what is a group?sh15083/talks/2018.11.02_ps.pdf · permutation group h(1 2 3 4),(1 4)(2...

Post on 15-Jul-2020

3 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

What is a group?

Scott Harper

Postgraduate Seminar

2nd November 2018

What is a group?

It depends who you ask.

Groups are viewed from many different perspectives by a diversity ofpeople with a wide range of differing interests. Sometimes two seeminglyunrelated properties of a group, coming from two radically distinctviewpoints, miraculously happen to be equivalent. I’ll tell you about someof the different perspectives on group theory and then focus on one casewhere a surprising bridge was built, the Muller–Schupp theorem.

I expect the audience to arrive knowing what a group is and leave doubtingthat they ever did.

What is a group?

It depends who you ask.

Groups are viewed from many different perspectives by a diversity ofpeople with a wide range of differing interests. Sometimes two seeminglyunrelated properties of a group, coming from two radically distinctviewpoints, miraculously happen to be equivalent. I’ll tell you about someof the different perspectives on group theory and then focus on one casewhere a surprising bridge was built, the Muller–Schupp theorem.

I expect the audience to arrive knowing what a group is and leave doubtingthat they ever did.

Permutation group

〈(1 2 3 4), (1 4)(2 3)〉

Representation theory⟨(0 −11 0

),(−1 00 1

)⟩

Combinatorialgroup theory

〈a, b | a4 = b2 = 1, ba = a−1b〉

D8

symmetries of a square

ab

Abstract group× 1 a a2 a3 b ab a2b a3b1 1 a a2 a3 b ab a2b a3ba a a2 a3 1 ab a2b a3b ba2 a2 a3 1 a a2b a3b b a2ba3 a3 1 a a2 a3b b ab a2bb b ab3 a2b ab 1 a3 a2 aab ab b a3b a2b a 1 a3 a2

a2b a2b ab b a3b a2 a 1 a3

a3b a3b a2b ab b a3 a2 a 1

Geometricgroup theory

1

aa2

a3

ba3b

a2b ab

Permutation group

〈(1 2 3 4), (1 4)(2 3)〉

Representation theory⟨(0 −11 0

),(−1 00 1

)⟩

Combinatorialgroup theory

〈a, b | a4 = b2 = 1, ba = a−1b〉

D8

symmetries of a square

ab

Abstract group× 1 a a2 a3 b ab a2b a3b1 1 a a2 a3 b ab a2b a3ba a a2 a3 1 ab a2b a3b ba2 a2 a3 1 a a2b a3b b a2ba3 a3 1 a a2 a3b b ab a2bb b ab3 a2b ab 1 a3 a2 aab ab b a3b a2b a 1 a3 a2

a2b a2b ab b a3b a2 a 1 a3

a3b a3b a2b ab b a3 a2 a 1

Geometricgroup theory

1

aa2

a3

ba3b

a2b ab

Permutation group

〈(1 2 3 4), (1 4)(2 3)〉

Representation theory⟨(0 −11 0

),(−1 00 1

)⟩

Combinatorialgroup theory

〈a, b | a4 = b2 = 1, ba = a−1b〉

D8

symmetries of a square

ab

Abstract group× 1 a a2 a3 b ab a2b a3b1 1 a a2 a3 b ab a2b a3ba a a2 a3 1 ab a2b a3b ba2 a2 a3 1 a a2b a3b b a2ba3 a3 1 a a2 a3b b ab a2bb b ab3 a2b ab 1 a3 a2 aab ab b a3b a2b a 1 a3 a2

a2b a2b ab b a3b a2 a 1 a3

a3b a3b a2b ab b a3 a2 a 1

Geometricgroup theory

1

aa2

a3

ba3b

a2b ab

Permutation group

〈(1 2 3 4), (1 4)(2 3)〉

Representation theory⟨(0 −11 0

),(−1 00 1

)⟩

Combinatorialgroup theory

〈a, b | a4 = b2 = 1, ba = a−1b〉

D8

symmetries of a square

ab

Abstract group× 1 a a2 a3 b ab a2b a3b1 1 a a2 a3 b ab a2b a3ba a a2 a3 1 ab a2b a3b ba2 a2 a3 1 a a2b a3b b a2ba3 a3 1 a a2 a3b b ab a2bb b ab3 a2b ab 1 a3 a2 aab ab b a3b a2b a 1 a3 a2

a2b a2b ab b a3b a2 a 1 a3

a3b a3b a2b ab b a3 a2 a 1

Geometricgroup theory

1

aa2

a3

ba3b

a2b ab

Permutation group

〈(1 2 3 4), (1 4)(2 3)〉

Representation theory⟨(0 −11 0

),(−1 00 1

)⟩

Combinatorialgroup theory

〈a, b | a4 = b2 = 1, ba = a−1b〉

D8

symmetries of a square

a

b

Abstract group× 1 a a2 a3 b ab a2b a3b1 1 a a2 a3 b ab a2b a3ba a a2 a3 1 ab a2b a3b ba2 a2 a3 1 a a2b a3b b a2ba3 a3 1 a a2 a3b b ab a2bb b ab3 a2b ab 1 a3 a2 aab ab b a3b a2b a 1 a3 a2

a2b a2b ab b a3b a2 a 1 a3

a3b a3b a2b ab b a3 a2 a 1

Geometricgroup theory

1

aa2

a3

ba3b

a2b ab

Permutation group

〈(1 2 3 4), (1 4)(2 3)〉

Representation theory⟨(0 −11 0

),(−1 00 1

)⟩

Combinatorialgroup theory

〈a, b | a4 = b2 = 1, ba = a−1b〉

D8

symmetries of a square

a

b

Abstract group× 1 a a2 a3 b ab a2b a3b1 1 a a2 a3 b ab a2b a3ba a a2 a3 1 ab a2b a3b ba2 a2 a3 1 a a2b a3b b a2ba3 a3 1 a a2 a3b b ab a2bb b ab3 a2b ab 1 a3 a2 aab ab b a3b a2b a 1 a3 a2

