using hybrid hydroxydimethylsilane derivatives selective … · 2016-03-24 · supporting...

Post on 11-Jul-2020

0 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Supporting information

S1

Selective Homodimerization of Unprotected Peptides Using Hybrid Hydroxydimethylsilane DerivativesCécile Echalier, Aleksandra Kalistratova, Jérémie Ciccione, Aurélien Lebrun, Baptiste Legrand, Emilia Naydenova, Didier Gagne, Jean-Alain Fehrentz, Jacky Marie, Muriel Amblard, Ahmad Mehdi, Jean Martinez, Gilles Subra

Abbreviations ............................................................................................................................4

Material and Method .................................................................................................................4

1,3-bis(3-aminopropyl)tetramethyl disiloxane hydrochloride 1a ...............................................5

1,3-bis(3-aminopropyl)tetramethyl disiloxane trifluoroacetate 1b .............................................8

(3-aminopropyl)dimethylsilanol hydrochloride 2a ...................................................................10

(3-aminopropyl)dimethylsilanol trifluoroacetate 2b .................................................................14

Counter-ion effect on NMR signals.........................................................................................17

DEPT 29Si sequence optimization...........................................................................................18

Stability studies of the siloxane bond in different solutions by 1H-NMR .................................19

Silanol condensation upon lyophilization ................................................................................25

N-ter hybrid monomer 4..........................................................................................................26

N-ter hybrid dimer 5 (JMV 6187) ............................................................................................27

C-ter hybrid monomer 6..........................................................................................................29

C-ter hybrid dimer 7 (JMV 6186) ............................................................................................31

Lys3 hybrid monomer 8 ...........................................................................................................33

Lys3 hybrid dimer 9 (JMV 6185) .............................................................................................35

Lys3(NH(CH2)3Si(CH3)3) monomer 10 (JMV 6246) .................................................................37

Lys3 monomer 11 (JMV 6244) ................................................................................................40

Lys3(Ac) monomer 12 (JMV 6245) .........................................................................................43

Monomeric ligand binding assay ............................................................................................46

Bioactivity of monomeric ligands ............................................................................................47

Electronic Supplementary Material (ESI) for RSC Advances.This journal is © The Royal Society of Chemistry 2016

