ Ülinear computational structural mechanics • e1 tensors

tensor analysis - sourcesÜ 4

• X

components matrices tensors

linear strain measureε11 = u1,1

ε22 = u2,2

ε33 = u3,3

ε12 =1

2[u1,2+u2,1]

ε23 =1

2[u2,3+u3,2]

ε13 =1

2[u1,3+u3,1]

ε = Dεuwith

DTε =

∂X1

0 0∂

∂X2

0∂

∂X3

0∂

∂X2

0∂

∂X1

∂X3

0

0 0∂

∂X3

0∂

∂X2

∂X1

ε=∇sym

u

=1

2[ui,j + uj,i] ei⊗ej

balance of momentum in linear continuum mechanics

ρ u1 = σ11,1 + σ12,2 + σ13,3 + ρ b1

ρ u2 = σ21,1 + σ22,2 + σ23,3 + ρ b2

ρ u3 = σ31,1 + σ32,2 + σ33,3 + ρ b3

ρ u = Dσσ + ρ b

with

Dσ=

∂X1

0 0∂

∂X2

0∂

∂X3

0∂

∂X2

0∂

∂X1

∂X3

0

0 0∂

∂X3

0∂

∂X2

∂X1

ρ u= divσ + ρ b

= [σij,j + ρ bi] ei

NEUMANN boundary conditions in linear continuum mechanics

σ11 n1 + σ12 n2 + σ13 n3 = t?1

σ12 n1 + σ22 n2 + σ23 n3 = t?2

σ13 n1 + σ23 n2 + σ33 n3 = t?3

Dt σ = t?

with

Dt=

n1 0 0 n2 0 n3

0 n2 0 n1 n3 0

0 0 n3 0 n2 n1

σ · n = t?

σij nj ei = t?i ei

d.kuhl, wes.online, university of kasselÜ Ülinear computational structural mechanics • e1 tensors • e1.1 motivation

motivation - tensor format continuum mechanicsÜ 5

• X

3a

first order tensor

-6qa

e1

e2

-6qa e

′1

e′2

-

6qae ′′1

e ′′2

3a

a1

a2

-6qa e1

e2

3a a′1

a′2 -

6qa e′1

e′2

3a

-6qa

e1

e2

-6qa e

′1

e′2

• tensor is independent on coordinate system

a = ai ei = a′i e′i = a′′i e

′′i

• components of tensors depend on coordinate system

ai = a · ei a′i = a · e′i

• tensor components can be transformed betweencoordinate systems

a = a′i e′i = Q · [ai ei]

d.kuhl, wes.online, university of kasselÜ Ülinear computational structural mechanics • e1 tensors • e1.2 definition

definition - properties of tensorsÜ 6

• X

--

-

e1

e2 e3

right hand rule

-

- ei

ϕi, Mi

right thumb rulewithout interest in mechanics

6--

e3

e2

e1rb6-

e2

e1rb6-

e3

e1rb6-tpde2

e1e3

6-tde3

e1e2

• three dimensional - cartesian basis, right-handed (dextral) and orthonormal system

base vectors e1, e2 and e3 are perpendicular basis vectors have length one ‖ei‖ = 1 for i ∈ [1, 3]

generating a right-handed system positive rotations ϕi or moments Mi using right thumb rule

• two dimensional - cartesian basis, right-handed (dextral) and orthonormal system

using e1-e2 plane or e1-e3 plane third base vector defines positive rotations ϕi or moments Mi

d.kuhl, wes.online, university of kasselÜ Ülinear computational structural mechanics • e1 tensors • e1.2 definition

cartesian coordinate systemsÜ 7

• X

--

-

e1

e2 e3

right hand rule

-

- ei

ϕi, Mi

right thumb rulewithout interest in mechanics

6--

e3

e2

e1rb6-

e2

e1rb6-

e3

e1rb6-tpde2

e1e3

6-tde3

e1e2

• three dimensional - cartesian basis, right-handed (dextral) and orthonormal system

base vectors e1, e2 and e3 are perpendicular basis vectors have length one ‖ei‖ = 1 for i ∈ [1, 3]

generating a right-handed system positive rotations ϕi or moments Mi using right thumb rule

• two dimensional - cartesian basis, right-handed (dextral) and orthonormal system

using e1-e2 plane or e1-e3 plane third base vector defines positive rotations ϕi or moments Mi

d.kuhl, wes.online, university of kasselÜ Ülinear computational structural mechanics • e1 tensors • e1.2 definition

cartesian coordinate systemsÜ 7

• X

e1

e2

e1-e2

plane

e2e3

e2-e3

plane

e1

e3

e1-e3

plane

e1

e2e3

spatialcoordinate

system

• thumb: e1

• forefinger: e2

• middle finger: e3

• spatial coordinate system

base vectors

e1, e2, e3

• planar coordinate systems

e1-e2-plane, base vectors

e1, e2

e2-e3-plane, base vectors

e2, e3

e1-e3-plane, base vectors

e1, e3

d.kuhl, wes.online, university of kasselÜ Ülinear computational structural mechanics • e1 tensors • e1.2 definition

spatial and planar coordinate systemsÜ 8

• X

e1

e2

e1-e2

plane

e2e3

e2-e3

plane

e1

e3

e1-e3

plane

e1

e2e3

spatialcoordinate

system

• thumb: e1

• forefinger: e2

• middle finger: e3

• spatial coordinate system

base vectors

e1, e2, e3

• planar coordinate systems

e1-e2-plane, base vectors

e1, e2

e2-e3-plane, base vectors

e2, e3

e1-e3-plane, base vectors

e1, e3

d.kuhl, wes.online, university of kasselÜ Ülinear computational structural mechanics • e1 tensors • e1.2 definition

spatial and planar coordinate systemsÜ 8

• X

e1

e2

e1-e2

plane

e2e3

e2-e3

plane

e1

e3

e1-e3

plane

e1

e2e3

spatialcoordinate

system

• thumb: e1

• forefinger: e2

• middle finger: e3

• spatial coordinate system

base vectors

e1, e2, e3

• planar coordinate systems

e1-e2-plane, base vectors

e1, e2

e2-e3-plane, base vectors

e2, e3

e1-e3-plane, base vectors

e1, e3

d.kuhl, wes.online, university of kasselÜ Ülinear computational structural mechanics • e1 tensors • e1.2 definition

spatial and planar coordinate systemsÜ 8

• X

e1

e2

e1-e2

plane

e2e3

e2-e3

plane

e1

e3

e1-e3

plane

e1

e2e3

spatialcoordinate

system

• thumb: e1

• forefinger: e2

• middle finger: e3

• spatial coordinate system

base vectors

e1, e2, e3

• planar coordinate systems

e1-e2-plane, base vectors

e1, e2

e2-e3-plane, base vectors

e2, e3

e1-e3-plane, base vectors

e1, e3

d.kuhl, wes.online, university of kasselÜ Ülinear computational structural mechanics • e1 tensors • e1.2 definition

spatial and planar coordinate systemsÜ 8

• X

-

-

-e1

e2

e3

cartesian base vectors andright hand rule

e1

e2e3

cartesian basis

representation of vectors

e1

e2

e3

e1

e2

e3

a1

a2

a3

a

cartesian basis - right-handed (dextral) and orthonormal system

e1 =

1

0

0

, e2 =

0

1

0

, e3 =

0

0

1

basis vectors ei, indices i, j ∈ 1, 2, 3

‖ei‖ = 1, ei · ej =

0 for i 6= j

1 for i = j

representation of tensors (first order tensor = vector)

a =3∑i=1

ai ei = a1e1+a2e2+a3e3 = ai ei = aj ej

• EINSTEIN summation conventionaddition over repeated indices• summation indices (twice available, dummy)

can be replaced, e.g. i→ j

tensor components

ai = a · ei

d.kuhl, wes.online, university of kasselÜ Ülinear computational structural mechanics • e1 tensors • e1.2 definition

cartesian coordinates - basis vectorsÜ 9

• X

-

-

-

e1

e2

e3

cartesian base vectors andright hand rule

e1

e2e3

cartesian basis

representation of vectors

e1

e2

e3

e1

e2

e3

a1

a2

a3

a

cartesian basis - right-handed (dextral) and orthonormal system

e1 =

1

0

0

, e2 =

0

1

0

, e3 =

0

0

1

basis vectors ei, indices i, j ∈ 1, 2, 3

‖ei‖ = 1, ei · ej =

0 for i 6= j

1 for i = j

representation of tensors (first order tensor = vector)

a =3∑i=1

ai ei = a1e1+a2e2+a3e3 = ai ei = aj ej

• EINSTEIN summation conventionaddition over repeated indices• summation indices (twice available, dummy)

can be replaced, e.g. i→ j

tensor components

ai = a · ei

d.kuhl, wes.online, university of kasselÜ Ülinear computational structural mechanics • e1 tensors • e1.2 definition

cartesian coordinates - basis vectorsÜ 9

• X

basis vectors

e1 =

1

0

0

e2 =

0

1

0

e3 =

0

0

1

products aiei

a1e1 =

a1

0

0

a2e2 =

0a2

0

a3e3 =

0

0a3

EINSTEIN summation

+

+

=

aiei=

a1

a2

a3

cartesian basis - right-handed (dextral) and orthonormal system

e1 =

1

0

0

, e2 =

0

1

0

, e3 =

0

0

1

representation of first order tensors

a =3∑i=1

ai ei = a1e1+a2e2+a3e3 = ai ei

using basis vectors and tensor components

a = a1

1

0

0

+ a2

0

1

0

+ a3

0

0

1

=

a1

0

0

+

0

a2

0

+

0

0

a3

=

a1

a2

a3

d.kuhl, wes.online, university of kasselÜ Ülinear computational structural mechanics • e1 tensors • e1.2 definition

cartesian coordinates - basis vectorsÜ 10

• X

basis vectors

e1 =

1

0

0

e2 =

0

1

0

e3 =

0

0

1

products aiei

a1e1 =

a1

0

0

a2e2 =

0a2

0

a3e3 =

0

0a3

EINSTEIN summation

+

+

=

aiei=

a1

a2

a3

cartesian basis - right-handed (dextral) and orthonormal system

e1 =

1

0

0

, e2 =

0

1

0

, e3 =

0

0

1

representation of first order tensors

a =3∑i=1

ai ei = a1e1+a2e2+a3e3 = ai ei

using basis vectors and tensor components

a = a1

1

0

0

+ a2

0

1

0

+ a3

0

0

1

=

a1

0

0

+

0

a2

0

+

0

0

a3

=

a1

a2

a3

d.kuhl, wes.online, university of kasselÜ Ülinear computational structural mechanics • e1 tensors • e1.2 definition

cartesian coordinates - basis vectorsÜ 10

• X

basis vectors

e1 =

1

0

0

e2 =

0

1

0

e3 =

0

0

1

products aiei

a1e1 =

a1

0

0

a2e2 =

0a2

0

a3e3 =

0

0a3

EINSTEIN summation

+

+

=

aiei=

a1

a2

a3

cartesian basis - right-handed (dextral) and orthonormal system

e1 =

1

0

0

, e2 =

0

1

0

, e3 =

0

0

1

representation of first order tensors

a =3∑i=1

ai ei = a1e1+a2e2+a3e3 = ai ei

using basis vectors and tensor components

a = a1

1

0

0

+ a2

0

1

0

+ a3

0

0

1

=

a1

0

0

+

0

a2

0

+

0

0

a3

=

a1

a2

a3

d.kuhl, wes.online, university of kasselÜ Ülinear computational structural mechanics • e1 tensors • e1.2 definition

cartesian coordinates - basis vectorsÜ 10

• X

illustration tensor order

3. order

2. order

1. order

0. order

zero,

first

, second and fourth

order tensors

a = a

a =

a1

a2

a3

= ai ei

A =

A11 A12 A13

A21 A22 A23

A31 A32 A33

= Aij ei ⊗ ej

A = = Aijkl ei ⊗ ej ⊗ ek ⊗ el

e.g. displacement-, stress- and constitutive tensors

u =

u1

u2

u3

= ui ei

σ =

σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

= σij ei ⊗ ej

C = = Cijkl ei ⊗ ej ⊗ ek ⊗ el

d.kuhl, wes.online, university of kasselÜ Ülinear computational structural mechanics • e1 tensors • e1.3 characterization

cartesian coordinates - basis vectorsÜ 11

• X

illustration tensor order

3. order

2. order

1. order

0. order

zero,

first, second

and fourth

order tensors

a = a

a =

a1

a2

a3

= ai ei

A =

A11 A12 A13

A21 A22 A23

A31 A32 A33

= Aij ei ⊗ ej

A = = Aijkl ei ⊗ ej ⊗ ek ⊗ el

e.g. displacement-, stress- and constitutive tensors

u =

u1

u2

u3

= ui ei

σ =

σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

= σij ei ⊗ ej

C = = Cijkl ei ⊗ ej ⊗ ek ⊗ el

d.kuhl, wes.online, university of kasselÜ Ülinear computational structural mechanics • e1 tensors • e1.3 characterization