a2b a2b ab b a3b a2 a 1 a3

a3b a3b a2b ab b a3 a2 a 1

Geometricgroup theory

1

aa2

a3

ba3b

a2b ab

Permutation group

〈(1 2 3 4), (1 4)(2 3)〉

Representation theory⟨(0 −11 0

),(−1 00 1

)⟩

Combinatorialgroup theory

〈a, b | a4 = b2 = 1, ba = a−1b〉

D8

symmetries of a square

ab

Abstract group× 1 a a2 a3 b ab a2b a3b1 1 a a2 a3 b ab a2b a3ba a a2 a3 1 ab a2b a3b ba2 a2 a3 1 a a2b a3b b a2ba3 a3 1 a a2 a3b b ab a2bb b ab3 a2b ab 1 a3 a2 aab ab b a3b a2b a 1 a3 a2

a2b a2b ab b a3b a2 a 1 a3

a3b a3b a2b ab b a3 a2 a 1

Geometricgroup theory

1

aa2

a3

ba3b

a2b ab

Abstract groups

A group is a set together with a binary operation satisfying . . .

D8 = 1, a, a2, a3, b, ab, a2b, a3b

× 1 a a2 a3 b ab a2b a3b1 1 a a2 a3 b ab a2b a3ba a a2 a3 1 ab a2b a3b ba2 a2 a3 1 a a2b a3b b a2ba3 a3 1 a a2 a3b b ab a2bb b ab3 a2b ab 1 a3 a2 aab ab b a3b a2b a 1 a3 a2

a2b a2b ab b a3b a2 a 1 a3

a3b a3b a2b ab b a3 a2 a 1

Abstract groups

A group is a set together with a binary operation satisfying . . .

D8 = 1, a, a2, a3, b, ab, a2b, a3b

× 1 a a2 a3 b ab a2b a3b1 1 a a2 a3 b ab a2b a3ba a a2 a3 1 ab a2b a3b ba2 a2 a3 1 a a2b a3b b a2ba3 a3 1 a a2 a3b b ab a2bb b ab3 a2b ab 1 a3 a2 aab ab b a3b a2b a 1 a3 a2

a2b a2b ab b a3b a2 a 1 a3

a3b a3b a2b ab b a3 a2 a 1

Abstract groups

A group is a set together with a binary operation satisfying . . .

D8 = 1, a, a2, a3, b, ab, a2b, a3b

× 1 a a2 a3 b ab a2b a3b1 1 a a2 a3 b ab a2b a3ba a a2 a3 1 ab a2b a3b ba2 a2 a3 1 a a2b a3b b a2ba3 a3 1 a a2 a3b b ab a2bb b ab3 a2b ab 1 a3 a2 aab ab b a3b a2b a 1 a3 a2

a2b a2b ab b a3b a2 a 1 a3

a3b a3b a2b ab b a3 a2 a 1

Permutation group

〈(1 2 3 4), (1 4)(2 3)〉

Representation theory⟨(0 −11 0

),(−1 00 1

)⟩

Combinatorialgroup theory

〈a, b | a4 = b2 = 1, ba = a−1b〉

D8

symmetries of a square

ab

Abstract group× 1 a a2 a3 b ab a2b a3b1 1 a a2 a3 b ab a2b a3ba a a2 a3 1 ab a2b a3b ba2 a2 a3 1 a a2b a3b b a2ba3 a3 1 a a2 a3b b ab a2bb b ab3 a2b ab 1 a3 a2 aab ab b a3b a2b a 1 a3 a2

a2b a2b ab b a3b a2 a 1 a3

a3b a3b a2b ab b a3 a2 a 1

Geometricgroup theory

1

aa2

a3

ba3b

a2b ab

Permutation groups

1

23

4

ab

symmetries of an oblong

1

23

4

1

2

3

4

a = (1 2 3 4) b = (1 4)(2 3)

D8 = 〈(1 2 3 4), (1 4)(2 3)〉 6 Sym(4)

id, (1 2)(3 4), (1 4)(2 3), (1 3)(2 4)

id, (1 3), (2 4), (1 3)(2 4)

A permutation group is a subgroup G 6 Sym(Ω).

Cayley’s Theorem Every group is a permutation group.

Permutation groups

1

23

4

ab

symmetries of an oblong

1

23

4

1

2

3

4

a = (1 2 3 4) b = (1 4)(2 3)

D8 = 〈(1 2 3 4), (1 4)(2 3)〉 6 Sym(4)

id, (1 2)(3 4), (1 4)(2 3), (1 3)(2 4)

id, (1 3), (2 4), (1 3)(2 4)

A permutation group is a subgroup G 6 Sym(Ω).

Cayley’s Theorem Every group is a permutation group.

Permutation groups

1

23

4

ab

symmetries of an oblong

1

23

4

1

2

3

4

a = (1 2 3 4) b = (1 4)(2 3)

D8 = 〈(1 2 3 4), (1 4)(2 3)〉 6 Sym(4)

id, (1 2)(3 4), (1 4)(2 3), (1 3)(2 4)

id, (1 3), (2 4), (1 3)(2 4)

A permutation group is a subgroup G 6 Sym(Ω).

Cayley’s Theorem Every group is a permutation group.

Permutation groups

1

23

4

ab

symmetries of an oblong

1

23

4

1

2

3

4

a = (1 2 3 4) b = (1 4)(2 3)

D8 = 〈(1 2 3 4), (1 4)(2 3)〉 6 Sym(4)

id, (1 2)(3 4), (1 4)(2 3), (1 3)(2 4)

id, (1 3), (2 4), (1 3)(2 4)

A permutation group is a subgroup G 6 Sym(Ω).

Cayley’s Theorem Every group is a permutation group.

Permutation groups

1

23

4

ab

symmetries of an oblong

1

23

4

1

2

3

4

a = (1 2 3 4) b = (1 4)(2 3)

D8 = 〈(1 2 3 4), (1 4)(2 3)〉 6 Sym(4)

id, (1 2)(3 4), (1 4)(2 3), (1 3)(2 4)

id, (1 3), (2 4), (1 3)(2 4)

A permutation group is a subgroup G 6 Sym(Ω).

Cayley’s Theorem Every group is a permutation group.