Supporting information

S2

Figure S1. 1H NMR spectrum of 1a in DMSO-d6 (600 MHz) ....................................................5Figure S2. 13C NMR spectrum of 1a in DMSO-d6 (151 MHz) ..................................................6Figure S3. 29Si NMR spectrum of 1a in DMSO-d6 (119 MHz) ..................................................6Figure S4. 1H NMR spectrum of 1a in D2O (600 MHz).............................................................7Figure S5. 13C NMR spectrum of 1a in D2O (151 MHz) ...........................................................7Figure S6. 29Si NMR spectrum of 1a in D2O (119 MHz)...........................................................8Figure S7. 1H NMR spectrum of 1b in DMSO-d6 (600 MHz)....................................................9Figure S8. 13C NMR spectrum of 1b in DMSO-d6 (151 MHz)...................................................9Figure S9. 29Si NMR spectrum of 1b in DMSO-d6 (119 MHz) ................................................10Figure S10. 1H NMR spectrum of 1a/2a in DMSO-d6 (600 MHz) ...........................................11Figure S11. 13C NMR spectrum of 1a/2a in DMSO-d6 (151 MHz)..........................................11Figure S12. 29Si NMR spectrum of 1a/2a in DMSO-d6 (119 MHz) .........................................12Figure S13. 1H NMR spectrum of 2a in D2O (600 MHz).........................................................13Figure S14. 13C NMR spectrum of 2a in D2O (151 MHz) .......................................................13Figure S15. 29Si NMR spectrum of 2a in D2O (119 MHz).......................................................14Figure S16. 1H NMR spectrum of 1b/2b in DMSO-d6 (600 MHz)...........................................14Figure S17. 13C NMR spectrum of 1b/2b in DMSO-d6 (151 MHz) .........................................15Figure S18.29Si NMR spectrum of 1b/2b in DMSO-d6 (119 MHz) .........................................15Figure S19. 1H NMR spectrum of 1b/2b in D2O (600 MHz)...................................................16Figure S20. 13C NMR spectrum of 1b/2b in D2O (151 MHz) ..................................................16Figure S21. 29Si NMR spectrum of 1b/2b in D2O (119 MHz) .................................................16Figure S22. From hydrochloride to trifluoroacetate salts. Top: 1H NMR spectrum of 1a/2a mixture in D2O. Bottom: 1H NMR spectrum of 1b/2b mixture in D2O......................................17Figure S23. 1H flip angle optimization. ...................................................................................18Figure S24. 1H NMR spectra of 1a in DMSO-d6 ....................................................................19Figure S25.1H NMR spectra of 1a at pH 4.............................................................................20Figure S26. 1a hydrolysis at pH 4 based on 1H NMR kinetic studies ....................................20Figure S27.1H NMR spectra of 1a at pH 7.............................................................................21Figure S28. 1a hydrolysis at pH 7 based on 1H NMR kinetic studies ....................................21Figure S29.1H NMR spectra of 1a at pH 7.4..........................................................................22Figure S30. 1a hydrolysis at pH 7.4 based on 1H NMR kinetic studies .................................22Figure S31. 1H NMR spectra of 1a at pH 10. Signals from the CH2 group in gamma position to silicon..................................................................................................................................23Figure S32. 1a hydrolysis at pH 10 based on 1H NMR kinetic studies ..................................24Figure S33. 1H NMR spectrum of 1a in D2O 0.1% TFA at t = 0.. ...........................................24Figure S34. From monomer to dimer upon lyophilization. .....................................................25Figure S35. LC/MS spectrum of 4..........................................................................................26Figure S36. 1H NMR spectrum of 5 in DMSO-d6 (400 MHz)..................................................27Figure S37. 13C NMR spectrum of 5 in DMSO-d6 (101 MHz).................................................28Figure S38. HR-MS analysis of 5...........................................................................................29Figure S39. LC/MS spectrum of 6..........................................................................................30Figure S40. 1H NMR spectrum of 7 in DMSO-d6 (400 MHz) ..................................................31Figure S41. 13C NMR spectrum of 7 in DMSO-d6 (101 MHz) .................................................32Figure S42. HR-MS analysis of 7...........................................................................................33Figure S43. LC/MS spectrum of 8..........................................................................................34Figure S44. 1H NMR spectrum of 9 in DMSO-d6 (400 MHz)..................................................35Figure S45. 13C NMR spectrum of 9 in DMSO-d6 (101 MHz).................................................36Figure S46. HR-MS analysis of 9...........................................................................................37

Supporting information

S3

Figure S47. LC/MS spectrum of 10........................................................................................38Figure S48. HR-MS analysis of 10.........................................................................................39Figure S49. LC-MS spectrum of 11 .......................................................................................41Figure S50. HR-MS analysis of 11.........................................................................................42Figure S51. LC-MS spectrum of 12 .......................................................................................44Figure S52. HR-MS spectrum of 12.......................................................................................45Figure S53. Binding of compounds 10, 11 and 12.................................................................46Figure S54. Signaling property of compounds 10, 11 and 12................................................47