cartesian coordinates - basis vectorsÜ 11

• X

illustration tensor order

3. order

2. order

1. order

0. order

zero,

first, second and fourth order tensors

a = a

a =

a1

a2

a3

= ai ei

A =

A11 A12 A13

A21 A22 A23

A31 A32 A33

= Aij ei ⊗ ej

A = = Aijkl ei ⊗ ej ⊗ ek ⊗ el

e.g. displacement-, stress- and constitutive tensors

u =

u1

u2

u3

= ui ei

σ =

σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

= σij ei ⊗ ej

C = = Cijkl ei ⊗ ej ⊗ ek ⊗ el

d.kuhl, wes.online, university of kasselÜ Ülinear computational structural mechanics • e1 tensors • e1.3 characterization

cartesian coordinates - basis vectorsÜ 11

• X

illustration tensor order

3. order

2. order

1. order

0. order

zero,first, second and fourth order tensors

a = a

a =

a1

a2

a3

= ai ei

A =

A11 A12 A13

A21 A22 A23

A31 A32 A33

= Aij ei ⊗ ej

A = = Aijkl ei ⊗ ej ⊗ ek ⊗ el

e.g. displacement-, stress- and constitutive tensors

u =

u1

u2

u3

= ui ei

σ =

σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

= σij ei ⊗ ej

C = = Cijkl ei ⊗ ej ⊗ ek ⊗ el

d.kuhl, wes.online, university of kasselÜ Ülinear computational structural mechanics • e1 tensors • e1.3 characterization

cartesian coordinates - basis vectorsÜ 11

• X

illustration tensor order

3. order

2. order

1. order

0. order

zero,first, second and fourth order tensors

a = a

a =

a1

a2

a3

= ai ei

A =

A11 A12 A13

A21 A22 A23

A31 A32 A33

= Aij ei ⊗ ej

A = = Aijkl ei ⊗ ej ⊗ ek ⊗ el

e.g. displacement-, stress- and constitutive tensors

u =

u1

u2

u3

= ui ei

σ =

σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

= σij ei ⊗ ej

C = = Cijkl ei ⊗ ej ⊗ ek ⊗ el

d.kuhl, wes.online, university of kasselÜ Ülinear computational structural mechanics • e1 tensors • e1.3 characterization

cartesian coordinates - basis vectorsÜ 11

• X

rb

rb

rb

a2

a1

a

b2

b1

b

c2c1

c

c = a+ b

6-

e2

e1rb

rbrb

rbrb

a2

a1

a

b2

b1

b

d2

d1

d

c2

c1

c

c = a+ b+ d

6-

e2

e1rb

addition of tensors• only tensors of same order can be added• first order tensors

c = a+ b = ai ei + bi ei = [ai + bi] ei =

a1 + b1

a2 + b2

a3 + b3

• second order tensors

A+B = [Aij +Bij ] ei ⊗ ej

=

A11 +B11 A12 +B12 A13 +B13

A21 +B21 A22 +B22 A23 +B23

A31 +B31 A32 +B32 A33 +B33

• calculation rules associative law

A+ [B +C] = [A+B] +C

commutative law

A+B = B +A

identical and inverse elements

A+ 0 = A, A+ [−A] = 0

d.kuhl, wes.online, university of kasselÜ Ülinear computational structural mechanics • e1 tensors • e1.4 addition

addition of tensorsÜ 12

• X

KRONECKER symbol

0

0

1

0

1

00

0

1δij

1

dyadic product

1⊗10

0

1

0

1

00

0

1

0

0

1

0

1

00

0

1

• KRONECKER symbol

δij = ei · ej =

0 for i 6= j

1 for i = j

• identity tensors

second order identity tensor 1

fourth order identity tensor I′

dyadic product 1⊗ 1

symmetric fourth order identity tensor I

.

1 = δij ei ⊗ ej

I′ = δikδjl ei ⊗ ej ⊗ ek ⊗ el

1⊗ 1 = δij δkl ei ⊗ ej ⊗ ek ⊗ el

I =1

2[δikδjl + δilδjk] ei ⊗ ej ⊗ ek ⊗ el

d.kuhl, wes.online, university of kasselÜ Ülinear computational structural mechanics • e1 tensors • e1.5 fundamental tensors

identity tensors 1,1⊗1,I ′ and IÜ 13

• X

KRONECKER symbol

0

0

1

0

1

00

0

1δij

1

dyadic product

1⊗10

0

1

0

1

00

0

1

0

0

1

0

1

00

0

1

• KRONECKER symbol

δij = ei · ej =

0 for i 6= j

1 for i = j

• identity tensors

second order identity tensor 1

fourth order identity tensor I′

dyadic product 1⊗ 1

symmetric fourth order identity tensor I

.

1 = δij ei ⊗ ej

I′ = δikδjl ei ⊗ ej ⊗ ek ⊗ el

1⊗ 1 = δij δkl ei ⊗ ej ⊗ ek ⊗ el

I =1

2[δikδjl + δilδjk] ei ⊗ ej ⊗ ek ⊗ el

d.kuhl, wes.online, university of kasselÜ Ülinear computational structural mechanics • e1 tensors • e1.5 fundamental tensors

identity tensors 1,1⊗1,I ′ and IÜ 13

• X

repetition: KRONECKER symbol & fourth order identity tensors

δij = ei · ej =

0 for i 6= j

1 for i = j

1⊗ 1 = δij δkl ei ⊗ ej ⊗ ek ⊗ elI =

1

2[δikδjl + δilδjk] ei ⊗ ej ⊗ ek ⊗ el

fourth order constitutive tensor C

C = 2µ I + λ 1⊗ 1 =[µ [δilδjk + δikδjl] + λ δijδkl

]ei ⊗ ej ⊗ ek ⊗ el

= Cijkl ei ⊗ ej ⊗ ek ⊗ el

developement of components C1111, C1122, C1112 and C1212

C1111 = µ [δ11δ11 + δ11δ11] + λ δ11δ11

= µ [1 · 1 + 1 · 1] + λ 1 · 1 = 2 µ+ λ

C1122 = µ [δ12δ12 + δ12δ12] + λ δ11δ22

= µ [0 · 0 + 0 · 0] + λ 1 · 1 = λ

C1112 = µ [δ12δ11 + δ11δ12] + λ δ11δ12

= µ [0 · 1 + 1 · 0] + λ 1 · 0 = 0

C1212 = µ [δ12δ21 + δ11δ22] + λ δ12δ12

= µ [0 · 0 + 1 · 1] + λ 0 · 0 = µ

d.kuhl, wes.online, university of kasselÜ Ülinear computational structural mechanics • e1 tensors • e1.5 fundamental tensors

identity tensors (examples)Ü 14

• X

repetition: KRONECKER symbol & fourth order identity tensors

δij = ei · ej =

0 for i 6= j

1 for i = j

1⊗ 1 = δij δkl ei ⊗ ej ⊗ ek ⊗ elI =

1

2[δikδjl + δilδjk] ei ⊗ ej ⊗ ek ⊗ el

fourth order constitutive tensor C

C = 2µ I + λ 1⊗ 1 =[µ [δilδjk + δikδjl] + λ δijδkl

]ei ⊗ ej ⊗ ek ⊗ el

= Cijkl ei ⊗ ej ⊗ ek ⊗ el

developement of components C1111, C1122, C1112 and C1212

C1111 = µ [δ11δ11 + δ11δ11] + λ δ11δ11

= µ [1 · 1 + 1 · 1] + λ 1 · 1 = 2 µ+ λ

C1122 = µ [δ12δ12 + δ12δ12] + λ δ11δ22

= µ [0 · 0 + 0 · 0] + λ 1 · 1 = λ

C1112 = µ [δ12δ11 + δ11δ12] + λ δ11δ12

= µ [0 · 1 + 1 · 0] + λ 1 · 0 = 0

C1212 = µ [δ12δ21 + δ11δ22] + λ δ12δ12

= µ [0 · 0 + 1 · 1] + λ 0 · 0 = µ

d.kuhl, wes.online, university of kasselÜ Ülinear computational structural mechanics • e1 tensors • e1.5 fundamental tensors

identity tensors (examples)Ü 14

• X

repetition: KRONECKER symbol & fourth order identity tensors

δij = ei · ej =

0 for i 6= j

1 for i = j

1⊗ 1 = δij δkl ei ⊗ ej ⊗ ek ⊗ elI =

1

2[δikδjl + δilδjk] ei ⊗ ej ⊗ ek ⊗ el

fourth order constitutive tensor C

C = 2µ I + λ 1⊗ 1 =[µ [δilδjk + δikδjl] + λ δijδkl

]ei ⊗ ej ⊗ ek ⊗ el

= Cijkl ei ⊗ ej ⊗ ek ⊗ el

developement of components C1111, C1122, C1112 and C1212

C1111 = µ [δ11δ11 + δ11δ11] + λ δ11δ11

= µ [1 · 1 + 1 · 1] + λ 1 · 1 = 2 µ+ λ

C1122 = µ [δ12δ12 + δ12δ12] + λ δ11δ22

= µ [0 · 0 + 0 · 0] + λ 1 · 1 = λ

C1112 = µ [δ12δ11 + δ11δ12] + λ δ11δ12

= µ [0 · 1 + 1 · 0] + λ 1 · 0 = 0

C1212 = µ [δ12δ21 + δ11δ22] + λ δ12δ12

= µ [0 · 0 + 1 · 1] + λ 0 · 0 = µ

d.kuhl, wes.online, university of kasselÜ Ülinear computational structural mechanics • e1 tensors • e1.5 fundamental tensors

identity tensors (examples)Ü 14

• X

repetition: KRONECKER symbol & fourth order identity tensors

δij = ei · ej =

0 for i 6= j

1 for i = j

1⊗ 1 = δij δkl ei ⊗ ej ⊗ ek ⊗ elI =

1

2[δikδjl + δilδjk] ei ⊗ ej ⊗ ek ⊗ el

fourth order constitutive tensor C

C = 2µ I + λ 1⊗ 1 =[µ [δilδjk + δikδjl] + λ δijδkl

]ei ⊗ ej ⊗ ek ⊗ el

= Cijkl ei ⊗ ej ⊗ ek ⊗ el

developement of components C1111, C1122, C1112 and C1212

C1111 = µ [δ11δ11 + δ11δ11] + λ δ11δ11

= µ [1 · 1 + 1 · 1] + λ 1 · 1 = 2 µ+ λ

C1122 = µ [δ12δ12 + δ12δ12] + λ δ11δ22

= µ [0 · 0 + 0 · 0] + λ 1 · 1 = λ

C1112 = µ [δ12δ11 + δ11δ12] + λ δ11δ12

= µ [0 · 1 + 1 · 0] + λ 1 · 0 = 0

C1212 = µ [δ12δ21 + δ11δ22] + λ δ12δ12

= µ [0 · 0 + 1 · 1] + λ 0 · 0 = µ

d.kuhl, wes.online, university of kasselÜ Ülinear computational structural mechanics • e1 tensors • e1.5 fundamental tensors

identity tensors (examples)Ü 14

• X

repetition: KRONECKER symbol & fourth order identity tensors

δij = ei · ej =

0 for i 6= j

1 for i = j

1⊗ 1 = δij δkl ei ⊗ ej ⊗ ek ⊗ elI =

1

2[δikδjl + δilδjk] ei ⊗ ej ⊗ ek ⊗ el

fourth order constitutive tensor C

C = 2µ I + λ 1⊗ 1 =[µ [δilδjk + δikδjl] + λ δijδkl

]ei ⊗ ej ⊗ ek ⊗ el

= Cijkl ei ⊗ ej ⊗ ek ⊗ el

developement of components C1111, C1122, C1112 and C1212

C1111 = µ [δ11δ11 + δ11δ11] + λ δ11δ11

= µ [1 · 1 + 1 · 1] + λ 1 · 1 = 2 µ+ λ

C1122 = µ [δ12δ12 + δ12δ12] + λ δ11δ22

= µ [0 · 0 + 0 · 0] + λ 1 · 1 = λ

C1112 = µ [δ12δ11 + δ11δ12] + λ δ11δ12

= µ [0 · 1 + 1 · 0] + λ 1 · 0 = 0

C1212 = µ [δ12δ21 + δ11δ22] + λ δ12δ12

= µ [0 · 0 + 1 · 1] + λ 0 · 0 = µ

d.kuhl, wes.online, university of kasselÜ Ülinear computational structural mechanics • e1 tensors • e1.5 fundamental tensors