Permutation groups

1

23

4

absymmetries of an oblong

1

23

4

1

2

3

4

a = (1 2 3 4) b = (1 4)(2 3)

D8 = 〈(1 2 3 4), (1 4)(2 3)〉 6 Sym(4)

id, (1 2)(3 4), (1 4)(2 3), (1 3)(2 4)

id, (1 3), (2 4), (1 3)(2 4)

A permutation group is a subgroup G 6 Sym(Ω).

Cayley’s Theorem Every group is a permutation group.

Permutation groups

1

23

4

absymmetries of an oblong

1

23

4

1

2

3

4

a = (1 2 3 4) b = (1 4)(2 3)

D8 = 〈(1 2 3 4), (1 4)(2 3)〉 6 Sym(4)

id, (1 2)(3 4), (1 4)(2 3), (1 3)(2 4)

id, (1 3), (2 4), (1 3)(2 4)

A permutation group is a subgroup G 6 Sym(Ω).

Cayley’s Theorem Every group is a permutation group.

Permutation groups

1

23

4

absymmetries of an oblong

1

23

4

1

2

3

4

a = (1 2 3 4) b = (1 4)(2 3)

D8 = 〈(1 2 3 4), (1 4)(2 3)〉 6 Sym(4)

id, (1 2)(3 4), (1 4)(2 3), (1 3)(2 4)

id, (1 3), (2 4), (1 3)(2 4)

A permutation group is a subgroup G 6 Sym(Ω).

Cayley’s Theorem Every group is a permutation group.

Permutation groups

1

23

4

absymmetries of an oblong

1

23

41

2

3

4

a = (1 2 3 4) b = (1 4)(2 3)

D8 = 〈(1 2 3 4), (1 4)(2 3)〉 6 Sym(4)

id, (1 2)(3 4), (1 4)(2 3), (1 3)(2 4)

id, (1 3), (2 4), (1 3)(2 4)

A permutation group is a subgroup G 6 Sym(Ω).

Cayley’s Theorem Every group is a permutation group.

Permutation groups

1

23

4

absymmetries of an oblong

1

23

41

2

3

4

a = (1 2 3 4) b = (1 4)(2 3)

D8 = 〈(1 2 3 4), (1 4)(2 3)〉 6 Sym(4)

id, (1 2)(3 4), (1 4)(2 3), (1 3)(2 4)

id, (1 3), (2 4), (1 3)(2 4)

A permutation group is a subgroup G 6 Sym(Ω).

Cayley’s Theorem Every group is a permutation group.

Permutation group

〈(1 2 3 4), (1 4)(2 3)〉

Representation theory⟨(0 −11 0

),(−1 00 1

)⟩

Combinatorialgroup theory

〈a, b | a4 = b2 = 1, ba = a−1b〉

D8

symmetries of a square

ab

Abstract group× 1 a a2 a3 b ab a2b a3b1 1 a a2 a3 b ab a2b a3ba a a2 a3 1 ab a2b a3b ba2 a2 a3 1 a a2b a3b b a2ba3 a3 1 a a2 a3b b ab a2bb b ab3 a2b ab 1 a3 a2 aab ab b a3b a2b a 1 a3 a2

a2b a2b ab b a3b a2 a 1 a3

a3b a3b a2b ab b a3 a2 a 1

Geometricgroup theory

1

aa2

a3

ba3b

a2b ab

Matrix groups

ab

a =

(0 −11 0

)b =

(−1 00 1

)

D8 =

⟨(0 −11 0

),

(−1 00 1

)⟩6 GL2(R)

A representation is a homomorphism ϕ : G→ GLd(F).

Matrix groups

ab

a =

(0 −11 0

)b =

(−1 00 1

)

D8 =

⟨(0 −11 0

),

(−1 00 1

)⟩6 GL2(R)

A representation is a homomorphism ϕ : G→ GLd(F).

Matrix groups

ab

a =

(0 −11 0

)b =

(−1 00 1

)

D8 =

⟨(0 −11 0

),

(−1 00 1

)⟩6 GL2(R)

A representation is a homomorphism ϕ : G→ GLd(F).

Matrix groups

ab

a =

(0 −11 0

)b =

(−1 00 1

)

D8 =

⟨(0 −11 0

),

(−1 00 1

)⟩6 GL2(R)

A representation is a homomorphism ϕ : G→ GLd(F).

Representation theory

ab

a =

(0 −11 0

)b =

(−1 00 1

)

D8 =

⟨(0 −11 0

),

(−1 00 1

)⟩6 GL2(R)

A representation is a homomorphism ϕ : G→ GLd(F).

Theorem (Burnside, 1904)Let p and q be prime. Any group of order paqb is soluble.

William Burnside

Theorem (Burnside, 1904)Let p and q be prime. Any group of order paqb is soluble.

Ambrose Burnside

Permutation group

〈(1 2 3 4), (1 4)(2 3)〉

Representation theory⟨(0 −11 0

),(−1 00 1

)⟩

Combinatorialgroup theory

〈a, b | a4 = b2 = 1, ba = a−1b〉

D8

symmetries of a square

ab

Abstract group× 1 a a2 a3 b ab a2b a3b1 1 a a2 a3 b ab a2b a3ba a a2 a3 1 ab a2b a3b ba2 a2 a3 1 a a2b a3b b a2ba3 a3 1 a a2 a3b b ab a2bb b ab3 a2b ab 1 a3 a2 aab ab b a3b a2b a 1 a3 a2

a2b a2b ab b a3b a2 a 1 a3

a3b a3b a2b ab b a3 a2 a 1

Geometricgroup theory

1

aa2

a3

ba3b

a2b ab

Geometric group theory

1

aa2

a3

ba3b

a2b ab

Cayley graph of D8 with respect to a, b

Γ(D8, a, b)

a-2

a-1

1

a

a2a-2b

a-1bb

ab

a2b

Γ(D∞, a, b)

1

aa2

a3

ba3b

a2b ab

Γ(D8, a, b)

bxb bx b 1 x xb xbx

Γ(D∞, x, b)

−3 −2 −1 0 1 2 3

Γ(Z, 1, −1)

a-2

a-1

1

a

a2a-2b

a-1bb

ab

a2b

Γ(D∞, a, b)