Supporting information

S4

Abbreviations

ACN, acetonitrile; Alloc, allyloxycarbonyl; Boc, t-butyloxycarbonyl; CM, ChemMatrix; DCM, dichloromethane; DEPT, distortionless enhancement by polarization transfer; DIEA, diisopropylethylamine; DMF, N-N’-dimethylformamide; DMSO, dimethylsylfoxide; DPBS, Dulbelcco’s phosphate buffered saline; ESI-MS, electrospray ionization mass spectrometry; Fmoc, fluorenylmethoxycarbonyl; GHRP-6, growth hormone releasing hexapeptide; HBTU, N,N,N′,N′-tetramethyl-O-(1H-benzotriazol-1-yl)uronium hexafluorophosphate; HFIP, hexafluoroisopropanol; HTRF, homogenous time resolved fluorescence; ICPDMCS, 3-isocyanatopropyldimethylchlorosilane; IP1, inositol monophosphate; LC/MS, tandem liquid chromatography/ mass spectrometry; MW, micro-wave; NMP, N-methyl-2-pyrrolidone; NMR, nuclear magnetic resonance; pip, piperidine; PS, polystyrene; RP-HPLC, reversed phase high performance liquid chromatography; RT, room temperature; SPPS, solid phase peptide synthesis; TFA, trifluoroacetic acid; THF, tetrahydrofurane; TIS, triisopropylsilane; Trt, trityl; UV, ultra-violet. Other abbreviations used were those recommended by the IUPAC-IUB Commission (Eur. J. Biochem. 1984, 138, 9-37).

Material and Method

All solvents and reagents were used as supplied. Solvents used for LC/MS were of HPLC grade. Dichloromethane (DCM); N,N-dimethylformamide (DMF) were obtained from Carlo Erba. Fmoc amino acid derivatives, [benzotriazol-1-yloxy(dimethylamino)methylidene]- dimethylazanium hexafluorophosphate (HBTU), Fmoc-Rink amide CM resin, 2-chloro chlorotrityl PS resin, were purchased from Iris Biotech (Marktredwitz, Germany). Diisopropylcarbodiimide (DIC), diisopropylethylamine (DIEA), trifluoroacetic acid (TFA) were obtained from Sigma-Aldrich (St. Louis, MO, USA). Hexafluoroisopropanol (HFIP) and triisopropylsilane (TIS) were obtained from Alfa Aeser and Acros respectively. NMR solvents were obtained from Euriso-top.

Samples for LC/MS analyses were prepared in acetonitrile/water (50:50, v/v) mixture, containing 0.1% TFA. The LC/MS system consisted of a Waters Alliance 2695 HPLC, coupled to a Water Micromass ZQ spectrometer (electrospray ionization mode, ESI+). All the analyses were carried out using a Phenomenex Onyx, 25 x 4.6 mm reversed-phase column. A flow rate of 3 mL/min and a gradient of (0-100)% B over 2.5 min were used. Eluent A: water/0.1% HCO2H; eluent B: acetonitrile/0.1% HCO2H. UV detection was performed at 214 nm. Electrospray mass spectra were acquired at a solvent flow rate of 200 µL/min. Nitrogen was used for both the nebulizing and drying gas. The data were obtained in a scan mode ranging from 100 to 1000 m/z or 250 to 1500 m/z to in 0.7 sec intervals.

High Resolution Mass Spectrometric analyses were performed with a Synapt G2-S (Waters) mass spectrometer fitted with an Electrospray Ionisation source. All measurements were performed in the positive ion mode. Capillary voltage: 1000 V; cone voltage: 30 V; source temperature: 120°C; desolvation temperature: 250°C. The data were obtained in a scan mode ranging from 100 to 1500 m/z.

Supporting information

S5

1,3-bis(3-aminopropyl)tetramethyl disiloxane hydrochloride 1a

SiO

NH3

Si

NH3Cl Cl

Commercially available 1,3-bis(3-aminopropyl)tetramethyl disiloxane (500 µL, 1.8 mmol) was poured into 1 M hydrogen chloride ether solution (7.2 mL, 7.2 mmol, 4 eq) cooled in an ice bath. 1,3-bis(3-aminopropyl)tetramethyl disiloxane hydrochloride precipitated immediately. Diethyl ether was removed under reduced pressure to yield compound 1a as a white powder (100%).

