university of waterloo | university of waterloo - jamie yip, jean … · 2013. 11. 7. · [py] loc...

Post on 19-Sep-2020

2 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Jamie Yip, Jean Duhamel in cooperation with Alex Adronov, Greg Bahun

Chemistry Department Chemistry DepartmentUniversity of Waterloo McMaster University

IPR SymposiumMay 1, 2009

1

IPR 20

09

IntroductionBackgroundExperimental ResultsConclusionsAcknowledgements

2

IPR 20

09

What are dendrimers?◦ Dendron – tree◦ Meros – part◦ Molecules with a

tree-like structure!

3

Sheiko, S. S.; Gauthier, M.; Moller, M. Macromolecules. 1997, 30, 2343-2349.

IPR 20

09

Why study dendrimers?◦ Molecular storehouse

Within internal cavitiesAt end-groups

4

Tekade, R. K.; Kumar, V. P.; Jain, N. K. Chem. Rev. 2009, 109, 49-87.

IPR 20

09

How are we going to study dendrimers?◦ Fluorescence Dynamic Quenching (FDQ)

experimentsProvides information concerning the flexibility of our molecules

5

IPR 20

09

Fluorescence Dynamic Quenching (FDQ)◦ Involves monitoring quenching of a chromophore

(M) by its quencher (Q)

6

k1[Q]loc = kqM* + Q

1/τM

M Qhν + M + Q

IPR 20

09

Pyrene◦ High molar extinction coefficient

ε = 43,000 M-1cm-1 for 1-pyrenebutanol in ethanol

◦ High fluorescence quantum yieldΦ = 0.32 in cyclohexane

◦ Long natural lifetimeτM = 210 ns for 1-pyrenebutyric acid in THF

◦ Collisional quenchingSelf-quenches upon encounter of an excited pyrene with a ground-state pyrene, forming excimer

7

IPR 20

09

k1[Py]loc= kq

Pyrene◦ The Birks’ Scheme

8

hν + Py + Py (PyPy)*Py*+ Py

1/τM 1/τE

k-1

Py PyPyPyPyPy

Py PyPyPyPyPy

Py PyPyPyPyPy

Birks, J. B. Photophysics of Aromatic Molecules; Wiley: New York, 1970; p 301-307.

IPR 20

09

OHO

O

O

O

O

O

O

O

O

OO

OO

OO

O

O

O

O

O

O

O

O

OO

OO

OO

OHO

O OOO

OHO

OO

OO

OO

OO

OO

OO

OHO

O

O

O

OO

O

O

O

O

O

O

OO

O

O

O

O

O

OO

OO

OO

O

O

O

O

O

O

O

O

O

OO

O

O

O

O

O

O

OO

O

O

O

O

O

OO

OO

OO

O

O

O

O

O

O O N

n

Dendrimer Structure◦ Four generations studied (G1-G4) as well as four

linear polystyrene/dendron hybrids (G1PS-G4PS)

9G1G2G3

G4G*GPS

IPR 20

09

Experimental Techniques◦ UV-Visible Spectroscopy◦ Steady-State Fluorometry (SSF)◦ Time-Correlated Single Photon Counting (TC-SPC)◦ Gel Permeation Chromatography (GPC) with

fluorescence detector

10

IPR 20

09

UV-Visible Spectroscopy◦ Absorbance measurements◦ Beer-Lambert Law:

= absorbance= molar extinction coefficient of pyrene (M-1cm-1)= concentration of absorbing species (M)= path length between incident and transmitted light (cm)

◦ Maintain a low pyrene concentration to ensure no intermolecular quenching is observed

11

clA ε=Aεcl IP

R 2009

Steady-State Fluorometry◦ Provides steady-state emission spectra

Maintain constant excitation wavelength, monitor emission intensity over a range of wavelengths

◦ Can determine the IE/IM ratio

12

G1 in THF[Py] = 2.5 μMλex = 344 nm

IPR 20

09

Steady-State Fluorometry

= fluorometer instrument constant, = fluorescence quantum yield of excimer and

monomer, respectively= monomer fluorescence lifetime

0Eφ

κ

k1[Py]loc= kq

13

IM

IE

G1 in THF[Py] = 2.5 μMλex = 344 nm

hν + Py + Py (PyPy)*Py*+ Pyk-1

[ ]locMM

E

M

E PykII

10

0

τφφκ=

Cuniberti, C.; Perico, A. Eur. Polym. J. 1980, 16, 887-893.