1

aa2

a3

ba3b

a2b ab

Γ(D8, a, b)

bxb bx b 1 x xb xbx

Γ(D∞, x, b)

−3 −2 −1 0 1 2 3

Γ(Z, 1, −1)

a-2

a-1

1

a

a2a-2b

a-1bb

ab

a2b

Γ(D∞, a, b)

bxb bx b 1 x xb xbx

Γ(D∞, x, b)

−3 −2 −1 0 1 2 3

Γ(Z, 1, −1)

a-2

a-1

1

a

a2a-2b

a-1bb

ab

a2b

Γ(D∞, a, b)

bxbx

bx

1

xb

xbxbbxbxb

bxbb

x

xbx

Γ(D∞, a, b)

bxb bx b 1 x xb xbx

Γ(D∞, x, b)

−3 −2 −1 0 1 2 3

Γ(Z, 1, −1)

a-2

a-1

1

a

a2a-2b

a-1bb

ab

a2b

Γ(D∞, a, b)

bxbx

bx

1

xb

xbxbbxbxb

bxbb

x

xbx

Γ(D∞, , b)

bxb bx b 1 x xb xbx

Γ(D∞, x, b)

−3 −2 −1 0 1 2 3

Γ(Z, 1, −1)

a-2

a-1

1

a

a2a-2b

a-1bb

ab

a2b

Γ(D∞, a, b)

bxbx

bx

1

xb

xbxbbxbxb

bxbb

x

xbx

Γ(D∞, , b)

bxb bx b 1 x xb xbx

Γ(D∞, x, b)

−3 −2 −1 0 1 2 3

Γ(Z, 1, −1)

a-2

a-1

1

a

a2a-2b

a-1bb

ab

a2b

Γ(D∞, a, b)

bxb bx b 1 x xb xbx

Γ(D∞, x, b)

−3 −2 −1 0 1 2 3

Γ(Z, 1, −1)

a-2

a-1

1

a

a2a-2b

a-1bb

ab

a2b

Γ(D∞, a, b)

Different generating sets givedifferent Cayley graphs

– Think up to quasiisometry

Different groups have the sameCayley graph

– Get used to it

bxb bx b 1 x xb xbx

Γ(D∞, x, b)

−3 −2 −1 0 1 2 3

Γ(Z, 1, −1)

a-2

a-1

1

a

a2a-2b

a-1bb

ab

a2b

Γ(D∞, a, b)

Different generating sets givedifferent Cayley graphs

– Think up to quasiisometry

Different groups have the sameCayley graph

– Get used to it

bxb bx b 1 x xb xbx

Γ(D∞, x, b)

−3 −2 −1 0 1 2 3

Γ(Z, 1, −1)

a-2

a-1

1

a

a2a-2b

a-1bb

ab

a2b

Γ(D∞, a, b)

Different generating sets givedifferent Cayley graphs

– Think up to quasiisometry

Different groups have the sameCayley graph

– Get used to it

bxb bx b 1 x xb xbx

Γ(D∞, x, b)

−3 −2 −1 0 1 2 3

Γ(Z, 1, −1)

a-2

a-1

1

a

a2a-2b

a-1bb

ab

a2b

Γ(D∞, a, b)

Different generating sets givedifferent Cayley graphs

– Think up to quasiisometry

Different groups have the sameCayley graph

– Get used to it

bxb bx b 1 x xb xbx

Γ(D∞, x, b)

−3 −2 −1 0 1 2 3

Γ(Z, 1, −1)

a-2

a-1

1

a

a2a-2b

a-1bb

ab

a2b

Γ(D∞, a, b)

Different generating sets givedifferent Cayley graphs

– Think up to quasiisometry

Different groups have the sameCayley graph

– Get used to it

bxb bx b 1 x xb xbx

Γ(D∞, x, b)

−3 −2 −1 0 1 2 3

Γ(Z, 1, −1)

“If H is a finite index subgroup of G, then H looks the same as G.”– a geometric group theorist

The index of a subgroup H 6 G is the cardinality of the set Hg | g ∈ G.

〈a〉 is a finite index subgroup of D∞ = 〈a, b〉

If H is a finite index subgroup of G, then Γ(H) is quasiisometric to Γ(G).

a-2

a-1

1

a

a2a-2b

a-1bb

ab

a2b

is quasiisometric to −3 −2 −1 0 1 2 3

A group is virtually purple if it has finite index subgroup that is purple.

〈a〉 is cyclic so D∞ is virtually cyclic

“If H is a finite index subgroup of G, then H looks the same as G.”– a geometric group theorist

The index of a subgroup H 6 G is the cardinality of the set Hg | g ∈ G.

〈a〉 is a finite index subgroup of D∞ = 〈a, b〉

If H is a finite index subgroup of G, then Γ(H) is quasiisometric to Γ(G).

a-2

a-1

1

a

a2a-2b

a-1bb

ab

a2b

is quasiisometric to −3 −2 −1 0 1 2 3

A group is virtually purple if it has finite index subgroup that is purple.

〈a〉 is cyclic so D∞ is virtually cyclic

“If H is a finite index subgroup of G, then H looks the same as G.”– a geometric group theorist

The index of a subgroup H 6 G is the cardinality of the set Hg | g ∈ G.

〈a〉 is a finite index subgroup of D∞ = 〈a, b〉

If H is a finite index subgroup of G, then Γ(H) is quasiisometric to Γ(G).

a-2

a-1

1

a

a2a-2b

a-1bb

ab

a2b

is quasiisometric to −3 −2 −1 0 1 2 3

A group is virtually purple if it has finite index subgroup that is purple.

〈a〉 is cyclic so D∞ is virtually cyclic

“If H is a finite index subgroup of G, then H looks the same as G.”– a geometric group theorist

The index of a subgroup H 6 G is the cardinality of the set Hg | g ∈ G.

〈a〉 is a finite index subgroup of D∞ = 〈a, b〉

If H is a finite index subgroup of G, then Γ(H) is quasiisometric to Γ(G).

a-2

a-1

1

a

a2a-2b

a-1bb

ab

a2b

is quasiisometric to −3 −2 −1 0 1 2 3

A group is virtually purple if it has finite index subgroup that is purple.