identity tensors (examples)Ü 14

• X

repetition: KRONECKER symbol & fourth order identity tensors

δij = ei · ej =

0 for i 6= j

1 for i = j

1⊗ 1 = δij δkl ei ⊗ ej ⊗ ek ⊗ elI =

1

2[δikδjl + δilδjk] ei ⊗ ej ⊗ ek ⊗ el

fourth order constitutive tensor C

C = 2µ I + λ 1⊗ 1 =[µ [δilδjk + δikδjl] + λ δijδkl

]ei ⊗ ej ⊗ ek ⊗ el

= Cijkl ei ⊗ ej ⊗ ek ⊗ el

developement of components C1111, C1122, C1112 and C1212

C1111 = µ [δ11δ11 + δ11δ11] + λ δ11δ11

= µ [1 · 1 + 1 · 1] + λ 1 · 1 = 2 µ+ λ

C1122 = µ [δ12δ12 + δ12δ12] + λ δ11δ22

= µ [0 · 0 + 0 · 0] + λ 1 · 1 = λ

C1112 = µ [δ12δ11 + δ11δ12] + λ δ11δ12

= µ [0 · 1 + 1 · 0] + λ 1 · 0 = 0

C1212 = µ [δ12δ21 + δ11δ22] + λ δ12δ12

= µ [0 · 0 + 1 · 1] + λ 0 · 0 = µ

d.kuhl, wes.online, university of kasselÜ Ülinear computational structural mechanics • e1 tensors • e1.5 fundamental tensors

identity tensors (examples)Ü 14

• X

repetition: KRONECKER symbol & fourth order identity tensors

δij = ei · ej =

0 for i 6= j

1 for i = j

1⊗ 1 = δij δkl ei ⊗ ej ⊗ ek ⊗ elI =

1

2[δikδjl + δilδjk] ei ⊗ ej ⊗ ek ⊗ el

fourth order constitutive tensor C

C = 2µ I + λ 1⊗ 1 =[µ [δilδjk + δikδjl] + λ δijδkl

]ei ⊗ ej ⊗ ek ⊗ el

= Cijkl ei ⊗ ej ⊗ ek ⊗ el

developement of components C1111, C1122, C1112 and C1212

C1111 = µ [δ11δ11 + δ11δ11] + λ δ11δ11

= µ [1 · 1 + 1 · 1] + λ 1 · 1 = 2 µ+ λ

C1122 = µ [δ12δ12 + δ12δ12] + λ δ11δ22

= µ [0 · 0 + 0 · 0] + λ 1 · 1 = λ

C1112 = µ [δ12δ11 + δ11δ12] + λ δ11δ12

= µ [0 · 1 + 1 · 0] + λ 1 · 0 = 0

C1212 = µ [δ12δ21 + δ11δ22] + λ δ12δ12

= µ [0 · 0 + 1 · 1] + λ 0 · 0 = µ

d.kuhl, wes.online, university of kasselÜ Ülinear computational structural mechanics • e1 tensors • e1.5 fundamental tensors

identity tensors (examples)Ü 14

• X

repetition: KRONECKER symbol & fourth order identity tensors

δij = ei · ej =

0 for i 6= j

1 for i = j

1⊗ 1 = δij δkl ei ⊗ ej ⊗ ek ⊗ elI =

1

2[δikδjl + δilδjk] ei ⊗ ej ⊗ ek ⊗ el

fourth order constitutive tensor C

C = 2µ I + λ 1⊗ 1 =[µ [δilδjk + δikδjl] + λ δijδkl

]ei ⊗ ej ⊗ ek ⊗ el

= Cijkl ei ⊗ ej ⊗ ek ⊗ el

developement of components C1111, C1122, C1112 and C1212

C1111 = µ [δ11δ11 + δ11δ11] + λ δ11δ11

= µ [1 · 1 + 1 · 1] + λ 1 · 1 = 2 µ+ λ

C1122 = µ [δ12δ12 + δ12δ12] + λ δ11δ22

= µ [0 · 0 + 0 · 0] + λ 1 · 1 = λ

C1112 = µ [δ12δ11 + δ11δ12] + λ δ11δ12

= µ [0 · 1 + 1 · 0] + λ 1 · 0 = 0

C1212 = µ [δ12δ21 + δ11δ22] + λ δ12δ12

= µ [0 · 0 + 1 · 1] + λ 0 · 0 = µ

d.kuhl, wes.online, university of kasselÜ Ülinear computational structural mechanics • e1 tensors • e1.5 fundamental tensors

identity tensors (examples)Ü 14

• X

repetition: KRONECKER symbol & fourth order identity tensors

δij = ei · ej =

0 for i 6= j

1 for i = j

1⊗ 1 = δij δkl ei ⊗ ej ⊗ ek ⊗ elI =

1

2[δikδjl + δilδjk] ei ⊗ ej ⊗ ek ⊗ el

fourth order constitutive tensor C

C = 2µ I + λ 1⊗ 1 =[µ [δilδjk + δikδjl] + λ δijδkl

]ei ⊗ ej ⊗ ek ⊗ el

= Cijkl ei ⊗ ej ⊗ ek ⊗ el

developement of components C1111, C1122, C1112 and C1212

C1111 = µ [δ11δ11 + δ11δ11] + λ δ11δ11

= µ [1 · 1 + 1 · 1] + λ 1 · 1 = 2 µ+ λ

C1122 = µ [δ12δ12 + δ12δ12] + λ δ11δ22

= µ [0 · 0 + 0 · 0] + λ 1 · 1 = λ

C1112 = µ [δ12δ11 + δ11δ12] + λ δ11δ12

= µ [0 · 1 + 1 · 0] + λ 1 · 0 = 0

C1212 = µ [δ12δ21 + δ11δ22] + λ δ12δ12

= µ [0 · 0 + 1 · 1] + λ 0 · 0 = µ

d.kuhl, wes.online, university of kasselÜ Ülinear computational structural mechanics • e1 tensors • e1.5 fundamental tensors

identity tensors (examples)Ü 14

• X

first order tensors

rb

βa

2

βa1

βa

a2

a1

a

c 2

c1

αa

α < 1 < β

6-

e2

e1rb

characterization of products

• multiplication by a scalar

• dyadic product

• contraction

simple contraction double contraction

multiplication by a scalar

• first order tensors

α a = α ai ei = [α ai] ei =

α a1

α a2

α a3

• second order tensors

α A = α Aij ei ⊗ ej =

αA11 αA12 αA13

αA21 αA22 αA23

αA31 αA32 αA33

d.kuhl, wes.online, university of kasselÜ Ülinear computational structural mechanics • e1 tensors • e1.6 products • e1.6.1 multiplication by scalars

products of tensorsÜ 15

• X

aaaaaaaaa

bbbbbbbbb

CCCCCCCCC

⊗⊗⊗⊗⊗⊗⊗⊗⊗

AAAAAAAAA

bbbbbbbbb

CCCCCCCCC

geometrical interpretationC = a⊗ b

a⊗ b = aibj ei ⊗ ej

C = A⊗ b

A⊗ b = Aijbk ei ⊗ ej ⊗ ek

dyadic products

• increasing order• symbol ⊗two first order tensors

a⊗ b = [ai ei]⊗ [ej bj ] = ai bj ei ⊗ ej

higher order tensors

C = Cijk ei ⊗ ej ⊗ ek =A ⊗ b

= Aij bk ei ⊗ ej ⊗ ekC = Cijkl ei⊗ej⊗ek⊗el =A ⊗ B

= Aij Bkl ei ⊗ ej ⊗ ek ⊗ el

e.g. consitutive tensor

C = 2µ I+ λ 1⊗ 1

with

1⊗ 1 = δij δkl ei ⊗ ej ⊗ ek ⊗ el

d.kuhl, wes.online, university of kasselÜ Ülinear computational structural mechanics • e1 tensors • e1.6 products • e1.6.2 dyadic product

cartesian coordinates - basis vectorsÜ 16

• X

aaaaaaaaa

bbbbbbbbb

CCCCCCCCC

⊗⊗⊗⊗⊗⊗⊗⊗⊗

AAAAAAAAA

bbbbbbbbb

CCCCCCCCC

geometrical interpretationC = a⊗ b

a⊗ b = aibj ei ⊗ ej

C = A⊗ b

A⊗ b = Aijbk ei ⊗ ej ⊗ ek

dyadic products

• increasing order• symbol ⊗two first order tensors

a⊗ b = [ai ei]⊗ [ej bj ] = ai bj ei ⊗ ej

higher order tensors

C = Cijk ei ⊗ ej ⊗ ek =A ⊗ b

= Aij bk ei ⊗ ej ⊗ ekC = Cijkl ei⊗ej⊗ek⊗el =A ⊗ B

= Aij Bkl ei ⊗ ej ⊗ ek ⊗ el

e.g. consitutive tensor

C = 2µ I+ λ 1⊗ 1

with

1⊗ 1 = δij δkl ei ⊗ ej ⊗ ek ⊗ el

d.kuhl, wes.online, university of kasselÜ Ülinear computational structural mechanics • e1 tensors • e1.6 products • e1.6.2 dyadic product

cartesian coordinates - basis vectorsÜ 16

• X

⊗1

0

0

10

0

A11A11A11A11A11A11A11A11A11

0

00

0

0

0

0

0

e1

e1

A11e1⊗e1

+

+ · · · =

⊗1

0

0

01

0

0

0

00

0

A12A12A12A12A12A12A12A12A12

0

0

0

e1

e2

A12e1⊗e2

A11A11A11A11A11A11A11A11A11

A21A21A21A21A21A21A21A21A21

A31A31A31A31A31A31A31A31A31A12A12A12A12A12A12A12A12A12

A22A22A22A22A22A22A22A22A22

A32A32A32A32A32A32A32A32A32

A13A13A13A13A13A13A13A13A13

A23A23A23A23A23A23A23A23A23

A33A33A33A33A33A33A33A33A33

Aijei⊗ej

cartesian basis - right-handed (dextral) and orthonormal system

e1 =

1

0

0

, e2 =

0

1

0

, e3 =

0

0

1

representation of second order tensors

A =3∑i=1

3∑j=1

Aij ei⊗ej = Aij ei⊗ej

= A11 e1⊗e1 + A12 e1⊗e2 + A13 e1⊗e3

+ A21 e2⊗e1 + A22 e2⊗e2 + A23 e2⊗e3

+ A31 e3⊗e1 + A32 e3⊗e2 + A33 e3⊗e3

using basis vectors and tensor components

A = A11

1 0 0

0 0 0

0 0 0

+A12

0 1 0

0 0 0

0 0 0

+A13

0 0 1

0 0 0

0 0 0

+ · · ·

=

A11 A12 A13

A21 A22 A23

A31 A32 A33

= Aij ei⊗ej

d.kuhl, wes.online, university of kasselÜ Ülinear computational structural mechanics • e1 tensors • e1.6 products • e1.6.2 dyadic product

dyadic product of base vectorsÜ 17

• X

10

0

⊗1

0

0

10

0

1

0

00

0

0

0

0

0

A111A111A111A111A111A111A111A111A111

e1

e1

e1

A111e1⊗e1⊗e1

10

0

⊗0

1

0

00

1

0

0

00

0

0

0

1

0A231A231A231A231A231A231A231A231A231

e2

e3

e1

A231e2⊗e3⊗e1

Aijkei⊗ej⊗ek

+ · · ·+

+ · · · =

cartesian basis - right-handed (dextral) and orthonormal system

e1 =

1

0

0

, e2 =

0

1

0

, e3 =

0

0

1

representation of third order tensors

A =3∑i=1

3∑j=1

3∑k=1

Aijk ei⊗ej⊗ek

= Aijk ei⊗ej⊗ek= A111 e1⊗e1⊗e1 +A112 e1⊗e1⊗e2 + · · ·

representation of fourth order tensors

A =3∑i=1

3∑j=1

3∑k=1

3∑l=1

Aijkl ei⊗ej⊗ek⊗el

= Aijkl ei⊗ej⊗ek⊗el= A1111 e1⊗e1⊗e1⊗e1

+ A1112 e1⊗e1⊗e1⊗e2 + · · ·

d.kuhl, wes.online, university of kasselÜ Ülinear computational structural mechanics • e1 tensors • e1.6 products • e1.6.2 dyadic product

dyadic product of base vectorsÜ 18

• X

e.g. dyadic product of basis tensors ei

e1⊗e1 =

1

0

0

⊗1

0

0

=

1

0

0

[1 0 0

]=

1 0 0

0 0 0

0 0 0

e2⊗e3 =

0

1

0

⊗0

0

1

=

0

1

0

[0 0 1

]=

0 0 0

0 0 1

0 0 0

detailed calculation of a dyadic product

a⊗ b = [ai ei]⊗ [ej bj ] = aibj ei⊗ej= a1bj e1⊗ej + a2bj e2⊗ej + a3bj e3⊗ej= a1b1 e1⊗e1 + a1b2 e1⊗e2 + a1b3 e1⊗e3 + a2b1 e2⊗e1 + · · ·+ a3b3 e3⊗e3