0Mφ IP

R 2009

Time-Correlated Single Photon Counting◦ Allows acquisition of fluorescence decays at given

excitation and emission wavelengths◦ Since pyrene monomer and excimer fluoresce at

distinct wavelengths, monomer and excimer decays can be acquired separately◦ Can determine kq, the quenching rate constant

14

IPR 20

09

Time-Correlated Single Photon Counting

15

G4 in THF[Py] = 2.5 μMλex = 344 nm

Monomer, λem = 375 nm Excimer, λem = 510 nm

IPR 20

09

16

Time-Correlated Single Photon Counting

16

G4 in THF[Py] = 2.5 μMλex = 344 nm

Monomer, λem = 375 nm Excimer, λem = 510 nm

321321)( τττ

ttteAeAeAtI−−−

++=

IPR 20

09

Time-Correlated Single Photon Counting◦ From global analysis:

17

τ1 (ns) A1 τ2 (ns) A2 τ3 (ns) A3 χ2 <τ> (ns) <k> (107 s-1)1.19 0.83 2.46 0.13 25.1 0.014 1.11 1.70 58.2

=

==>< n

ii

n

iii

A

A

1

τ

locqM

Pykkk ][111==−

><=><

ττ

nsM 210=τ

Winnik, M. A.; Egan, L. S.; Tencer, M. Polymer. 1987, 28, 1553-1560.

IPR 20

09

0

200

400

600

800

1000

1200

350 400 450 500 550 600

Inte

nsity

(A.U

.)

Wavelength (nm)

0

400

800

1200

1600

2000

350 400 450 500 550 600In

tens

ity (A

.U.)

Wavelength (nm)

0

200

400

600

800

1000

1200

350 400 450 500 550 600

Inte

nsity

(A.U

.)

Wavelength (nm)

Steady-State Fluorometry

◦ Is the decrease due to increased dendritic arm stiffness?

18

Solvent = THF[Py] = 2.5 μMλex = 344 nm

G Series GPS Series

G1

G3G2G4

G1PS

G3PSG2PS

G4PS

IPR 20

09

Time-Resolved Fluorescence Decays

◦ Recall: IE/IM should be proportional to <k>!

19

0

10

20

30

40

50

60

70

0 1 2 3 4 5

<k>

(107

s-1)

Generation Number

0

10

20

30

40

50

60

70

0 1 2 3 4 5<k

> (1

07s-1

)Generation Number

G Series GPS Series

><= kII

MM

E

M

E τφφκ 0

0

Cuniberti, C.; Perico, A. Eur. Polym. J. 1980, 16, 887-893.

IPR 20

09

IE/IM and <k>

◦ Why the decrease in IE/IM ratio for G4?

20

0

2

4

6

8

10

0

10

20

30

40

50

60

70

0 1 2 3 4 5IE /IM

<k>

(107

s-1)

Generation Number

0

4

8

12

16

20

0

10

20

30

40

50

60

70

0 1 2 3 4 5

IE /IM

<k>

(107

s-1)

Generation Number

G Series GPS Series□ - <k>◊ - IE/IM

□ - <k>◊ - IE/IM

IPR 20

09

Contributions from τM from monomer decays

21

Sample fMfree (% of total contribution)

G1 3.3G2 0.62G3 0.29G4 3.1

G1PS 1.5G2PS 0.61G3PS 0.08G4PS 0.23

OHO

O

O

O

OO

O

O

O

O

O

O

OO

O

O

O

O

O

OO

OO

OO

O

O

O

O

O

O

O

O

O

OO

O

O

O

O

O

O

OO

O

O

O

O

O

OO

O OO

O

O

O

O

O

O

O

OHO

IPR 20

09

The new IE/IM equation◦ <k> ignores contributions from free monomers in

solution.◦ The new IE/IM equation takes into account all

species in solution, as well as their relative contributions, based on fluorescence decay data.