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.5f1 (ppm)

-1000

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

13000CE-DMSOCE-DMSO (1)t=0

6.00

2.00

2.00

1.98

3.01

Figure S1. 1H NMR spectrum of 1a in DMSO-d6 (600 MHz)

-0.050.000.050.100.150.200.250.300.350.400.450.500.550.600.65f1 (ppm)

-2000-1000010002000300040005000600070008000900010000110001200013000140001500016000170001800019000200002100022000

CE-DMSOCE-DMSO (1)t=0

6.00

2.00

Supporting information

S6

024681216202428323640444852f1 (ppm)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

7000

7500

8000

8500

9000CE-DMSOCE-DMSO (1)t=0

Figure S2. 13C NMR spectrum of 1a in DMSO-d6 (151 MHz)

-1012345678910111213141516171819202122f1 (ppm)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000CE-DMSOCE-DMSO (1)t=0

Figure S3. 29Si NMR spectrum of 1a in DMSO-d6 (119 MHz)

Supporting information

S7

0.00.40.81.21.62.02.42.83.23.64.0f1 (ppm)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000CE-H2OCE-H2O (2)t=0

6.00

2.01

2.00

1.99

Figure S4. 1H NMR spectrum of 1a in D2O (600 MHz)

-20-15-10-5051015202530354045505560657075f1 (ppm)

0

100

200

300

400

500

600

700

800

900

1000

1100CE-H2OCE-H2O (2)t=0

Figure S5. 13C NMR spectrum of 1a in D2O (151 MHz)

0.100.200.300.400.500.600.700.800.90f1 (ppm)

-1000

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

14000

15000

16000

17000

18000

19000CE-H2OCE-H2O (2)t=0

6.00

2.01

Supporting information

S8

-2012345678911131517192123f1 (ppm)

0

50

100

150

200

250

300

350

400

450

500

550

600

650CE-H2OCE-H2O (2)t=0

Figure S6. 29Si NMR spectrum of 1a in D2O (119 MHz)

1,3-bis(3-aminopropyl)tetramethyl disiloxane trifluoroacetate 1b

SiO

NH3

Si

NH3

CF3COOCF3COO

Trifluoroacetic acid (220 µL, 2.89 mmol, 4 eq) was added on 1,3-bis(3-aminopropyl)tetramethyl disiloxane (200 µL, 0.722 mmol) in diethyl ether (2 mL) on an ice bath. Diethyl ether and TFA excess were removed under reduced pressure to yield compound 1b as a colorless oil (100%).

Supporting information

S9

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.0f1 (ppm)

-1000

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

14000

15000

16000

17000

18000CE-285-DMSOCE-285-DMSO

6.00

2.00

2.04

2.03

3.06

Figure S7. 1H NMR spectrum of 1b in DMSO-d6 (600 MHz)

-5051015202530354045f1 (ppm)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

7000

7500

8000

8500CE-285-DMSOCE-285-DMSO

Figure S8. 13C NMR spectrum of 1b in DMSO-d6 (151 MHz)

-0.20-0.050.100.250.400.550.700.85f1 (ppm)

-1000

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

14000

15000

16000

17000

18000CE-285-DMSOCE-285-DMSO

6.00

2.00

Supporting information

S10

-201234567891113151719212325f1 (ppm)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

7000

7500

8000

8500CE-285-DMSOCE-285-DMSO

Figure S9. 29Si NMR spectrum of 1b in DMSO-d6 (119 MHz)

(3-aminopropyl)dimethylsilanol hydrochloride 2a

OHSi

NH3Cl

On the one hand, DCl 35% in D2O (6.00 µL) were added to 1a (20 mg) in DMSO-d6 (600 µL) to trigger 1a hydrolysis into 2a. The 1a/2a mixture in DMSO-d6 was analyzed by NMR.