= a1b1

1 0 0

0 0 0

0 0 0

+ a1b2

0 1 0

0 0 0

0 0 0

+ a1b3

0 0 1

0 0 0

0 0 0

+ a2b1

0 0 0

1 0 0

0 0 0

+ · · ·+ a3b3

0 0 0

0 0 0

0 0 1

=

a1b1 a1b2 a1b3

a2b1 a2b2 a2b3

a3b1 a3b2 a3b3

=

C11 C12 C13

C21 C22 C23

C31 C32 C33

= Cij ei⊗ej

with

Cij = aibj

d.kuhl, wes.online, university of kasselÜ Ülinear computational structural mechanics • e1 tensors • e1.6 products • e1.6.2 dyadic product

dyadic product ⊗ (example)Ü 19

• X

e.g. dyadic product of basis tensors ei

e1⊗e1 =

1

0

0

⊗1

0

0

=

1

0

0

[1 0 0

]=

1 0 0

0 0 0

0 0 0

e2⊗e3 =

0

1

0

⊗0

0

1

=

0

1

0

[0 0 1

]=

0 0 0

0 0 1

0 0 0

detailed calculation of a dyadic product

a⊗ b = [ai ei]⊗ [ej bj ] = aibj ei⊗ej

= a1bj e1⊗ej + a2bj e2⊗ej + a3bj e3⊗ej= a1b1 e1⊗e1 + a1b2 e1⊗e2 + a1b3 e1⊗e3 + a2b1 e2⊗e1 + · · ·+ a3b3 e3⊗e3

= a1b1

1 0 0

0 0 0

0 0 0

+ a1b2

0 1 0

0 0 0

0 0 0

+ a1b3

0 0 1

0 0 0

0 0 0

+ a2b1

0 0 0

1 0 0

0 0 0

+ · · ·+ a3b3

0 0 0

0 0 0

0 0 1

=

a1b1 a1b2 a1b3

a2b1 a2b2 a2b3

a3b1 a3b2 a3b3

=

C11 C12 C13

C21 C22 C23

C31 C32 C33

= Cij ei⊗ej

with

Cij = aibj

d.kuhl, wes.online, university of kasselÜ Ülinear computational structural mechanics • e1 tensors • e1.6 products • e1.6.2 dyadic product

dyadic product ⊗ (example)Ü 19

• X

e.g. dyadic product of basis tensors ei

e1⊗e1 =

1

0

0

⊗1

0

0

=

1

0

0

[1 0 0

]=

1 0 0

0 0 0

0 0 0

e2⊗e3 =

0

1

0

⊗0

0

1

=

0

1

0

[0 0 1

]=

0 0 0

0 0 1

0 0 0

detailed calculation of a dyadic product

a⊗ b = [ai ei]⊗ [ej bj ] = aibj ei⊗ej= a1bj e1⊗ej + a2bj e2⊗ej + a3bj e3⊗ej

= a1b1 e1⊗e1 + a1b2 e1⊗e2 + a1b3 e1⊗e3 + a2b1 e2⊗e1 + · · ·+ a3b3 e3⊗e3

= a1b1

1 0 0

0 0 0

0 0 0

+ a1b2

0 1 0

0 0 0

0 0 0

+ a1b3

0 0 1

0 0 0

0 0 0

+ a2b1

0 0 0

1 0 0

0 0 0

+ · · ·+ a3b3

0 0 0

0 0 0

0 0 1

=

a1b1 a1b2 a1b3

a2b1 a2b2 a2b3

a3b1 a3b2 a3b3

=

C11 C12 C13

C21 C22 C23

C31 C32 C33

= Cij ei⊗ej

with

Cij = aibj

d.kuhl, wes.online, university of kasselÜ Ülinear computational structural mechanics • e1 tensors • e1.6 products • e1.6.2 dyadic product

dyadic product ⊗ (example)Ü 19

• X

e.g. dyadic product of basis tensors ei

e1⊗e1 =

1

0

0

⊗1

0

0

=

1

0

0

[1 0 0

]=

1 0 0

0 0 0

0 0 0

e2⊗e3 =

0

1

0

⊗0

0

1

=

0

1

0

[0 0 1

]=

0 0 0

0 0 1

0 0 0

detailed calculation of a dyadic product

a⊗ b = [ai ei]⊗ [ej bj ] = aibj ei⊗ej= a1bj e1⊗ej + a2bj e2⊗ej + a3bj e3⊗ej= a1b1 e1⊗e1 + a1b2 e1⊗e2 + a1b3 e1⊗e3 + a2b1 e2⊗e1 + · · ·+ a3b3 e3⊗e3

= a1b1

1 0 0

0 0 0

0 0 0

+ a1b2

0 1 0

0 0 0

0 0 0

+ a1b3

0 0 1

0 0 0

0 0 0

+ a2b1

0 0 0

1 0 0

0 0 0

+ · · ·+ a3b3

0 0 0

0 0 0

0 0 1

=

a1b1 a1b2 a1b3

a2b1 a2b2 a2b3

a3b1 a3b2 a3b3

=

C11 C12 C13

C21 C22 C23

C31 C32 C33

= Cij ei⊗ej

with

Cij = aibj

d.kuhl, wes.online, university of kasselÜ Ülinear computational structural mechanics • e1 tensors • e1.6 products • e1.6.2 dyadic product

dyadic product ⊗ (example)Ü 19

• X

e.g. dyadic product of basis tensors ei

e1⊗e1 =

1

0

0

⊗1

0

0

=

1

0

0

[1 0 0

]=

1 0 0

0 0 0

0 0 0

e2⊗e3 =

0

1

0

⊗0

0

1

=

0

1

0

[0 0 1

]=

0 0 0

0 0 1

0 0 0

detailed calculation of a dyadic product

a⊗ b = [ai ei]⊗ [ej bj ] = aibj ei⊗ej= a1bj e1⊗ej + a2bj e2⊗ej + a3bj e3⊗ej= a1b1 e1⊗e1 + a1b2 e1⊗e2 + a1b3 e1⊗e3 + a2b1 e2⊗e1 + · · ·+ a3b3 e3⊗e3

= a1b1

1 0 0

0 0 0

0 0 0

+ a1b2

0 1 0

0 0 0

0 0 0

+ a1b3

0 0 1

0 0 0

0 0 0

+ a2b1

0 0 0

1 0 0

0 0 0

+ · · ·+ a3b3

0 0 0

0 0 0

0 0 1

=

a1b1 a1b2 a1b3

a2b1 a2b2 a2b3

a3b1 a3b2 a3b3

=

C11 C12 C13

C21 C22 C23

C31 C32 C33

= Cij ei⊗ej

with

Cij = aibj

d.kuhl, wes.online, university of kasselÜ Ülinear computational structural mechanics • e1 tensors • e1.6 products • e1.6.2 dyadic product

dyadic product ⊗ (example)Ü 19

• X

e.g. dyadic product of basis tensors ei

e1⊗e1 =

1

0

0

⊗1

0

0

=

1

0

0

[1 0 0

]=

1 0 0

0 0 0

0 0 0

e2⊗e3 =

0

1

0

⊗0

0

1

=

0

1

0

[0 0 1

]=

0 0 0

0 0 1

0 0 0

detailed calculation of a dyadic product

a⊗ b = [ai ei]⊗ [ej bj ] = aibj ei⊗ej= a1bj e1⊗ej + a2bj e2⊗ej + a3bj e3⊗ej= a1b1 e1⊗e1 + a1b2 e1⊗e2 + a1b3 e1⊗e3 + a2b1 e2⊗e1 + · · ·+ a3b3 e3⊗e3

= a1b1

1 0 0

0 0 0

0 0 0

+ a1b2

0 1 0

0 0 0

0 0 0

+ a1b3

0 0 1

0 0 0

0 0 0

+ a2b1

0 0 0

1 0 0

0 0 0

+ · · ·+ a3b3

0 0 0

0 0 0

0 0 1

=

a1b1 a1b2 a1b3

a2b1 a2b2 a2b3

a3b1 a3b2 a3b3

=

C11 C12 C13

C21 C22 C23

C31 C32 C33

= Cij ei⊗ej

with

Cij = aibj

d.kuhl, wes.online, university of kasselÜ Ülinear computational structural mechanics • e1 tensors • e1.6 products • e1.6.2 dyadic product

dyadic product ⊗ (example)Ü 19

• X

e.g. dyadic product of basis tensors ei

e1⊗e1 =

1

0

0

⊗1

0

0

=

1

0

0

[1 0 0

]=

1 0 0

0 0 0

0 0 0

e2⊗e3 =

0

1

0

⊗0

0

1

=

0

1

0

[0 0 1

]=

0 0 0

0 0 1

0 0 0

detailed calculation of a dyadic product

a⊗ b = [ai ei]⊗ [ej bj ] = aibj ei⊗ej= a1bj e1⊗ej + a2bj e2⊗ej + a3bj e3⊗ej= a1b1 e1⊗e1 + a1b2 e1⊗e2 + a1b3 e1⊗e3 + a2b1 e2⊗e1 + · · ·+ a3b3 e3⊗e3

= a1b1

1 0 0

0 0 0

0 0 0

+ a1b2

0 1 0

0 0 0

0 0 0

+ a1b3

0 0 1

0 0 0

0 0 0

+ a2b1

0 0 0

1 0 0

0 0 0

+ · · ·+ a3b3

0 0 0

0 0 0

0 0 1

=

a1b1 a1b2 a1b3

a2b1 a2b2 a2b3

a3b1 a3b2 a3b3

=

C11 C12 C13

C21 C22 C23

C31 C32 C33

= Cij ei⊗ej

with

Cij = aibj

d.kuhl, wes.online, university of kasselÜ Ülinear computational structural mechanics • e1 tensors • e1.6 products • e1.6.2 dyadic product

dyadic product ⊗ (example)Ü 19

• X

e.g. dyadic product of basis tensors ei

e1⊗e1 =

1

0

0

⊗1

0

0

=

1

0

0

[1 0 0

]=

1 0 0

0 0 0

0 0 0

e2⊗e3 =

0

1

0

⊗0

0

1

=

0

1

0

[0 0 1

]=

0 0 0

0 0 1

0 0 0

detailed calculation of a dyadic product

a⊗ b = [ai ei]⊗ [ej bj ] = aibj ei⊗ej= a1bj e1⊗ej + a2bj e2⊗ej + a3bj e3⊗ej= a1b1 e1⊗e1 + a1b2 e1⊗e2 + a1b3 e1⊗e3 + a2b1 e2⊗e1 + · · ·+ a3b3 e3⊗e3

= a1b1

1 0 0

0 0 0

0 0 0

+ a1b2

0 1 0

0 0 0

0 0 0

+ a1b3

0 0 1

0 0 0

0 0 0

+ a2b1

0 0 0

1 0 0

0 0 0

+ · · ·+ a3b3

0 0 0

0 0 0

0 0 1

=

a1b1 a1b2 a1b3

a2b1 a2b2 a2b3

a3b1 a3b2 a3b3

=

C11 C12 C13

C21 C22 C23

C31 C32 C33

= Cij ei⊗ej

with

Cij = aibj

d.kuhl, wes.online, university of kasselÜ Ülinear computational structural mechanics • e1 tensors • e1.6 products • e1.6.2 dyadic product

dyadic product ⊗ (example)Ü 19

• X

first order tensors

simple contraction

rba

b

ϑ ·a · b = |a| |b| cosϑ

·aaaaaaaaa

ccccccccc

bbbbbbbbb

·

AAAAAAAAA

ccccccccc

bbbbbbbbb

contractive products→ reduction of order

• simple contraction, symbol ·• double contraction, symbol :

simple contraction

a ·b =aiei ·ejbj =ai δijbj =aibi

A ·b =Aijei⊗ej ·ekbk =Aijei δjkbk=Aijbj ei

A ·B=Aijei⊗ej ·ek⊗elBkl= =AijBjl ei⊗el

double contraction

A :B=Aij [ei⊗ej ] : [ek⊗el]Bkl=Aij δikδjlBkl

=Aij Bij

requirements of present course

c = = a · b = ai bi

c = =A :B = Aij Bij

c = ci ei =A · b = Aij bj ei

C = Cij ei ⊗ ej =A ·B = Aik Bkj ei ⊗ ejC = Cij ei ⊗ ej = A :B = Aijkl Bkl ei ⊗ ej

d.kuhl, wes.online, university of kasselÜ Ülinear computational structural mechanics • e1 tensors • e1.6 products • e1.6.3 contraction

contraction of tensors · and :Ü 20

• X

first order tensors

simple contraction

rba

b

ϑ ·a · b = |a| |b| cosϑ

·aaaaaaaaa

ccccccccc

bbbbbbbbb

·

AAAAAAAAA

ccccccccc

bbbbbbbbb

contractive products→ reduction of order

• simple contraction, symbol ·• double contraction, symbol :

simple contraction

a ·b =aiei ·ejbj =ai δijbj =aibi

A ·b =Aijei⊗ej ·ekbk =Aijei δjkbk=Aijbj ei

A ·B=Aijei⊗ej ·ek⊗elBkl= =AijBjl ei⊗el

double contraction

A :B=Aij [ei⊗ej ] : [ek⊗el]Bkl=Aij δikδjlBkl

=Aij Bij

requirements of present course

c = = a · b = ai bi

c = =A :B = Aij Bij

c = ci ei =A · b = Aij bj ei

C = Cij ei ⊗ ej =A ·B = Aik Bkj ei ⊗ ejC = Cij ei ⊗ ej = A :B = Aijkl Bkl ei ⊗ ej