〈a〉 is cyclic so D∞ is virtually cyclic

“If H is a finite index subgroup of G, then H looks the same as G.”– a geometric group theorist

The index of a subgroup H 6 G is the cardinality of the set Hg | g ∈ G.

〈a〉 is a finite index subgroup of D∞ = 〈a, b〉

If H is a finite index subgroup of G, then Γ(H) is quasiisometric to Γ(G).

a-2

a-1

1

a

a2a-2b

a-1bb

ab

a2b

is quasiisometric to −3 −2 −1 0 1 2 3

A group is virtually purple if it has finite index subgroup that is purple.

〈a〉 is cyclic so D∞ is virtually cyclic

“If H is a finite index subgroup of G, then H looks the same as G.”– a geometric group theorist

The index of a subgroup H 6 G is the cardinality of the set Hg | g ∈ G.

〈a〉 is a finite index subgroup of D∞ = 〈a, b〉

If H is a finite index subgroup of G, then Γ(H) is quasiisometric to Γ(G).

a-2

a-1

1

a

a2a-2b

a-1bb

ab

a2b

is quasiisometric to −3 −2 −1 0 1 2 3

A group is virtually purple if it has finite index subgroup that is purple.

〈a〉 is cyclic so D∞ is virtually cyclic

“If H is a finite index subgroup of G, then H looks the same as G.”– a geometric group theorist

The index of a subgroup H 6 G is the cardinality of the set Hg | g ∈ G.

〈a〉 is a finite index subgroup of D∞ = 〈a, b〉

If H is a finite index subgroup of G, then Γ(H) is quasiisometric to Γ(G).

a-2

a-1

1

a

a2a-2b

a-1bb

ab

a2b

is quasiisometric to −3 −2 −1 0 1 2 3

A group is virtually purple if it has finite index subgroup that is purple.

〈a〉 is cyclic so D∞ is virtually cyclic

Permutation group

〈(1 2 3 4), (1 4)(2 3)〉

Representation theory⟨(0 −11 0

),(−1 00 1

)⟩

Combinatorialgroup theory

〈a, b | a4 = b2 = 1, ba = a−1b〉

D8

symmetries of a square

ab

Abstract group× 1 a a2 a3 b ab a2b a3b1 1 a a2 a3 b ab a2b a3ba a a2 a3 1 ab a2b a3b ba2 a2 a3 1 a a2b a3b b a2ba3 a3 1 a a2 a3b b ab a2bb b ab3 a2b ab 1 a3 a2 aab ab b a3b a2b a 1 a3 a2

a2b a2b ab b a3b a2 a 1 a3

a3b a3b a2b ab b a3 a2 a 1

Geometricgroup theory

1

aa2

a3

ba3b

a2b ab

Combinatorial group theory

D8 = 〈a, b | a4 = 1, b2 = 1, ba = a−1b〉

a presentation for D8

Examples

〈a | a4 = 1〉

= C4 ∼= Z/4Z

〈a | 〉

∼= Z ∼= F1

〈a, b | b2 = 1, ba = a−1b〉

= D∞

〈a, b | 〉

= F2

A group is free if it admits a presentation of the form 〈A | 〉.

Combinatorial group theory

D8 = 〈a, b | a4 = 1, b2 = 1, ba = a−1b〉

a presentation for D8

Examples

〈a | a4 = 1〉

= C4 ∼= Z/4Z

〈a | 〉

∼= Z ∼= F1

〈a, b | b2 = 1, ba = a−1b〉

= D∞

〈a, b | 〉

= F2

A group is free if it admits a presentation of the form 〈A | 〉.

Combinatorial group theory

D8 = 〈a, b | a4 = 1, b2 = 1, ba = a−1b〉

a presentation for D8

Examples

〈a | a4 = 1〉

= C4 ∼= Z/4Z

〈a | 〉

∼= Z ∼= F1

〈a, b | b2 = 1, ba = a−1b〉

= D∞

〈a, b | 〉

= F2

A group is free if it admits a presentation of the form 〈A | 〉.

Combinatorial group theory

D8 = 〈a, b | a4 = 1, b2 = 1, ba = a−1b〉

a presentation for D8

Examples

〈a | a4 = 1〉

= C4 ∼= Z/4Z

〈a | 〉

∼= Z ∼= F1

〈a, b | b2 = 1, ba = a−1b〉

= D∞

〈a, b | 〉

= F2

A group is free if it admits a presentation of the form 〈A | 〉.

Combinatorial group theory

D8 = 〈a, b | a4 = 1, b2 = 1, ba = a−1b〉

a presentation for D8

Examples

〈a | a4 = 1〉 = C4 ∼= Z/4Z

〈a | 〉

∼= Z ∼= F1

〈a, b | b2 = 1, ba = a−1b〉

= D∞

〈a, b | 〉

= F2

A group is free if it admits a presentation of the form 〈A | 〉.

Combinatorial group theory

D8 = 〈a, b | a4 = 1, b2 = 1, ba = a−1b〉

a presentation for D8

Examples

〈a | a4 = 1〉 = C4 ∼= Z/4Z

〈a | 〉

∼= Z ∼= F1

〈a, b | b2 = 1, ba = a−1b〉

= D∞

〈a, b | 〉

= F2

A group is free if it admits a presentation of the form 〈A | 〉.

Combinatorial group theory

D8 = 〈a, b | a4 = 1, b2 = 1, ba = a−1b〉

a presentation for D8

Examples

〈a | a4 = 1〉 = C4 ∼= Z/4Z

〈a | 〉 ∼= Z

∼= F1

〈a, b | b2 = 1, ba = a−1b〉

= D∞

〈a, b | 〉

= F2

A group is free if it admits a presentation of the form 〈A | 〉.

Combinatorial group theory

D8 = 〈a, b | a4 = 1, b2 = 1, ba = a−1b〉

a presentation for D8

Examples

〈a | a4 = 1〉 = C4 ∼= Z/4Z

〈a | 〉 ∼= Z

∼= F1

〈a, b | b2 = 1, ba = a−1b〉

= D∞

〈a, b | 〉

= F2

A group is free if it admits a presentation of the form 〈A | 〉.