Supporting information

S11

0.00.30.60.91.21.51.82.12.42.7f1 (ppm)

-2000

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

22000

24000

26000CE-18CE-18

1.10

4.89

0.39

1.62

2.00

1.98

Figure S10. 1H NMR spectrum of 1a/2a in DMSO-d6 (600 MHz)

-2024681012141618202224262830323436384042f1 (ppm)

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

22000

24000

26000

28000CE-18CE-18

Figure S11. 13C NMR spectrum of 1a/2a in DMSO-d6 (151 MHz)

0.280.320.360.400.440.480.520.560.600.640.680.72f1 (ppm)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000CE-18CE-18

0.39

1.62

-0.45-0.35-0.25-0.15-0.050.000.050.100.150.200.250.30f1 (ppm)

-5000

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

55000CE-18CE-18

1.10

4.89

Supporting information

S12

-10123456789111315171921f1 (ppm)

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800CE-18CE-18

Figure S12. 29Si NMR spectrum of 1a/2a in DMSO-d6 (119 MHz)

On the other hand, 1,3-bis(3-aminopropyl)tetramethyl disiloxane hydrochloride 1a (20 mg) was solubilized in D2O (600 µL) and the solution was left aside for 8 weeks to allow 1a hydrolysis into 2a. 2a solution in D2O was analyzed by NMR. Traces of 1a are still visible on NMR spectra.

Supporting information

S13

0.30.71.11.51.92.32.73.1f1 (ppm)

-500

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

700014CE-H2O (14)janvier 2016

6.00

2.01

2.02

1.97

Figure S13. 1H NMR spectrum of 2a in D2O (600 MHz)

-40246812162024283236404448f1 (ppm)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1000014CE-H2O (14)janvier 2016

Figure S14. 13C NMR spectrum of 2a in D2O (151 MHz)

0.520.600.680.760.840.921.001.08f1 (ppm)

-500

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

600014CE-H2O (14)janvier 2016

2.01

Supporting information

S14

-11357912151821242730f1 (ppm)

0

100

200

300

400

500

600

700

800

900

14CE-H2O (14)janvier 2016

Figure S15. 29Si NMR spectrum of 2a in D2O (119 MHz)

(3-aminopropyl)dimethylsilanol trifluoroacetate 2b

OHSi

NH3CF3COO

On the one hand, 3-bis(3-aminopropyl)tetramethyl disiloxane trifluoroacetate 1b (20 mg) was dissolved in DMSO-d6 (600 µL) and the solution was left aside for 5 weeks to allow 1b hydrolysis into 2b. Then the mixture 1b/2b in DMSO-d6 was analyzed by NMR.

0.00.30.60.91.21.51.82.12.42.73.0f1 (ppm)

-2000

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

22000

24000

26000

28000

30000CE-285-DMSO-DEPTCE-285-DMSO

0.94

5.05

0.36

1.66

2.03

2.00

Figure S16. 1H NMR spectrum of 1b/2b in DMSO-d6 (600 MHz)

0.340.380.420.460.500.540.580.620.660.700.74f1 (ppm)

-1000

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

14000CE-285-DMSO-DEPTCE-285-DMSO

0.36

1.66

-0.25-0.20-0.15-0.10-0.050.000.050.100.150.200.250.300.350.400.45f1 (ppm)

0

10000

20000

30000

40000

50000

60000

70000

80000

90000CE-285-DMSO-DEPTCE-285-DMSO

0.94

5.05

Supporting information

S15

-20246812162024283236404448f1 (ppm)

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800CE-285-DMSO-DEPT13C quanti

Figure S17. 13C NMR spectrum of 1b/2b in DMSO-d6 (151 MHz)

4.55.05.56.06.57.07.58.08.59.09.510.511.512.513.514.5f1 (ppm)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

14000

15000

16000

17000CE-285-DMSO-DEPTCE-285-DMSOSi quantitatif

Figure S18.29Si NMR spectrum of 1b/2b in DMSO-d6 (119 MHz)

On the other hand, 3-bis(3-aminopropyl)tetramethyl disiloxane trifluoroacetate 1b (20 mg) was dissolved in D2O (600 µL). 1b hydrolysis into 2b occurred. The mixture 1b/2b in D2O was analyzed by NMR.