d.kuhl, wes.online, university of kasselÜ Ülinear computational structural mechanics • e1 tensors • e1.6 products • e1.6.3 contraction

contraction of tensors · and :Ü 20

• X

first order tensors

simple contraction

rba

b

ϑ ·a · b = |a| |b| cosϑ

·aaaaaaaaa

ccccccccc

bbbbbbbbb

·

AAAAAAAAA

ccccccccc

bbbbbbbbb

contractive products→ reduction of order

• simple contraction, symbol ·• double contraction, symbol :

simple contraction

a ·b =aiei ·ejbj =ai δijbj =aibi

A ·b =Aijei⊗ej ·ekbk =Aijei δjkbk=Aijbj ei

A ·B=Aijei⊗ej ·ek⊗elBkl= =AijBjl ei⊗el

double contraction

A :B=Aij [ei⊗ej ] : [ek⊗el]Bkl=Aij δikδjlBkl

=Aij Bij

requirements of present course

c = = a · b = ai bi

c = =A :B = Aij Bij

c = ci ei =A · b = Aij bj ei

C = Cij ei ⊗ ej =A ·B = Aik Bkj ei ⊗ ejC = Cij ei ⊗ ej = A :B = Aijkl Bkl ei ⊗ ej

d.kuhl, wes.online, university of kasselÜ Ülinear computational structural mechanics • e1 tensors • e1.6 products • e1.6.3 contraction

contraction of tensors · and :Ü 20

• X

first order tensors

simple contraction

rba

b

ϑ ·a · b = |a| |b| cosϑ

·aaaaaaaaa

ccccccccc

bbbbbbbbb

·

AAAAAAAAA

ccccccccc

bbbbbbbbb

contractive products→ reduction of order

• simple contraction, symbol ·• double contraction, symbol :

simple contraction

a ·b =aiei ·ejbj =ai δijbj =aibi

A ·b =Aijei⊗ej ·ekbk =Aijei δjkbk=Aijbj ei

A ·B=Aijei⊗ej ·ek⊗elBkl= =AijBjl ei⊗el

double contraction

A :B=Aij [ei⊗ej ] : [ek⊗el]Bkl=Aij δikδjlBkl

=Aij Bij

requirements of present course

c = = a · b = ai bi

c = =A :B = Aij Bij

c = ci ei =A · b = Aij bj ei

C = Cij ei ⊗ ej =A ·B = Aik Bkj ei ⊗ ejC = Cij ei ⊗ ej = A :B = Aijkl Bkl ei ⊗ ej

d.kuhl, wes.online, university of kasselÜ Ülinear computational structural mechanics • e1 tensors • e1.6 products • e1.6.3 contraction

contraction of tensors · and :Ü 20

• X

strain vector ε and strain tensor ε

ε =[ε11 ε22 ε33 2ε12 2ε23 2ε13

]T ε =

ε11 ε12 ε13

ε22 ε23

ε33sym

@@@@@R

@@@R

@@R

stress vector σ and stress tensor σ

σ =[σ11 σ22 σ33 σ12 σ23 σ13

]T σ =

σ11 σ12 σ13

σ22 σ23

σ33sym

@@@@@R

@@@R

@@R

specific strain energy

2W = σ : ε = σij εij

= σ1j ε1j + σ2j ε2j + σ3j ε3j

= σ11 ε11 + σ12 ε12 + σ13 ε13 + σ21 ε21 + σ22 ε22 + σ23 ε23

+ σ31 ε31 + σ32 ε32 + σ33 ε33

= σ11 ε11 + σ22 ε22 + σ33 ε33

+ [σ12 ε12 + σ21 ε21] + [σ23 ε23 + σ32 ε32] + [σ13 ε13 + σ31 ε31]

= σ11 ε11 + σ22 ε22 + σ33 ε33 + 2 σ12 ε12 + 2 σ23 ε23 + 2 σ13 ε13

= σ · ε

d.kuhl, wes.online, university of kasselÜ Ülinear computational structural mechanics • e1 tensors • e1.6 products • e1.6.3 contraction

examples of productsÜ 21

• X

scalar dyadic single doubleproduct product contraction contraction

associative law

α[βA] = [αβ]A αa⊗b = a⊗[αb] αA·b = A·[αb] αA : B = A : [αB]

distributive

[α+β]A = αA+βA

α[A+B] = αA+αB

A⊗[b+c] = A⊗b+A⊗c

[A+B]⊗c = A⊗c+B⊗c

A·[b+c] = A·b+A·c[A+B]·c = A·c+B ·c

A : [B+C] = A : B+A : C

[A+B] : C = A : C+B : C

commutative law

αA = Aα

identical element

1A = A 1·a = a I : A = A

inverse element

1A + [−1]A = 0

zero element

0⊗a = 0 0·a = 0 O : A = 0

d.kuhl, wes.online, university of kasselÜ Ülinear computational structural mechanics • e1 tensors • e1.6 products • e1.6.4 calculation laws

products of tensorsÜ 22

• X

symmetric & skew symmetric

+ −

A11

A21

A31

A12

A22

A32

A13

A23

A33A

A11

A12

A13

A21

A22

A23

A31

A32

A33AT

seco

ndor

dert

enso

rtr a

nspo

sted

tens

or

• transposition of a tensor

A = Aij ei ⊗ ej

A = Aijkl ei⊗ej⊗ek⊗el

AT = Aji ei⊗ej

AT = Ailjk ei⊗ej⊗ek⊗el

• symmetric and skew symmetric tensors

A =Asym +Askw =1

2

[A+AT

]+

1

2

[A−AT

]A = Asym + Askw =

1

2

[A + AT

]+

1

2

[A−AT

]

• transposition of a dyadic product

[a⊗ b]T = b⊗ a

d.kuhl, wes.online, university of kasselÜ Ülinear computational structural mechanics • e1 tensors • e1.7 tensor characteristics • e1.7.1 symmetric tensors

transposition of a tensorÜ 23

• X

• additive decomposition of a second order tensor in volumentric and deviatoric parts

A = Avol +Adev

• volumetric tensor (three dimensional and two dimensional)

Avol =1

3[A : 1] 1 Avol =

1

2[A : 1] 1

• deviatoric tensor (three dimensional and two dimensional)

Adev = A−1

3[A : 1] 1 Adev = A−

1

2[A : 1] 1

• calculations rules

tr[Avol] = tr[A] tr[Adev] = 0

• general formulation of deviatoric tensor in ND spatial dimensions

Avol =1

ND[A : 1] 1

d.kuhl, wes.online, university of kasselÜ Ülinear computational structural mechanics • e1 tensors • e1.7 tensor characteristics • e1.7.2 deviator

volumetric deviatoric decompositionÜ 24

• X

invariants of second order tensors

• invariants are scalar valued quantities of a tensor which are independent on the coordinatesystem• invariants of three and two dimensional second order tensors

IA = tr[A]

IIA =1

2

[tr2[A]− tr[A ·A]

]IIIA = det[A] = |A|

IA = tr[A]

IIA = det[A] = |A|

• trace of a tensor

tr[A] = A : 1 = Aii = A11 +A22 +A33

• determinant of a tensor

three dimensional

det[A] = |A| = A11A22A33 +A21A32A13 +A31A12A23

− A11A23A32 −A22A31A13 −A33A12A21

two dimensional

det[A] = |A| = A11A22 −A21A12

d.kuhl, wes.online, university of kasselÜ Ülinear computational structural mechanics • e1 tensors • e1.7 tensor characteristics • e1.7.3 invariants

invariants of tensorsÜ 25

• X

calculation rules for invariants of tensors

• trace of a tensor

tr[1] = 3

tr[AT ] = tr[A]

tr[A ·B] = tr[B ·A]

tr[αA+ βB] = αtr[A] + βtr[B]

tr[A ·BT ] = tr[A ·B]

tr[A] = tr[A · 1] = A : 1

• determinant of a tensor

det[1] = 1

det[AT ] = det[A]

det[A ·B] = det[A] det[B]

det[αA] = α3 det[A]

det[a⊗ b] = 0

d.kuhl, wes.online, university of kasselÜ Ülinear computational structural mechanics • e1 tensors • e1.7 tensor characteristics • e1.7.3 invariants

invariants of tensorsÜ 26

• X

• second order tensors with i, j ∈ [1, 3]

A = Aij ei ⊗ ej

• eigenvalue problem of arbitrary second order tensors

[A− λ 1] ·Φ = 0

• eigenvalues (non-trivial solutions)

det [A− λ 1] = 0

• characteristic polynomial, three dimensional i, j ∈ [1, 3], invariants of tensors A

λ3 − IA λ2 + IIA λ− IIIA = 0 λ1|2|3 = . . .

• characteristic polynomial, two dimensional i, j ∈ [1, 2], invariants of tensors A

λ2 − IA λ+ IIA = 0 λ1|2 =IA

√I2A

4− IIA

• yields ND (spatial dimension) eigenvalues λi• related eigenvectors Φi are solutions of linear systems of equations

[A− λi 1] ·Φi = 0

d.kuhl, wes.online, university of kasselÜ Ülinear computational structural mechanics • e1 tensors • e1.7 tensor characteristics • e1.7.4 eigenvalues

eigenvalue problem of tensorsÜ 27

• X

• general quadratic characteristic polynomial

λ2 + 2p λ+ q = 0

• two solutions

λ1|2 = −p±√D

• discriminant

D = p2 − q

• characterization of solution properties

D > 0: two real solutions D = 0: one double real solution D < 0: two conjugate complex solutions

d.kuhl, wes.online, university of kasselÜ Ülinear computational structural mechanics • e1 tensors • e1.7 tensor characteristics • e1.7.4 eigenvalues

zero values of quadratic polynomialsÜ 28

• X

• general cubic characteristic polynomial

λ3 + aλ2 + bλ+ c = 0

• substitution λ = λ+ a/3, discriminant D

λ3 + 3pλ+ 2q = 0, 2q =2a3

27−ab

3+ c, 3p = b−

a2

3, D = p3 + q2

• characterization of solution properties D > 0: one real and two conjugate complex solutions D = 0, q 6= 0: two real solutions, one is a double solution D = 0, q = 0: tripple real solution D < 0: three different real solutions

• CARDANO solution formula

λ1 = u+ + u−, λ2 = ρ+u+ + ρ−u−, λ3 = ρ−u+ + ρ+u−

with

u± =3√−q ±

√D, ρ± :=

1

2[−1± i

√3]

for one real discriminat D ≥ 0 u+ and u− are uniquely determined in general both complex real third roots u± have to be determined such that u+u− = −p is

fulfilled

• back substitution λi = a/3− λi

d.kuhl, wes.online, university of kasselÜ Ülinear computational structural mechanics • e1 tensors • e1.7 tensor characteristics • e1.7.4 eigenvalues

zero values of cubic polynomialsÜ 29

• X

-

a

-

a

--

--

--

--

--

--

--

--

--

--

-

6

tdq e1

e2

e3

e′1

e′2

ϕ3

ϕ3

-

-

-

6

tdq e1

e2

e3

e′1

e′2

ϕ3

ϕ3 cosϕ3

sinϕ3

cosϕ3

−si

nϕ3

cosϕ3 = e1 · e′1

rotation of tensor basis

• outline

orthogonal tensors

2d transformation of tensor basis

3d transformation of tensor basis

transformation of first order tensor components

transformation of second order tensor components

• schedule

two dimensional explanation and illustration

three dimensional extension

d.kuhl, wes.online, university of kasselÜ Ülinear computational structural mechanics • e1 tensors • e1.8 coordinate transformation

transformation of tensorsÜ 30

• X

e1

e2

ϕ3

e1-e2

plane

e2e3

ϕ1

e2-e3

plane

e1

e3 ϕ2

e1-e3

plane

e1

e2e3

ϕ1

ϕ2ϕ3

• spatial coordinate system

base vectors

e1, e2, e3

rotations

ϕ =

ϕ1

ϕ2

ϕ3

• planar coordinate systems

e1-e2-plane

ϕ =[ϕ3

] e2-e3-plane

ϕ =[ϕ1

] e1-e3-plane

ϕ =[ϕ2

]

d.kuhl, wes.online, university of kasselÜ Ülinear computational structural mechanics • e1 tensors • e1.8 coordinate transformation

rotations in 3d and 2d coordinate systemsÜ 31

• X

e1

e2

ϕ3

e1-e2

plane

e2e3

ϕ1

e2-e3

plane

e1

e3 ϕ2

e1-e3

plane

e1

e2e3

ϕ1

ϕ2ϕ3

• spatial coordinate system

base vectors

e1, e2, e3

rotations

ϕ =

ϕ1

ϕ2

ϕ3

• planar coordinate systems

e1-e2-plane

ϕ =[ϕ3

]