Combinatorial group theory

D8 = 〈a, b | a4 = 1, b2 = 1, ba = a−1b〉

a presentation for D8

Examples

〈a | a4 = 1〉 = C4 ∼= Z/4Z

〈a | 〉 ∼= Z

∼= F1

〈a, b | b2 = 1, ba = a−1b〉 = D∞

〈a, b | 〉

= F2

A group is free if it admits a presentation of the form 〈A | 〉.

Combinatorial group theory

D8 = 〈a, b | a4 = 1, b2 = 1, ba = a−1b〉

a presentation for D8

Examples

〈a | a4 = 1〉 = C4 ∼= Z/4Z

〈a | 〉 ∼= Z

∼= F1

〈a, b | b2 = 1, ba = a−1b〉 = D∞

〈a, b | 〉

= F2

A group is free if it admits a presentation of the form 〈A | 〉.

Combinatorial group theory

D8 = 〈a, b | a4 = 1, b2 = 1, ba = a−1b〉

a presentation for D8

Examples

〈a | a4 = 1〉 = C4 ∼= Z/4Z

〈a | 〉 ∼= Z

∼= F1

〈a, b | b2 = 1, ba = a−1b〉 = D∞

〈a, b | 〉

= F2

A group is free if it admits a presentation of the form 〈A | 〉.

Combinatorial group theory

D8 = 〈a, b | a4 = 1, b2 = 1, ba = a−1b〉

a presentation for D8

Examples

〈a | a4 = 1〉 = C4 ∼= Z/4Z

〈a | 〉 ∼= Z

∼= F1

〈a, b | b2 = 1, ba = a−1b〉 = D∞

〈a, b | 〉 = F2

A group is free if it admits a presentation of the form 〈A | 〉.

Combinatorial group theory

D8 = 〈a, b | a4 = 1, b2 = 1, ba = a−1b〉

a presentation for D8

Examples

〈a | a4 = 1〉 = C4 ∼= Z/4Z

〈a | 〉 ∼= Z ∼= F1

〈a, b | b2 = 1, ba = a−1b〉 = D∞

〈a, b | 〉 = F2

A group is free if it admits a presentation of the form 〈A | 〉.

Permutation group

〈(1 2 3 4), (1 4)(2 3)〉

Representation theory⟨(0 −11 0

),(−1 00 1

)⟩

Combinatorialgroup theory

〈a, b | a4 = b2 = 1, ba = a−1b〉

D8

symmetries of a square

ab

Abstract group× 1 a a2 a3 b ab a2b a3b1 1 a a2 a3 b ab a2b a3ba a a2 a3 1 ab a2b a3b ba2 a2 a3 1 a a2b a3b b a2ba3 a3 1 a a2 a3b b ab a2bb b ab3 a2b ab 1 a3 a2 aab ab b a3b a2b a 1 a3 a2

a2b a2b ab b a3b a2 a 1 a3

a3b a3b a2b ab b a3 a2 a 1

Geometricgroup theory

1

aa2

a3

ba3b

a2b ab

The problem with presentations

Tell me something about this group

〈a, b, c | ab = b2a, bc = c2b, ca = a2c〉

It’s trivial.

The sad realityDetermining whether a presentation gives the trivial group is undecidable.

The Word Problem (Dehn, 1911)Fix a finitely generated group G = 〈A〉. Determine whether a word in A istrivial in G.

Theorem (Novikov, 1954)There are groups for which the Word Problem is undecidable.

The problem with presentations

Tell me something about this group

〈a, b, c | ab = b2a, bc = c2b, ca = a2c〉

It’s trivial.

The sad realityDetermining whether a presentation gives the trivial group is undecidable.

The Word Problem (Dehn, 1911)Fix a finitely generated group G = 〈A〉. Determine whether a word in A istrivial in G.

Theorem (Novikov, 1954)There are groups for which the Word Problem is undecidable.

The problem with presentations

Tell me something about this group

〈a, b, c | ab = b2a, bc = c2b, ca = a2c〉

It’s trivial.

The sad realityDetermining whether a presentation gives the trivial group is undecidable.

The Word Problem (Dehn, 1911)Fix a finitely generated group G = 〈A〉. Determine whether a word in A istrivial in G.

Theorem (Novikov, 1954)There are groups for which the Word Problem is undecidable.

The problem with presentations

Tell me something about this group

〈a, b, c | ab = b2a, bc = c2b, ca = a2c〉

It’s trivial.

The sad realityDetermining whether a presentation gives the trivial group is undecidable.

The Word Problem (Dehn, 1911)Fix a finitely generated group G = 〈A〉. Determine whether a word in A istrivial in G.

Theorem (Novikov, 1954)There are groups for which the Word Problem is undecidable.

The problem with presentations

Tell me something about this group

〈a, b, c | ab = b2a, bc = c2b, ca = a2c〉

It’s trivial.

The sad realityDetermining whether a presentation gives the trivial group is undecidable.

The Word Problem (Dehn, 1911)Fix a finitely generated group G = 〈A〉. Determine whether a word in A istrivial in G.

Theorem (Novikov, 1954)There are groups for which the Word Problem is undecidable.

Theorem

(Anisimov, 1971)

A group G is finite =⇒ word problem for G is solvable

by an automaton

1

aa2

a3

ba3b

a2b ab

1

D8 = 〈a, b | a4 = b2 = 1, ba = ab3〉

abaaabbaab

Theorem

(Anisimov, 1971)

A group G is finite =⇒ word problem for G is solvable

by an automaton

1

aa2

a3

ba3b

a2b ab

1

D8 = 〈a, b | a4 = b2 = 1, ba = ab3〉

abaaabbaab

Theorem

(Anisimov, 1971)

A group G is finite =⇒ word problem for G is solvable

by an automaton

1

aa2

a3

ba3b

a2b ab

1

D8 = 〈a, b | a4 = b2 = 1, ba = ab3〉

abaaabbaab

Theorem

(Anisimov, 1971)

A group G is finite =⇒ word problem for G is solvable

by an automaton

1

aa2

a3

ba3b

a2b ab

1

D8 = 〈a, b | a4 = b2 = 1, ba = ab3〉

abaaabbaab

Theorem

(Anisimov, 1971)