Supporting information

S16

0.30.71.11.51.92.32.73.1f1 (ppm)

-100

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800CE-19CE-19

2.81

3.10

0.97

1.04

2.03

2.00

Figure S19. 1H NMR spectrum of 1b/2b in D2O (600 MHz)

-2024681012141618202224262830323436384042f1 (ppm)

0

50

100

150

200

250

300

350

400

450

500

550

600

650

700

750CE-19CE-19

Figure S20. 13C NMR spectrum of 1b/2b in D2O (151 MHz)

8910111213141516171819202122f1 (ppm)

-50

0

50

100

150

200

250

300

350

400

450

500

550

600

650

700

750CE-19CE-19

Figure S21. 29Si NMR spectrum of 1b/2b in D2O (119 MHz)

0.630.640.650.660.670.680.690.700.710.720.730.740.750.760.770.780.79f1 (ppm)

-20

0

20

40

60

80

100

120

140

160

180

200

220

240

260

280

300CE-19CE-19

0.97

1.04

0.100.130.160.190.220.250.280.31f1 (ppm)

0

500

1000

1500

2000

2500

3000

CE-19CE-19

2.81

3.10

Supporting information

S17

Counter-ion effect on NMR signals

0.100.150.200.250.300.350.400.450.500.550.600.650.700.750.80f1 (ppm)

-100

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900CE-pH4CE-pH4 (9)t +220 min

0.100.150.200.250.300.350.400.450.500.550.600.650.700.750.80f1 (ppm)

-100

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800CE-19CE-19

Figure S22. From hydrochloride to trifluoroacetate salts. Top: 1H NMR spectrum of 1a/2a mixture in D2O. Bottom: 1H NMR spectrum of 1b/2b mixture in D2O.

Supporting information

S18

DEPT 29Si sequence optimization

In order to decrease the experiment time, we used a DEPT 29Si sequence, with a relaxation delay of 2 seconds, to take advantage of the polarization transfer from hydrogens of methylene in the alpha position to the silicon atom. An optimization was made on this sequence, where the last 1H flip angle was moved from 17° to 45° (Figure S23). The results showed a factor of 2 gain in favor of the angle of 24° compared to the standard DEPT of 45°.

[ppm]

Figure S23. 1H flip angle optimization. 1H flip angle was moved from 17° to 45°: blue 45°, green 35°, purple 24°, red 21°, orange 19.5°, black 17°

Supporting information

S19

Stability studies of the siloxane bond in different solutions by 1H-NMR

t = 0 min corresponds to the dissolution of 1,3-bis(3-aminopropyl)tetramethyl disiloxane hydrochloride 1a (20 mg) in DMSO-d6 or in D2O-containing buffer that yields a solution at the desired pH. pH were adjusted in advance with Dulbecco’s phosphate buffered saline, HCl or NaOH aqueous solutions on blank samples. Dimer percent was reported as a function of time based on the integration of 1H signals from the -CH2Si group of monomer and dimer.

[ppm]

0 days

4 days

2 days

7 days

Figure S24. 1H NMR spectra of 1a in DMSO-d6

Supporting information

S20

[ppm]

5 min

30 min

220 min

400 min

24 h

48 h

78 h

150 h

Figure S25.1H NMR spectra of 1a at pH 4

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100 120 140 160

dim

er (%

)

time (h)

Figure S26. 1a hydrolysis at pH 4 based on 1H NMR kinetic studies

Supporting information

S21

69 h

7 days

21 days

4 days

29 days

45 h

21 h

0 h

Figure S27.1H NMR spectra of 1a at pH 7

0

20

40

60

80

100

120

0 100 200 300 400 500 600 700 800

dim

er (%

)

time (h)

Figure S28. 1a hydrolysis at pH 7 based on 1H NMR kinetic studies

Supporting information

S22

[ppm]

11 days

7 days

21 days

4 days

45 h

21 h

0 h

29 days

Figure S29.1H NMR spectra of 1a at pH 7.4

20

30

40

50

60

70

80

90

100

0 200 400 600 800

dim

er (%

)

times (h)