e2-e3-plane

ϕ =[ϕ1

] e1-e3-plane

ϕ =[ϕ2

]

d.kuhl, wes.online, university of kasselÜ Ülinear computational structural mechanics • e1 tensors • e1.8 coordinate transformation

rotations in 3d and 2d coordinate systemsÜ 31

• X

e1

e2

ϕ3

e1-e2

plane

e2e3

ϕ1

e2-e3

plane

e1

e3 ϕ2

e1-e3

plane

e1

e2e3

ϕ1

ϕ2ϕ3

• spatial coordinate system

base vectors

e1, e2, e3

rotations

ϕ =

ϕ1

ϕ2

ϕ3

• planar coordinate systems

e1-e2-plane

ϕ =[ϕ3

] e2-e3-plane

ϕ =[ϕ1

]

e1-e3-plane

ϕ =[ϕ2

]

d.kuhl, wes.online, university of kasselÜ Ülinear computational structural mechanics • e1 tensors • e1.8 coordinate transformation

rotations in 3d and 2d coordinate systemsÜ 31

• X

e1

e2

ϕ3

e1-e2

plane

e2e3

ϕ1

e2-e3

plane

e1

e3 ϕ2

e1-e3

plane

e1

e2e3

ϕ1

ϕ2ϕ3

• spatial coordinate system

base vectors

e1, e2, e3

rotations

ϕ =

ϕ1

ϕ2

ϕ3

• planar coordinate systems

e1-e2-plane

ϕ =[ϕ3

] e2-e3-plane

ϕ =[ϕ1

] e1-e3-plane

ϕ =[ϕ2

]

d.kuhl, wes.online, university of kasselÜ Ülinear computational structural mechanics • e1 tensors • e1.8 coordinate transformation

rotations in 3d and 2d coordinate systemsÜ 31

• X

-

-

-

-

6

-

--

-

-

6

--

-

-

-

6

rb

elementary rotation about e1

e1

e2

e3

e′1

e′2e′3

ϕ1 ϕ1 rb

elementary rotation about e2

e1

e2

e3

e′1

e′2e′3

ϕ2

ϕ2

rb

elementary rotation about e3

e1

e2

e3 = e′3

e′1

e′2

ϕ3

ϕ3

rotation tensor Q1

Q1 =

1 0 0

0 cosϕ1 − sinϕ1

0 sinϕ1 cosϕ1

transformation rule

e′i = Q1 · ei

rotation tensor Q2

Q2 =

cosϕ2 0 sinϕ2

0 1 0

− sinϕ2 0 cosϕ2

transformation rule

e′i = Q2 · ei

rotation tensor Q3

Q3 =

cosϕ3 − sinϕ3 0

sinϕ3 cosϕ3 0

0 0 1

transformation rule

e′i = Q3 · ei

d.kuhl, wes.online, university of kasselÜ Ülinear computational structural mechanics • e1 tensors • e1.8 coordinate transformation • e1.8.3 3d rotation tensor

elementary rotations about e1, e2, e3Ü 36

• X

-

-

-

-

6

-

--

-

-

6

--

-

-

-

6

rb

elementary rotation about e1

e1

e2

e3

e′1

e′2e′3

ϕ1 ϕ1 rb

elementary rotation about e2

e1

e2

e3

e′1

e′2e′3

ϕ2

ϕ2

rb

elementary rotation about e3

e1

e2

e3 = e′3

e′1

e′2

ϕ3

ϕ3

rotation e′′′i = Q3 · ei

-

-

-

-

6

rbe1

e2

e3 = e′′′3

e′′′1

e′′′2

ϕ3

ϕ3

ϕ3 = 30o

e′′i = Q2 · e′′′i = Q2 ·Q3 · ei

-

-

--

-

-

-

6

rbe1

e2

e3

e′′1e′′2

e′′3

ϕ2

ϕ2

ϕ2 = −30o

e′i= Q1 ·e′′i = Q1 ·Q2 ·Q3 · ei

-

-

--

-

-

--

-

-

6

rbe1

e2

e3

e′1

e′2

e′3ϕ1

ϕ1

ϕ1 = 30o

d.kuhl, wes.online, university of kasselÜ Ülinear computational structural mechanics • e1 tensors • e1.8 coordinate transformation • e1.8.3 3d rotation tensor

cumulative rotation about e1, e2, e3Ü 38

• X

-

-

-

-

6

-

--

-

-

6

--

-

-

-

6

rb

elementary rotation about e1

e1

e2

e3

e′1

e′2e′3

ϕ1 ϕ1 rb

elementary rotation about e2

e1

e2

e3

e′1

e′2e′3

ϕ2

ϕ2

rb

elementary rotation about e3

e1

e2

e3 = e′3

e′1

e′2

ϕ3

ϕ3

rotation e′′′i = Q3 · ei

-

-

-

-

6

rbe1

e2

e3 = e′′′3

e′′′1

e′′′2

ϕ3

ϕ3

ϕ3 = 30o

e′′i = Q2 · e′′′i = Q2 ·Q3 · ei

-

-

--

-

-

-

6

rbe1

e2

e3

e′′1e′′2

e′′3

ϕ2

ϕ2

ϕ2 = −30o

e′i= Q1 ·e′′i = Q1 ·Q2 ·Q3 · ei

-

-

--

-

-

--

-

-

6

rbe1

e2

e3

e′1

e′2

e′3ϕ1

ϕ1

ϕ1 = 30o

d.kuhl, wes.online, university of kasselÜ Ülinear computational structural mechanics • e1 tensors • e1.8 coordinate transformation • e1.8.3 3d rotation tensor

cumulative rotation about e1, e2, e3Ü 38

• X

-

-

-

-

6

-

--

-

-

6

--

-

-

-

6

rb

elementary rotation about e1

e1

e2

e3

e′1

e′2e′3

ϕ1 ϕ1 rb

elementary rotation about e2

e1

e2

e3

e′1

e′2e′3

ϕ2

ϕ2

rb

elementary rotation about e3

e1

e2

e3 = e′3

e′1

e′2

ϕ3

ϕ3

rotation e′′′i = Q3 · ei

-

-

-

-

6

rbe1

e2

e3 = e′′′3

e′′′1

e′′′2

ϕ3

ϕ3

ϕ3 = 30o

e′′i = Q2 · e′′′i = Q2 ·Q3 · ei

--

--

-

-

-

6

rbe1

e2

e3

e′′1e′′2

e′′3

ϕ2

ϕ2

ϕ2 = −30o

e′i= Q1 ·e′′i = Q1 ·Q2 ·Q3 · ei

-

-

--

-

-

--

-

-

6

rbe1

e2

e3

e′1

e′2

e′3ϕ1

ϕ1

ϕ1 = 30o

d.kuhl, wes.online, university of kasselÜ Ülinear computational structural mechanics • e1 tensors • e1.8 coordinate transformation • e1.8.3 3d rotation tensor

cumulative rotation about e1, e2, e3Ü 38

• X

-

-

-

-

6

-

--

-

-

6

--

-

-

-

6

rb

elementary rotation about e1

e1

e2

e3

e′1

e′2e′3

ϕ1 ϕ1 rb

elementary rotation about e2

e1

e2

e3

e′1

e′2e′3

ϕ2

ϕ2

rb

elementary rotation about e3

e1

e2

e3 = e′3

e′1

e′2

ϕ3

ϕ3

rotation e′′′i = Q3 · ei

-

-

-

-

6

rbe1

e2

e3 = e′′′3

e′′′1

e′′′2

ϕ3

ϕ3

ϕ3 = 30o

e′′i = Q2 · e′′′i = Q2 ·Q3 · ei

--

--

-

-

-

6

rbe1

e2

e3

e′′1e′′2

e′′3

ϕ2

ϕ2

ϕ2 = −30o

e′i= Q1 ·e′′i = Q1 ·Q2 ·Q3 · ei

-

-

--

-

-

--

-

-

6

rbe1

e2

e3

e′1

e′2

e′3ϕ1

ϕ1

ϕ1 = 30o

d.kuhl, wes.online, university of kasselÜ Ülinear computational structural mechanics • e1 tensors • e1.8 coordinate transformation • e1.8.3 3d rotation tensor

cumulative rotation about e1, e2, e3Ü 38

• X

-

-

-

-

6

-

--

-

-

6

--

-

-

-

6

rb

elementary rotation about e1

e1

e2

e3

e′1

e′2e′3

ϕ1 ϕ1 rb

elementary rotation about e2

e1

e2

e3

e′1

e′2e′3

ϕ2

ϕ2

rb

elementary rotation about e3

e1

e2

e3 = e′3

e′1

e′2

ϕ3

ϕ3

rotation e′′′i = Q1 · ei

-

-

-

-

-

6

rbe1

e2

e3

e′1

e′2e′3

ϕ1 ϕ1

ϕ1 = 30o

e′′i = Q2 · e′′′i = Q2 ·Q1 · ei

-

-

-

-

-

-

-

-

6

rbe1

e2

e3

e′′1

e′′2

e′′3

ϕ2ϕ2

ϕ2 = −30o

e′i= Q3 ·e′′i = Q3 ·Q2 ·Q1 ·ei

-

-

-

-

-

-

-

-

-

-

-

6

rbe1

e2

e3

e′1

e′2

e′3

ϕ3

ϕ3

ϕ3 = 30o

d.kuhl, wes.online, university of kasselÜ Ülinear computational structural mechanics • e1 tensors • e1.8 coordinate transformation • e1.8.3 3d rotation tensor

cumulative rotation about e1, e2, e3Ü 39

• X

-

-

-

-

6

-

--

-

-

6

--

-

-

-

6

rb

elementary rotation about e1

e1

e2

e3

e′1

e′2e′3

ϕ1 ϕ1 rb

elementary rotation about e2

e1

e2

e3

e′1

e′2e′3

ϕ2

ϕ2

rb

elementary rotation about e3

e1

e2

e3 = e′3

e′1

e′2

ϕ3

ϕ3

rotation e′′′i = Q1 · ei

-

-

-

-

-

6

rbe1

e2

e3

e′1

e′2e′3

ϕ1 ϕ1

ϕ1 = 30o

e′′i = Q2 · e′′′i = Q2 ·Q1 · ei

--

-

--

-

-

-

6

rbe1

e2

e3

e′′1

e′′2

e′′3

ϕ2ϕ2

ϕ2 = −30o

e′i= Q3 ·e′′i = Q3 ·Q2 ·Q1 ·ei

-

-

-

-

-

-

-

-

-

-

-

6

rbe1

e2

e3

e′1

e′2

e′3

ϕ3

ϕ3

ϕ3 = 30o

d.kuhl, wes.online, university of kasselÜ Ülinear computational structural mechanics • e1 tensors • e1.8 coordinate transformation • e1.8.3 3d rotation tensor

cumulative rotation about e1, e2, e3Ü 39

• X

-

-

-

-

6

-

--

-

-

6

--

-

-

-

6

rb

elementary rotation about e1

e1

e2

e3

e′1

e′2e′3

ϕ1 ϕ1 rb

elementary rotation about e2

e1

e2

e3

e′1

e′2e′3

ϕ2

ϕ2

rb

elementary rotation about e3

e1

e2

e3 = e′3

e′1

e′2

ϕ3

ϕ3

rotation e′′′i = Q1 · ei

-

-

-

-

-

6

rbe1

e2

e3

e′1

e′2e′3

ϕ1 ϕ1

ϕ1 = 30o

e′′i = Q2 · e′′′i = Q2 ·Q1 · ei

--

-

--

-

-

-

6

rbe1

e2

e3

e′′1

e′′2

e′′3

ϕ2ϕ2

ϕ2 = −30o

e′i= Q3 ·e′′i = Q3 ·Q2 ·Q1 ·ei

-

-

-

-

-

-

-

-

-

-

-

6

rbe1

e2

e3

e′1

e′2

e′3

ϕ3

ϕ3

ϕ3 = 30o

d.kuhl, wes.online, university of kasselÜ Ülinear computational structural mechanics • e1 tensors • e1.8 coordinate transformation • e1.8.3 3d rotation tensor

cumulative rotation about e1, e2, e3Ü 39

• X

rotation sequence Q3, Q2, Q1

-

---

-

---

-

-

6

rbe1

e2

e3

e′1

e′2

e′3

rotation sequence Q1, Q2, Q3

-

-

-

-

-

-

-

-

-

-

-

6

rbe1

e2

e3

e′1

e′2

e′3

resulting rotation

-

--

-

-

6

rbe1

e2

e3

e′1

e′2

e′3

e′i = Q1 ·Q2 ·Q3 · ei

resulting rotation

-

-

-

-

-

6

rbe1

e2

e3

e′1

e′2

e′3

e′i = Q3 ·Q2 ·Q1 · ei

• rotation sequence Q3, Q2,Q1

e′i = Q1 ·Q2 ·Q3 · ei

• rotation sequence Q1, Q2,Q3

e′i = Q3 ·Q2 ·Q1 · ei

• rotation sequence can notchanged (rotation is notcommutative)