A group G is finite =⇒ word problem for G is solvable

by an automaton

1

aa2

a3

ba3b

a2b ab

1

D8 = 〈a, b | a4 = b2 = 1, ba = ab3〉 abaaabbaab

Theorem

(Anisimov, 1971)

A group G is finite =⇒ word problem for G is solvable

by an automaton

1

aa2

a3

ba3b

a2b ab

11

D8 = 〈a, b | a4 = b2 = 1, ba = ab3〉 abaaabbaab

Theorem

(Anisimov, 1971)

A group G is finite =⇒ word problem for G is solvable

by an automaton

1

aa2

a3

ba3b

a2b ab

1

a

D8 = 〈a, b | a4 = b2 = 1, ba = ab3〉 abaaabbaab

Theorem

(Anisimov, 1971)

A group G is finite =⇒ word problem for G is solvable

by an automaton

1

aa2

a3

ba3b

a2b ab

1

ab

D8 = 〈a, b | a4 = b2 = 1, ba = ab3〉 abaaabbaab

Theorem

(Anisimov, 1971)

A group G is finite =⇒ word problem for G is solvable

by an automaton

1

aa2

a3

ba3b

a2b ab

1

b

D8 = 〈a, b | a4 = b2 = 1, ba = ab3〉 abaaabbaab

Theorem

(Anisimov, 1971)

A group G is finite =⇒ word problem for G is solvable

by an automaton

1

aa2

a3

ba3b

a2b ab

1

a3b

D8 = 〈a, b | a4 = b2 = 1, ba = ab3〉 abaaabbaab

Theorem

(Anisimov, 1971)

A group G is finite =⇒ word problem for G is solvable

by an automaton

1

aa2

a3

ba3b

a2b ab

1

a2b

D8 = 〈a, b | a4 = b2 = 1, ba = ab3〉 abaaabbaab

Theorem

(Anisimov, 1971)

A group G is finite =⇒ word problem for G is solvable

by an automaton

1

aa2

a3

ba3b

a2b ab

1

a2

D8 = 〈a, b | a4 = b2 = 1, ba = ab3〉 abaaabbaab

Theorem

(Anisimov, 1971)

A group G is finite =⇒ word problem for G is solvable

by an automaton

1

aa2

a3

ba3b

a2b ab

1

a2b

D8 = 〈a, b | a4 = b2 = 1, ba = ab3〉 abaaabbaab

Theorem

(Anisimov, 1971)

A group G is finite =⇒ word problem for G is solvable

by an automaton

1

aa2

a3

ba3b

a2b ab

1

ab

D8 = 〈a, b | a4 = b2 = 1, ba = ab3〉 abaaabbaab

Theorem

(Anisimov, 1971)

A group G is finite =⇒ word problem for G is solvable

by an automaton

1

aa2

a3

ba3b

a2b ab

1

b

D8 = 〈a, b | a4 = b2 = 1, ba = ab3〉 abaaabbaab

Theorem

(Anisimov, 1971)

A group G is finite =⇒ word problem for G is solvable

by an automaton

1

aa2

a3

ba3b

a2b ab

11

D8 = 〈a, b | a4 = b2 = 1, ba = ab3〉 abaaabbaab

Theorem

(Anisimov, 1971)

A group G is finite =⇒ word problem for G is solvable

by an automaton

1

aa2

a3

ba3b

a2b ab

11

D8 = 〈a, b | a4 = b2 = 1, ba = ab3〉 abaaabbaab

Theorem

(Anisimov, 1971)

A group G is finite =⇒ word problem for G is solvable by an automaton

1

aa2

a3

ba3b

a2b ab

1

D8 = 〈a, b | a4 = b2 = 1, ba = ab3〉 abaaabbaab

Theorem

(Anisimov, 1971)

A group G is finite ⇐⇒ word problem for G is solvable by an automaton

1

aa2

a3

ba3b

a2b ab

1

D8 = 〈a, b | a4 = b2 = 1, ba = ab3〉 abaaabbaab

Theorem (Anisimov, 1971)A group G is finite ⇐⇒ word problem for G is solvable by an automaton

1

aa2

a3

ba3b

a2b ab

1

D8 = 〈a, b | a4 = b2 = 1, ba = ab3〉 abaaabbaab

TheoremA group G is free =⇒ word problem for G is solvable

by a stack

F2 = 〈a, b | 〉 ab-1a-1abaa-1a-1

a

b-1

a-1

a

Theorem

(Muller–Schupp, 1983)

A group G is virtually free word problem for G is solvableby a push down automaton

TheoremA group G is free =⇒ word problem for G is solvable by a stack

F2 = 〈a, b | 〉 ab-1a-1abaa-1a-1

a

b-1

a-1

a

Theorem

(Muller–Schupp, 1983)

A group G is virtually free word problem for G is solvableby a push down automaton

TheoremA group G is free =⇒ word problem for G is solvable by a stack

F2 = 〈a, b | 〉 ab-1a-1abaa-1a-1

a

b-1

a-1

a

Theorem

(Muller–Schupp, 1983)

A group G is virtually free word problem for G is solvableby a push down automaton

TheoremA group G is free =⇒ word problem for G is solvable by a stack

F2 = 〈a, b | 〉 ab-1a-1abaa-1a-1

a

b-1

a-1

a

Theorem

(Muller–Schupp, 1983)

A group G is virtually free word problem for G is solvableby a push down automaton

TheoremA group G is free =⇒ word problem for G is solvable by a stack

F2 = 〈a, b | 〉

ab-1a-1abaa-1a-1

a

b-1

a-1

a

Theorem

(Muller–Schupp, 1983)

A group G is virtually free word problem for G is solvableby a push down automaton

TheoremA group G is free =⇒ word problem for G is solvable by a stack

F2 = 〈a, b | 〉 ab-1a-1abaa-1a-1

a

b-1

a-1

a

Theorem

(Muller–Schupp, 1983)

A group G is virtually free word problem for G is solvableby a push down automaton

TheoremA group G is free =⇒ word problem for G is solvable by a stack

F2 = 〈a, b | 〉 ab-1a-1abaa-1a-1

a

b-1

a-1

a

Theorem

(Muller–Schupp, 1983)