Figure S30. 1a hydrolysis at pH 7.4 based on 1H NMR kinetic studies

Supporting information

S23

We focused our attention on 1H signals from -CH2Si and CH3Si because they are the farthest signals from the peptide sequence in hybrid peptide displaying the dimethylpropylsiloxane dimerization arm. As a consequence, very few differences in chemical shifts and signal shapes are expected when changing the peptide sequence. Thus, NMR studies on the 1,3-bis(3-aminopropyl)tetramethyl disiloxane model can be generalized to hybrid peptides. In addition, these signals appear in a chemical shift area completely different from peptide signals which makes them easily identifiable and integrable. However, the methylene group in gamma position to the silicon is also a proble for the determination of monomer/dimer ratio (figure S31)

0 min

10 min

20 min

30 min

40 min

60 min

80 min

100 min

190 min

420 min

[ppm]

Figure S31. 1H NMR spectra of 1a at pH 10. Signals from the CH2 group in gamma position to silicon

Supporting information

S24

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8

dim

er (%

)

time (h)

Figure S32. 1a hydrolysis at pH 10 based on 1H NMR kinetic studies

0.10.50.91.31.72.12.52.93.3f1 (ppm)

-500

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

7000

7500

8000CE-H2O+TFACE-H2O+TFA (7)t 0

6.00

2.03

2.03

1.99

Figure S33. 1H NMR spectrum of 1a in D2O 0.1% TFA at t = 0. Hydrolysis occurred immediately. Signals correspond to monomer 2a.

Supporting information

S25

Silanol condensation upon lyophilization

0.000.100.200.300.400.500.600.700.800.901.001.10f1 (ppm)

1

2

CE-H2O+TFACE-H2O+TFA (7)

CE-15CE-15

-CH2Si dimer

-CH2Si monomer CH3Si

traces of dimer

Figure S34. From monomer to dimer upon lyophilization. Top : 1H NMR spectrum of 2a in D2O/0.1% TFA before lyophilization; bottom : 1H NMR spectrum of the same sample after freeze-drying

Supporting information

S26

N-ter hybrid monomer 4

HN

O

HNN

NH O

NH

HN

O

NH O

NH

HN

O

NH O

NH2

NH2SiHO H

NCO

HN

O

Figure S35. LC/MS spectrum of 4

Supporting information

S27

N-ter hybrid dimer 5 (JMV 6187)

HN

O

HNN

NH O

NH

HN

O

NH O

NH

HN

O

NH O

NH2

NH2

HN

O

HNN

NH O

NH

HN

O

NH O

NH

HN

O

NH O

NH2

NH2

Si

O

HN

Si

HN

OHN

O

O

HN

O

0.01.02.03.04.05.06.07.08.09.010.011.0f1 (ppm)

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

3200

3400

3600

3800

4000

4200KAT2-121KAT2-121 / dmso

Figure S36. 1H NMR spectrum of 5 in DMSO-d6 (400 MHz)

-0.4-0.3-0.2-0.10.00.10.20.30.40.50.60.70.80.9f1 (ppm)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500KAT2-121KAT2-121 / dmso

0.19

5.82

2.00

Supporting information

S28

0102030405060708090100110120130140150160170180f1 (ppm)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

14000

15000

16000

17000

18000

19000KAT2-121KAT2-121 / dmso

Figure S37. 13C NMR spectrum of 5 in DMSO-d6 (101 MHz)

Supporting information

S29

Figure S38. HR-MS analysis of 5

C-ter hybrid monomer 6

H2NO

HNN

NH O

NH

HN

O

NH O

NH

HN

O

NH O

NH2

HN NH Si

OHHN

CO

Supporting information

S30

Figure S39. LC/MS spectrum of 6

Supporting information

S31

C-ter hybrid dimer 7 (JMV 6186)