• free choice of sequences ofelementary rotations aboutbase vectors ei• our decision

elementary rot. about e3

elementary rot. about e2

elementary rot. about e1

• 3d rotation tensor

Q = Q1 ·Q2 ·Q3

d.kuhl, wes.online, university of kasselÜ Ülinear computational structural mechanics • e1 tensors • e1.8 coordinate transformation • e1.8.3 3d rotation tensor

cumulative rotation about e1, e2, e3Ü 40

• X

rotation sequence Q3, Q2, Q1

-

---

-

---

-

-

6

rbe1

e2

e3

e′1

e′2

e′3

rotation sequence Q1, Q2, Q3

-

-

-

-

-

-

-

-

-

-

-

6

rbe1

e2

e3

e′1

e′2

e′3

resulting rotation

-

--

-

-

6

rbe1

e2

e3

e′1

e′2

e′3

e′i = Q1 ·Q2 ·Q3 · ei

resulting rotation

-

-

-

-

-

6

rbe1

e2

e3

e′1

e′2

e′3

e′i = Q3 ·Q2 ·Q1 · ei

• rotation sequence Q3, Q2,Q1

e′i = Q1 ·Q2 ·Q3 · ei

• rotation sequence Q1, Q2,Q3

e′i = Q3 ·Q2 ·Q1 · ei

• rotation sequence can notchanged (rotation is notcommutative)

• free choice of sequences ofelementary rotations aboutbase vectors ei• our decision

elementary rot. about e3

elementary rot. about e2

elementary rot. about e1

• 3d rotation tensor

Q = Q1 ·Q2 ·Q3

d.kuhl, wes.online, university of kasselÜ Ülinear computational structural mechanics • e1 tensors • e1.8 coordinate transformation • e1.8.3 3d rotation tensor

cumulative rotation about e1, e2, e3Ü 40

• X

rotation sequence Q3, Q2, Q1

-

---

-

---

-

-

6

rbe1

e2

e3

e′1

e′2

e′3

rotation sequence Q1, Q2, Q3

-

-

-

-

-

-

-

-

-

-

-

6

rbe1

e2

e3

e′1

e′2

e′3

resulting rotation

-

--

-

-

6

rbe1

e2

e3

e′1

e′2

e′3

e′i = Q1 ·Q2 ·Q3 · ei

resulting rotation

-

-

-

-

-

6

rbe1

e2

e3

e′1

e′2

e′3

e′i = Q3 ·Q2 ·Q1 · ei

• rotation sequence Q3, Q2,Q1

e′i = Q1 ·Q2 ·Q3 · ei

• rotation sequence Q1, Q2,Q3

e′i = Q3 ·Q2 ·Q1 · ei

• rotation sequence can notchanged (rotation is notcommutative)

• free choice of sequences ofelementary rotations aboutbase vectors ei• our decision

elementary rot. about e3

elementary rot. about e2

elementary rot. about e1

• 3d rotation tensor

Q = Q1 ·Q2 ·Q3

d.kuhl, wes.online, university of kasselÜ Ülinear computational structural mechanics • e1 tensors • e1.8 coordinate transformation • e1.8.3 3d rotation tensor

cumulative rotation about e1, e2, e3Ü 40

• X

6--

e3

e2

e1rb

6--

e3

e2

e1rb

• rotation sequence Q3, Q2, Q1

first rotation Q3 with ϕ3 = 90o

second rotation Q2 with ϕ2 = 90o

third rotation Q1 with ϕ1 = 90o

• rotation sequence Q1, Q2, Q3

first rotation Q1 with ϕ1 = 90o

second rotation Q2 with ϕ2 = 90o

thrid rotation Q3 with ϕ3 = 90o

• result is different to inverse rotation sequenceQ3, Q2, Q1

• rotation is not commutative

d.kuhl, wes.online, university of kasselÜ Ülinear computational structural mechanics • e1 tensors • e1.8 coordinate transformation • e1.8.3 3d rotation tensor

study of rotation sequenceÜ 41

• X

6--

e3

e2

e1rb

6--

e3

e2

e1rb

• rotation sequence Q3, Q2, Q1

first rotation Q3 with ϕ3 = 90o

second rotation Q2 with ϕ2 = 90o

third rotation Q1 with ϕ1 = 90o

• rotation sequence Q1, Q2, Q3

first rotation Q1 with ϕ1 = 90o

second rotation Q2 with ϕ2 = 90o

thrid rotation Q3 with ϕ3 = 90o

• result is different to inverse rotation sequenceQ3, Q2, Q1

• rotation is not commutative

d.kuhl, wes.online, university of kasselÜ Ülinear computational structural mechanics • e1 tensors • e1.8 coordinate transformation • e1.8.3 3d rotation tensor

study of rotation sequenceÜ 41

• X

• elementary rotation about basis vector e1, rotated tensor basis, rotated basis vectors

Q1 =

1 0 0

0 cosϕ1 − sinϕ1

0 sinϕ1 cosϕ1

e′1 =

1

0

0

, e′2 =

0

cosϕ1

sinϕ1

, e′3 =

0

− sinϕ1

cosϕ1

• elementary rotation about basis vectors e2 and e3

Q2 =

cosϕ2 0 sinϕ2

0 1 0

− sinϕ2 0 cosϕ2

Q3 =

cosϕ3 − sinϕ3 0

sinϕ3 cosϕ3 0

0 0 1

• rotated basis vectors after elementary rotations about e2 and e3

e′1 =

cosϕ2

0

− sinϕ2

, e′2 =

0

1

0

, e′3 =

sinϕ2

0

cosϕ2

e′1 =

cosϕ3

sinϕ3

0

, e′2 =

− sinϕ3

cosϕ3

0

, e′3 =

0

0

1

• three dimensional rotation tensor Q = Q1 ·Q2 ·Q3

Q=

cosϕ2 cosϕ3 − cosϕ2 sinϕ3 sinϕ2

cosϕ1 sinϕ3 + sinϕ1 sinϕ2 cosϕ3 cosϕ1 cosϕ3 − sinϕ1 sinϕ2 sinϕ3 − sinϕ1 cosϕ2

sinϕ1 sinϕ3 − cosϕ1 sinϕ2 cosϕ3 sinϕ1 cosϕ3 + cosϕ1 sinϕ2 sinϕ3 cosϕ1 cosϕ2

d.kuhl, wes.online, university of kasselÜ Ülinear computational structural mechanics • e1 tensors • e1.8 coordinate transformation • e1.8.3 3d rotation tensor

three-dimensional rotation tensorÜ 42

• X

--

-

6

-tdq e1

e2

e3

e′1

e′2

ϕ3

ϕ3 cosϕ3

sinϕ3

cosϕ3

−si

nϕ3

cosϕ3 = e1 · e′1

a

ϕ3

ϕ3

e1

e2

a1

a2

-

6

e′1

e′2

a′1 a

′2-

6

-

a

tdq

coordinate transformation

• tensors are independent on coordinate system

only tensor components are dependent oncoordinate system

transformation of tensor components is required

• representation of first order tensor in original and rotated basisvectors

a = aj ej = aj Qji e′i a = a′j e

′j = a′j Qij ei

• comparision of both representations

a′i = aj Qji = Qji aj ai = a′j Qij = Qij a′j

• all components of tensor in original and rotated coordinates([a])

[a]′ = QT · [a] [a] = Q · [a]′

• test (example on left hand side)

a′1 = a1 cosϕ3 + a2 sinϕ3 = a1Q11 + a2Q21

a′2 = −a1 sinϕ3 + a2 cosϕ3 = a1Q12 + a2Q22

d.kuhl, wes.online, university of kasselÜ Ülinear computational structural mechanics • e1 tensors • e1.8 coordinate transformation • e1.8.4 first order tensors

transformation of first order tensorsÜ 43

• X

• transformation of basis vectors, tensor basis

e′j = Qij ei ej = Qji e′i

• representation of second order tensors in original and rotated basis vectorstransformation of basis vectors

A = Akl ek ⊗ el = Akl Qki Qlj e′i ⊗ e′j = A′ij e

′i ⊗ e′j

A = A′kl e′k ⊗ e

′l = A′kl Qik Qjl ei ⊗ ej = Aij ei ⊗ ej

• comparision of both representations

A′ij = Qki Akl Qlj Aij = Qik A′kl Qjl

• all components of tensor in original and rotated coordinates ([A])

[A]′ = QT · [A] ·Q [A] = Q · [A]′ ·QT

alternative derivation of second order tensor transformation relations• components of second order tensor A = Akl ek ⊗ el

ei ·A · ej = Akl [ei · ek]⊗ [el · ej ] = Akl δikδlj = Aij

• with respect to rotated coordinate system

Aij = ei ·A · ej = [Qik e′k] ·A · [e′l Qjl] = Qik A

′kl Qjl

A′ij = e′i ·A · e′j = [Qki ek] ·A · [el Qlj ] = Qki Akl Qlj

d.kuhl, wes.online, university of kasselÜÜlinear computational structural mechanics • e1 tensors • e1.8 coordinate transformation • e1.8.5 second order tensors

transformation of second order tensorsÜ 44

• X

functions of one variable functions of two variablesde

rivat

ive

inte

gral

X

f(X

)

X

deriv

ativ

e-s

lope

tang

ent

df(X

)dX

=∂f(X

)∂X

X

f(X

)

a b

area

unde

rfun

ctio

nf

A=b ∫ a

f(X

)dX

X1

X2

f(X

1,X

2)

X1

X2

part

iald

eriv

ativ

es

∂f(X

1,X

2)

∂X

1,∂f(X

1,X

2)

∂X

2

X1

X2

f(X

1,X

2)

a1

b1 a2

b2

volu

me

unde

rfun

ctio

nf

V=b2 ∫ a2

b1 ∫ a1

f(X

1,X

2)dX

1dX

2

d.kuhl, wes.online, university of kasselÜ Ülinear computational structural mechanics • e1 tensors • e1.9 derivatives

derivatives of tensorsÜ 45

• X

derivatives of tensors with respect to tensor valued variables→ increase order of a tensor by order of tensor valued variable

∂a∂b

=

∂a

∂b1∂a

∂b2∂a

∂b3

= ∂a∂bi

ei

∂a

∂b=

∂a1

∂b1

∂a1

∂b2

∂a1

∂b3∂a2

∂b1

∂a2

∂b2

∂a2

∂b3∂a3

∂b1

∂a3

∂b2

∂a3

∂b3

= ∂ai∂bj

ei ⊗ ej

∂a

∂B=

∂a

∂B11

∂a

∂B12

∂a

∂B13∂a

∂B21

∂a

∂B22

∂a

∂B23∂a

∂B31

∂a

∂B32

∂a

∂B33

= ∂a∂Bij

ei ⊗ ej

∂A

∂B= =

∂Aij∂Bkl

ei ⊗ ej ⊗ ek ⊗ el

d.kuhl, wes.online, university of kasselÜ Ülinear computational structural mechanics • e1 tensors • e1.9 derivatives

differentiation of tensorsÜ 46

• X

derivatives of tensors with respect to tensor valued variables→ increase order of a tensor by order of tensor valued variable

∂a∂b

=

∂a

∂b1∂a

∂b2∂a

∂b3

= ∂a∂bi

ei

∂a

∂b=

∂a1

∂b1

∂a1

∂b2

∂a1

∂b3∂a2

∂b1

∂a2

∂b2

∂a2

∂b3∂a3

∂b1

∂a3

∂b2

∂a3

∂b3

= ∂ai∂bj

ei ⊗ ej

∂a

∂B=

∂a

∂B11

∂a

∂B12

∂a

∂B13∂a

∂B21

∂a

∂B22

∂a

∂B23∂a

∂B31

∂a

∂B32

∂a

∂B33

= ∂a∂Bij

ei ⊗ ej

∂A

∂B= =

∂Aij∂Bkl

ei ⊗ ej ⊗ ek ⊗ el

d.kuhl, wes.online, university of kasselÜ Ülinear computational structural mechanics • e1 tensors • e1.9 derivatives

differentiation of tensorsÜ 46

• X

derivatives of tensors with respect to tensor valued variables→ increase order of a tensor by order of tensor valued variable

∂a∂b

=

∂a

∂b1∂a

∂b2∂a

∂b3

= ∂a∂bi

ei

∂a

∂b=

∂a1

∂b1

∂a1

∂b2

∂a1

∂b3∂a2

∂b1

∂a2

∂b2

∂a2

∂b3∂a3

∂b1

∂a3

∂b2

∂a3

∂b3

= ∂ai∂bj

ei ⊗ ej

∂a

∂B=

∂a

∂B11

∂a

∂B12

∂a

∂B13∂a

∂B21

∂a

∂B22

∂a

∂B23∂a

∂B31

∂a

∂B32

∂a

∂B33

= ∂a∂Bij

ei ⊗ ej

∂A

∂B= =

∂Aij∂Bkl

ei ⊗ ej ⊗ ek ⊗ el

d.kuhl, wes.online, university of kasselÜ Ülinear computational structural mechanics • e1 tensors • e1.9 derivatives

differentiation of tensorsÜ 46

• X

derivatives of tensors with respect to tensor valued variables→ increase order of a tensor by order of tensor valued variable