A group G is virtually free word problem for G is solvableby a push down automaton

TheoremA group G is free =⇒ word problem for G is solvable by a stack

F2 = 〈a, b | 〉 ab-1a-1abaa-1a-1

a

b-1

a-1

a

Theorem

(Muller–Schupp, 1983)

A group G is virtually free word problem for G is solvableby a push down automaton

TheoremA group G is free =⇒ word problem for G is solvable by a stack

F2 = 〈a, b | 〉 ab-1a-1abaa-1a-1

a

b-1

a-1

a

Theorem

(Muller–Schupp, 1983)

A group G is virtually free word problem for G is solvableby a push down automaton

TheoremA group G is free =⇒ word problem for G is solvable by a stack

F2 = 〈a, b | 〉 ab-1a-1abaa-1a-1

a

b-1

a-1

a

Theorem

(Muller–Schupp, 1983)

A group G is virtually free word problem for G is solvableby a push down automaton

TheoremA group G is free =⇒ word problem for G is solvable by a stack

F2 = 〈a, b | 〉 ab-1a-1abaa-1a-1

a

b-1

a-1

a

Theorem

(Muller–Schupp, 1983)

A group G is virtually free word problem for G is solvableby a push down automaton

TheoremA group G is free =⇒ word problem for G is solvable by a stack

F2 = 〈a, b | 〉 ab-1a-1abaa-1a-1

a

b-1

a-1

a

Theorem

(Muller–Schupp, 1983)

A group G is virtually free word problem for G is solvableby a push down automaton

TheoremA group G is free =⇒ word problem for G is solvable by a stack

F2 = 〈a, b | 〉 ab-1a-1abaa-1a-1

a

b-1

a-1

a

Theorem

(Muller–Schupp, 1983)

A group G is virtually free word problem for G is solvableby a push down automaton

TheoremA group G is free =⇒ word problem for G is solvable by a stack

F2 = 〈a, b | 〉 ab-1a-1abaa-1a-1

a

b-1

a-1

a

Theorem

(Muller–Schupp, 1983)

A group G is virtually free word problem for G is solvableby a push down automaton

TheoremA group G is free =⇒ word problem for G is solvable by a stack

F2 = 〈a, b | 〉 ab-1a-1abaa-1a-1

a

b-1

a-1

a

Theorem

(Muller–Schupp, 1983)

A group G is virtually free word problem for G is solvableby a push down automaton

TheoremA group G is free =⇒ word problem for G is solvable by a stack

F2 = 〈a, b | 〉 ab-1a-1abaa-1a-1

a

b-1

a-1

a

Theorem

(Muller–Schupp, 1983)

A group G is virtually free word problem for G is solvableby a push down automaton

TheoremA group G is free =⇒ word problem for G is solvable by a stack

F2 = 〈a, b | 〉 ab-1a-1abaa-1a-1

a

b-1

a-1

a

Theorem

(Muller–Schupp, 1983)

A group G is virtually free word problem for G is solvableby a push down automaton

TheoremA group G is free =⇒ word problem for G is solvable by a stack

F2 = 〈a, b | 〉 ab-1a-1abaa-1a-1

a

b-1

a-1

a

Theorem

(Muller–Schupp, 1983)

A group G is virtually free word problem for G is solvableby a push down automaton

TheoremA group G is free =⇒ word problem for G is solvable by a stack

F2 = 〈a, b | 〉 ab-1a-1abaa-1a-1

a

b-1

a-1

a

Theorem

(Muller–Schupp, 1983)

A group G is virtually free word problem for G is solvableby a push down automaton

TheoremA group G is free =⇒ word problem for G is solvable by a stack

F2 = 〈a, b | 〉 ab-1a-1abaa-1a-1

a

b-1

a-1

a

Theorem

(Muller–Schupp, 1983)

A group G is virtually free word problem for G is solvableby a push down automaton

TheoremA group G is free =⇒ word problem for G is solvable by a stack

F2 = 〈a, b | 〉 ab-1a-1abaa-1a-1

a

b-1

a-1

a

Theorem

(Muller–Schupp, 1983)

A group G is virtually free =⇒ word problem for G is solvableby a push down automaton

And so our scene must to the battle fly,

Where – O for pity! – we shall much disgrace

With four or five most vile and ragged foils,

Right ill-disposed in brawl ridiculous,

The name of Agincourt. Yet sit and see,

Minding true things by what their mockeries be.

– Henry V (Act IV, prologue)

TheoremA group G is free =⇒ word problem for G is solvable by a stack

F2 = 〈a, b | 〉 ab-1a-1abaa-1a-1

a

b-1

a-1

a

Theorem

(Muller–Schupp, 1983)

A group G is virtually free =⇒ word problem for G is solvableby a push down automaton

TheoremA group G is free =⇒ word problem for G is solvable by a stack

F2 = 〈a, b | 〉 ab-1a-1abaa-1a-1

a

b-1

a-1

a

Theorem

(Muller–Schupp, 1983)

A group G is virtually free ⇐⇒ word problem for G is solvableby a push down automaton

TheoremA group G is free =⇒ word problem for G is solvable by a stack

F2 = 〈a, b | 〉 ab-1a-1abaa-1a-1

a

b-1

a-1

a

Theorem (Muller–Schupp, 1983)A group G is virtually free ⇐⇒ word problem for G is solvable

by a push down automaton

Permutation group

〈(1 2 3 4), (1 4)(2 3)〉

Representation theory⟨(0 −11 0

),(−1 00 1

)⟩

Combinatorialgroup theory

〈a, b | a4 = b2 = 1, ba = a−1b〉

D8

symmetries of a square

ab

Abstract group× 1 a a2 a3 b ab a2b a3b1 1 a a2 a3 b ab a2b a3ba a a2 a3 1 ab a2b a3b ba2 a2 a3 1 a a2b a3b b a2ba3 a3 1 a a2 a3b b ab a2bb b ab3 a2b ab 1 a3 a2 aab ab b a3b a2b a 1 a3 a2

a2b a2b ab b a3b a2 a 1 a3

a3b a3b a2b ab b a3 a2 a 1

Geometricgroup theory

1

aa2

a3

ba3b

a2b ab

top related