H2NO

HNN

NH O

NH

HN

O

NH O

NH

HN

O

NH O

NH2

HN

NH

SiO

HNC

O

H2NO

HNN

NH O

NH

HN

O

NH O

NH

HN

O

NH O

NH2

HN

NH

Si

HN

O

0.51.52.53.54.55.56.57.58.59.510.5f1 (ppm)

01002003004005006007008009001000110012001300140015001600170018001900200021002200CE259

CE259 / dmso

Figure S40. 1H NMR spectrum of 7 in DMSO-d6 (400 MHz)

-0.15-0.10-0.050.000.050.100.150.200.250.300.350.400.450.500.550.60f1 (ppm)

-200

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400CE259CE259 / dmso

0.64

5.36

2.00

Supporting information

S32

0102030405060708090100110120130140150160170f1 (ppm)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

14000

15000CE259CE259 / dmso

Figure S41. 13C NMR spectrum of 7 in DMSO-d6 (101 MHz)

Supporting information

S33

Figure S42. HR-MS analysis of 7

Lys3 hybrid monomer 8

H2NO

HNN

NH O

NH

HN

O

NH O

NH

HN

O

NH O

NH2

NH2

HN

Si

OH

HNC

O

Supporting information

S34

Figure S43. LC/MS spectrum of 8

Supporting information

S35

Lys3 hybrid dimer 9 (JMV 6185)

H2NO

HNN

NH O

NH

HN

O

NH O

NH

HN

O

NH O

NH2

NH2

HNHN

CO

H2NO

HNN

HN

O

NH

NH O

HN

O

NH

NH O

HN

O

NH2

NH2

HN NH

CO Si

SiO

0.01.02.03.04.05.06.07.08.09.010.011.0f1 (ppm)

0

500

1000

1500

2000

2500

3000

3500

4000

4500CE263CE263 /dmso

Figure S44. 1H NMR spectrum of 9 in DMSO-d6 (400 MHz)

-0.30-0.20-0.100.000.100.200.300.400.500.600.70f1 (ppm)

-200

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

3200

3400CE263CE263 /dmso

0.63

5.35

2.00

Supporting information

S36

0102030405060708090100110120130140150160170180f1 (ppm)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000CE263CE263 /dmso

Figure S45. 13C NMR spectrum of 9 in DMSO-d6 (101 MHz)

Supporting information

S37

Figure S46. HR-MS analysis of 9

Lys3(NH(CH2)3Si(CH3)3) monomer 10 (JMV 6246)

H2NO

HNN

NH O

NH

HN

O

NH O

NH

HN

O

NH O

NH2

NH2

HN

Si

HNC

O

Supporting information

S38

Figure S47. LC/MS spectrum of 10

Supporting information

S39

Figure S48. HR-MS analysis of 10

Supporting information

S40

Lys3 monomer 11 (JMV 6244)

H2NO

HNN

NH O

NH

HN

O

NH O

NH

HN

O

NH O

NH2

NH2

NH2

Supporting information

S41

Figure S49. LC-MS spectrum of 11

Supporting information

S42

Figure S50. HR-MS analysis of 11

Supporting information

S43

Lys3(Ac) monomer 12 (JMV 6245)

H2NO

HNN

NH O

NH

HN

O

NH O

NH

HN

O

NH O

NH2

NH2

HNC

O

Supporting information

S44

Figure S51. LC-MS spectrum of 12

Supporting information

S45

Figure S52. HR-MS spectrum of 12

Supporting information

S46

Monomeric ligand binding assay

Figure S53. Binding of compounds 10, 11 and 12, monomeric analogues of dimer 9, to GHS-R1a. Ligands affinities were determined by HTRF-based competition binding assay performed on intact HEK293T cells as described in Materials and Methods. Results are from one representative experiment of two, each performed in triplicate.

Supporting information

S47

Bioactivity of monomeric ligands

Figure S54. Signaling property of compounds 10, 11 and 12. Efficacy of ligands to stimulate IP1 production was measured on HEK293T cells expressing the GHS-R1a as described in Materials and Methods. Results are one representative experiment of two, each performed in triplicate.

top related