∂a∂b

=

∂a

∂b1∂a

∂b2∂a

∂b3

= ∂a∂bi

ei

∂a

∂b=

∂a1

∂b1

∂a1

∂b2

∂a1

∂b3∂a2

∂b1

∂a2

∂b2

∂a2

∂b3∂a3

∂b1

∂a3

∂b2

∂a3

∂b3

= ∂ai∂bj

ei ⊗ ej

∂a

∂B=

∂a

∂B11

∂a

∂B12

∂a

∂B13∂a

∂B21

∂a

∂B22

∂a

∂B23∂a

∂B31

∂a

∂B32

∂a

∂B33

= ∂a∂Bij

ei ⊗ ej

∂A

∂B= =

∂Aij∂Bkl

ei ⊗ ej ⊗ ek ⊗ el

d.kuhl, wes.online, university of kasselÜ Ülinear computational structural mechanics • e1 tensors • e1.9 derivatives

differentiation of tensorsÜ 46

• X

derivatives of tensors with respect to tensor valued variables→ increase order of a tensor by order of tensor valued variable

∂a∂b

=

∂a

∂b1∂a

∂b2∂a

∂b3

= ∂a∂bi

ei

∂a

∂b=

∂a1

∂b1

∂a1

∂b2

∂a1

∂b3∂a2

∂b1

∂a2

∂b2

∂a2

∂b3∂a3

∂b1

∂a3

∂b2

∂a3

∂b3

= ∂ai∂bj

ei ⊗ ej

∂a

∂B=

∂a

∂B11

∂a

∂B12

∂a

∂B13∂a

∂B21

∂a

∂B22

∂a

∂B23∂a

∂B31

∂a

∂B32

∂a

∂B33

= ∂a∂Bij

ei ⊗ ej

∂A

∂B= =

∂Aij∂Bkl

ei ⊗ ej ⊗ ek ⊗ el

d.kuhl, wes.online, university of kasselÜ Ülinear computational structural mechanics • e1 tensors • e1.9 derivatives

differentiation of tensorsÜ 46

• X

gradient (∇) & symmetric part of gradient (∇sym)→ derivative of vector a with repect to position vector X

∇a =∂a

∂X=

∂ai

∂Xjei⊗ej = ai,j ei⊗ej ∇syma =

[∂a

∂X

]sym=

1

2[ai,j+aj,i] ei ⊗ ej

transposition of gradient

∇Ta = [∇a]T = aj,i ei⊗ej

divergence (div) of a tensor→ reduction of order of a tensor

diva = tr[∇a] = ai,i =a1,1+a2,2+a3,3 divA =

A11,1+A12,2+A13,3

A21,1+A22,2+A23,3

A31,1+A32,2+A33,3

= Aij,jei

e.g. displacement gradient and stress tensor

∇u =

u1,1 u1,2 u1,3

u2,1 u2,2 u2,3

u3,1 u3,2 u3,3

= ui,j ei ⊗ ej divσ =

σ11,1+σ12,2+σ13,3

σ21,1+σ22,2+σ23,3

σ31,1+σ32,2+σ33,3

= σij,j ei

e.g. strain tensor (geometrically linear theory)

ε = ∇symu =1

2

[∇u+∇Tu

]ε =

1

2[ui,j + uj,i] ei ⊗ ej = εij ei ⊗ ej

d.kuhl, wes.online, university of kasselÜ Ülinear computational structural mechanics • e1 tensors • e1.9 derivatives

gradient and divergenceÜ 47

• X

gradient (∇) & symmetric part of gradient (∇sym)→ derivative of vector a with repect to position vector X

∇a =∂a

∂X=

∂ai

∂Xjei⊗ej = ai,j ei⊗ej ∇syma =

[∂a

∂X

]sym=

1

2[ai,j+aj,i] ei ⊗ ej

transposition of gradient

∇Ta = [∇a]T = aj,i ei⊗ej

divergence (div) of a tensor→ reduction of order of a tensor

diva = tr[∇a] = ai,i =a1,1+a2,2+a3,3 divA =

A11,1+A12,2+A13,3

A21,1+A22,2+A23,3

A31,1+A32,2+A33,3

= Aij,jei

e.g. displacement gradient and stress tensor

∇u =

u1,1 u1,2 u1,3

u2,1 u2,2 u2,3

u3,1 u3,2 u3,3

= ui,j ei ⊗ ej divσ =

σ11,1+σ12,2+σ13,3

σ21,1+σ22,2+σ23,3

σ31,1+σ32,2+σ33,3

= σij,j ei

e.g. strain tensor (geometrically linear theory)

ε = ∇symu =1

2

[∇u+∇Tu

]ε =

1

2[ui,j + uj,i] ei ⊗ ej = εij ei ⊗ ej

d.kuhl, wes.online, university of kasselÜ Ülinear computational structural mechanics • e1 tensors • e1.9 derivatives

gradient and divergenceÜ 47

• X

gradient (∇) & symmetric part of gradient (∇sym)→ derivative of vector a with repect to position vector X

∇a =∂a

∂X=

∂ai

∂Xjei⊗ej = ai,j ei⊗ej ∇syma =

[∂a

∂X

]sym=

1

2[ai,j+aj,i] ei ⊗ ej

transposition of gradient

∇Ta = [∇a]T = aj,i ei⊗ej

divergence (div) of a tensor→ reduction of order of a tensor

diva = tr[∇a] = ai,i =a1,1+a2,2+a3,3 divA =

A11,1+A12,2+A13,3

A21,1+A22,2+A23,3

A31,1+A32,2+A33,3

= Aij,jei

e.g. displacement gradient and stress tensor

∇u =

u1,1 u1,2 u1,3

u2,1 u2,2 u2,3

u3,1 u3,2 u3,3

= ui,j ei ⊗ ej divσ =

σ11,1+σ12,2+σ13,3

σ21,1+σ22,2+σ23,3

σ31,1+σ32,2+σ33,3

= σij,j ei

e.g. strain tensor (geometrically linear theory)

ε = ∇symu =1

2

[∇u+∇Tu

]ε =

1

2[ui,j + uj,i] ei ⊗ ej = εij ei ⊗ ej

d.kuhl, wes.online, university of kasselÜ Ülinear computational structural mechanics • e1 tensors • e1.9 derivatives

gradient and divergenceÜ 47

• X

gradient (∇) & symmetric part of gradient (∇sym)→ derivative of vector a with repect to position vector X

∇a =∂a

∂X=

∂ai

∂Xjei⊗ej = ai,j ei⊗ej ∇syma =

[∂a

∂X

]sym=

1

2[ai,j+aj,i] ei ⊗ ej

transposition of gradient

∇Ta = [∇a]T = aj,i ei⊗ej

divergence (div) of a tensor→ reduction of order of a tensor

diva = tr[∇a] = ai,i =a1,1+a2,2+a3,3 divA =

A11,1+A12,2+A13,3

A21,1+A22,2+A23,3

A31,1+A32,2+A33,3

= Aij,jei

e.g. displacement gradient and stress tensor

∇u =

u1,1 u1,2 u1,3

u2,1 u2,2 u2,3

u3,1 u3,2 u3,3

= ui,j ei ⊗ ej divσ =

σ11,1+σ12,2+σ13,3

σ21,1+σ22,2+σ23,3

σ31,1+σ32,2+σ33,3

= σij,j ei

e.g. strain tensor (geometrically linear theory)

ε = ∇symu =1

2

[∇u+∇Tu

]ε =

1

2[ui,j + uj,i] ei ⊗ ej = εij ei ⊗ ej

d.kuhl, wes.online, university of kasselÜ Ülinear computational structural mechanics • e1 tensors • e1.9 derivatives

gradient and divergenceÜ 47

• X

X

dX

df

f

f + df

∂f∂Xf

(X)

X

X1

X2

f(X

1,X

2)

X1

X2dX1

dX2

f

f + dfrb rb

functions of one variable

functions of two variable

• illustration of total differential df by means of functions of onevariable

df is the change of the function value f for incrementalchange of the variable dX

mathematical formulation using the derivative ∂f/∂X

df =∂f

∂XdX

• total differential df of a function of two variables

df is the change of the function value f for incrementalchanges of variables dX1 and dX2

mathematical formulation using the partial derivatives∂f/∂X1 and ∂f/∂X2

df =∂f

∂X1dX1 +

∂f

∂X2dX2

• total differential of function df of multiple variables

df is the change of the function value f for incrementalchanges of the variables

• total differential, variation & increment are formally identical,just the interpretation and the symbols (d, δ and ∆) are different

d.kuhl, wes.online, university of kasselÜ Ülinear computational structural mechanics • e1 tensors • e1.9 derivatives

total differential, variation & increment of tensorsÜ 48

• X

total differential, variation and increment of a tensor valued function, e.g. A(B, c)

dA(B, c) =∂A(B, c)

∂B: dB +

∂A(B, c)

∂c· dc

δA(B, c) =∂A(B, c)

∂B: δB +

∂A(B, c)

∂c· δc

∆A(B, c) =∂A(B, c)

∂B: ∆B +

∂A(B, c)

∂c·∆c

chain rule of total differential, variation and increment of a tensor valued function, e.g.

δA(B(C(d))) =∂A(B(C(d)))

∂B:∂B(C(d))

∂C:∂C(d)

∂d· δd

=∂A(B(C(d)))

∂B:∂B(C(d))

∂C: δC(d)

=∂A(B(C(d)))

∂B: δB(C(d))

example - increment of second PIOLA-KIRCHHOFF stress tensor (geometrically non-linear)

∆S(E(F (∇u))) =∂S

∂E:∂E

∂F:∂F

∂∇u: ∆∇u =

∂S

∂E:∂E

∂F:∆F =

∂S

∂E:∆E = C :∆E

product rule, example - increment of specific internal virtual work (geometrically non-linear)

δ[A : B] = δA : B +A : δB ∆[δE : S] = ∆δE : S + δE : ∆S

d.kuhl, wes.online, university of kasselÜ Ülinear computational structural mechanics • e1 tensors • e1.9 derivatives

total differential, variation & increment of tensorsÜ 49

• X

GAUSS integral theorem → transformation of volume integral over domain Ω of gradient into anintegral over surface of body Γ∫Ω

∇a dV =

∫Γ

a n dA∫Ω

∇a dV =

∫Γ

a⊗ n dA∫Ω

∇A dV =

∫Γ

A⊗ n dA

∫Ω

a,i dV =

∫Γ

a ni dA∫Ω

ai,j dV =

∫Γ

ai nj dA∫Ω

Aij,k dV =

∫Γ

Aij nk dA

multiplication by KRONECKER symbol δij → form, relevant for course∫Ω

diva dV =

∫Γ

a· n dA∫Ω

divA dV =

∫Γ

A· n dA

∫Ω

ai,i dV =

∫Γ

ai ni dA∫Ω

Aij,j dV =

∫Γ

Aij nj dA

e.g. development of weak form of balance of linear momentum - principle of virtual work∫Ω

div[δu · σ] dV =

∫Γ

δu · σ · n dA =

∫Γσ

δu · σ · n dA =

∫Γσ

δu · t dA

d.kuhl, wes.online, university of kasselÜ Ülinear computational structural mechanics • e1 tensors • e1.10 Gauß integral theorem

tensor analysis - GAUSS integral theorem Ü 50

• X

double contraction of tensor A with a symmetric tensor B = BT

A : B = Asym : B Aij Bij =1

2[Aij +Aji] Bkl

both side double contraction of tensor C with Cijkl = Cjikl = Cjilk = Cijlk

A : C : B = Asym : C : Bsym AijCijklBkl=1

4[Aij+Aji]Cijkl[Bkl+Blk]

gradient and divergence of tensors - formulas

∇[a b] = a ∇b + b⊗∇a∇[a · b] =∇Ta · b +∇Tb · a∇[a B] = a ∇B +B ⊗∇a∇A : 1 = divA

div[a b] = a divb + b · ∇adiv[a⊗ b] = a divb +∇a · bdiv[a ·B] =∇a : B + a · divB

div[a B] = a divB +B · ∇a

chain rule of divergence div[a ·B] = ∇a : B + a · divB and GAUSS integral

theorem consitute divergence theorem∫Ω

a · divB dV =

∫Ω

div[a ·B] dV −∫Ω

∇a : B dV =

∫Γ

a ·B · n dA−∫Ω

∇a : B dV

d.kuhl, wes.online, university of kasselÜ Ülinear computational structural mechanics • e1 tensors • e1.11 tensor reformulations

tensor analysis - more formulas ...Ü 51

top related