22

IPR 20

09

The new IE/IM equation

23

0

2

4

6

8

10

0

5

10

15

20

0 1 2 3 4 5

IE /IM

Cal

cula

ted

I E/I

M

Generation Number

0

4

8

12

16

20

0

5

10

15

20

25

30

0 1 2 3 4 5

IE /IM

Cal

cula

ted

I E/I

M

Generation Number

G Series GPS Series

□ - Calculated IE/IM◊ - Actual IE/IM

□ - Calculated IE/IM◊ - Actual IE/IMIP

R 2009

Hmm?OHO

Gel Permeation Chromatography

24

G4 in THF[Py] = 25 μMλex = 344 nm

Excimer, λem = 510 nm

Monomer, λem = 375 nm

Py-butyric Acid, λem = 375 nm

OHO

O

O

O

OO

O

O

O

O

O

O

OO

O

O

O

O

O

OO

OO

OO

O

O

O

O

O

O

O

O

O

OO

O

O

O

O

O

O

OO

O

O

O

O

O

OO

OO

OO

O

O

O

O

O

O

G4

IPR 20

09

G4 Purification

The second peak fluoresced with a lifetime of 210 ns!

25

0

5

10

15

20

25

01020304050607080

0 1 2 3 4 5

IE /IM

<k>

(107

s-1)

Generation Number

0

500

1000

1500

2000

2500

350 400 450 500 550 600

Inte

nsity

(A.U

.)

Wavelength (nm)

*

G1

G2G3

G4

Purified G4

□ - <k>◊ - IE/IM

IPR 20

09

Molecular Mechanics Optimizations◦ Recall:

As generation number increases, <k> increases.Previous studies have shown that, at low generations, k1 decreases slightly with increasing generation number.Thus, [Py]loc must increase.Assuming k1 constant, [Py]loc should show similar trends to <k>

26

locPykk ][1=><

Meltzer et. al. Macromolecules. 1992, 25, 4541-4548.

IPR 20

09

Scenarios to consider:◦ Pyrene is free to diffuse throughout

◦ Pyrene is confined to the outer shell of the dendrimer

◦ A combination of the twoNeed to determine the volume occupied by pyrene

27

OHO

O

O

O

OO

O

O

O

O

O

O

OO

O

O

O

O

O

OO

OO

OO

O

O

O

O

O

O

O

O

O

OO

O

O

O

O

O

O

OO

O

O

O

O

O

OO

OO

OO

O

O

O

O

O

O

Py

OHO

O

O

O

OO

O

O

O

O

O

O

OO

O

O

O

O

O

OO

OO

OO

O

O

O

O

O

O

O

O

O

OO

O

O

O

O

O

O

OO

O

O

O

O

O

OO

OO

OO

O

O

O

O

O

O

Py

dE-E

dc

IPR 20

09

Scenario 1:◦ Pyrene free to diffuse throughout

28

dE-E = 23 Å

dE-E = 33 Å

dE-E = 42 Å

dE-E = 51 Å

3

34

12][EE

n

loc rPy

−=

π

0.0

0.1

0.2

0.3

0.4

0

10

20

30

40

50

60

0 1 2 3 4 5

[Py]loc (mol·L

-1)<k>

(107

s-1)

Generation Number

□ - <k>◊ - [Py]loc

IPR 20

09

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0

10

20

30

40

50

60

0 1 2 3 4 5

[Py]loc (mol·L-1)

<k>

(107

s-1)

Generation Number

Scenario 2: Pyrene excluded to outer shell

29

( )33

34

12][cEE

n

loc rrPy

−−

=−π dc = 17 Å

dc = 26 Å

dc = 36 Å

dc = 45 Å

□ - <k>◊ - [Py]loc

IPR 20

09

Scenario 3:◦ G1 is free to diffuse throughout, higher generations

are confined◦ Calculate k1 for G1◦ Assume k1 is constant for all generations◦ Calculate corresponding rc

30

IPR 20

09

Scenario 3◦ For G1:

◦ For G2-G4:

◦ Result: For G2-G4, rc corresponded to pyrene attachment point minus 1-2 carbons!

31

locPykk][1><

=

1

][kkPy loc><

=

31

3

][34

12⎟⎟

⎜⎜

⎛ −−= −

loc

n

EEc Pyrr

π

rc

IPR 20

09

The decrease in IE/IM ratio is due to residual pyrenebutyric acidAt generations > 1, internal steric hindrance may exclude pyrene to the outer spherical shell defined by the arms of the dendrimer molecules

32

IPR 20

09

Dr. Jean DuhamelDr. Alex AdronovGreg BahunThe Duhamel Group

33

IPR 20

09

34

IPR 20

09

top related