universal laws and architectures: theory and lessons from nets, grids, brains, bugs, planes, docs,...

Post on 25-Dec-2015

214 Views

Category:

Documents

1 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Universal laws and architectures:Theory and lessons from

nets, grids, brains, bugs, planes, docs, fire, fashion,

art, turbulence, music, buildings, cities, earthquakes, bodies, running, throwing,

Synesthesia, spacecraft, statistical mechanics

slow

inflexible

fragile

waste

eye vision

Act

delay

Control

l noise

error ET j

N

P

+

noise

error

C

Understand this more deeply?

+ Neuroscience

Mechanics+Gravity +

Light +Control theory

exp ln

expT z p

pz pT

eye vision

Act

delay

Control

l noise

error

Understand this more deeply?

+ Neuroscience

Vision

Motion

Robust vision w/motion• Object motion• Self motion

Vision

Motion

eye vision

Act

delay

Control

noiseerror

Fast

Slow

Flexible Inflexible

Vision

Explain this amazing system.

LayeringFeedback

Experiment• Motion/vision control without blurring• Which is easier and faster?

Robust vision with• Hand motion• Head motion

Fast

Slow

VOR

vision

Why?• Mechanism• Tradeoff

Fast

Slow

Flexible Inflexible

VOR

vision

Vestibular Ocular Reflex (VOR)

Mechanism

Tradeoff

Slow

Flexible

vision

eye vision

Actslow

delay

Fast

Inflexible

Slow

Flexible

vision

eye vision

Actslow

delay

Fast

Inflexible

VOR

fast

Slow

Flexible

eye

Act

Fast

Inflexible

VOR

fast

Vestibular Ocular Reflex (VOR)

Slow

Flexible

eye

Act

Fast

Inflexible

VOR

fast

It works in the dark or with your eyes closed, but

you can’t tell.

Slow

Flexible

vision

eye vision

Actslow

delay

Fast

Inflexible

VOR

fast

vision

eye vision

Actslow

delay

VOR

Slow

Flexible

Fast

Inflexible

Illusion

Highly evolved (hidden)

architecture

LayeringFeedback

eye vision

Act

VOR

Layering

AutomaticUnconscious

PartiallyConscious

eye vision

Actslow

delay

VOR

fastLayeringFeedback

vision

eye vision

Actslow

delay

VOR

Slow

Flexible

Fast

Inflexible

Illusion

fast

Architecturelayered/

distributed

vision

eye vision

Actslow

delay

VOR

Slow

Flexible

Fast

Inflexible

Illusion

fast

Architecturelayered/

distributed

Robust or fine-tuned? BothModular or plastic? Both

Cortex

eye vision

Actslow

delay

VOR

fast

Object motion

Head motion

Error

+

Very rough cartoon

Cortex

eye vision

Actslow

delay

VOR

fast

Object motion

Head motion

Cerebellum

Error

+

ErrorTune gain

Slightly better

gainAOS

AOS = Accessory Optical system

Cortex

eye vision

Actslow

delay

VOR

This fast “forward”

path

Object motion

Head motion

Cerebellum

Error

+

ErrorTune gain

Slightly better

gainAOS

AOS = Accessory Optical system

Needs “feedback”

tuning

Via AOS and cerebellum (not cortex)

Cortex

eye vision

Actslow

delay

VOR

fast

Object motion

Head motion

Cerebellum

+

ErrorTune gain

gain

AOS

AOS = Accessory Optical system

noise

Act

Highly evolved (hidden)

architecture

Cortex

eye vision

Actslow

delay

VOR

fast

Object motion

Head motion

Cerebellum

+

ErrorTune gain

gain

AOS

AOS = Accessory Optical system

noise

Act

slowest

Cortex

eye vision

Actslow

delay

VOR

fast

Object motion

Head motion

Cerebellum

+

ErrorTune gain

gain

AOS

AOS = Accessory Optical system

noise

Act

Delays everywhere

Distributed control

slowest

Cortex

eye vision

Actslow

delay

VOR

fast

Object motion

Head motion

Cerebellum

+

ErrorTune gain

gain

AOS

noise

Act

slowestHeterogeneous

delays everywhere

Slow

Flexible

vision

eye vision

Actslow

delay

Fast

Inflexible

VOR

fast

3D + motion

See Marge Livingstone

Color?

Slow

Flexible

vision

eye vision

Actslow

delay

Fast

Inflexible

VOR

fast

See Marge Livingstone

3D + motion

colorvision

Slowest

Stare at the intersection

Stare at the intersection.

Stare at the intersection.

Slow

Flexible

vision

eye vision

Actslow

delay

Fast

Inflexible

VOR

fast

3D + motion

colorvision

Slowest

Slow

Flexible

vision

Fast

Inflexible

VOR

colorvision

Seeing is dreaming• is simulation• requiring “internal model”

gradient

Biased random walk

Ligand

SignalTransduction

Motion Motor

CheY

+CH 3R

ATP ADPP

~

flagellarmotor

Z

Y

PY

~

PiB

B~P

Pi

CW-CH3

ATP

WA

MCPs

WA

+ATT

-ATT

MCPsSLOW

FAST

ligand binding

motor

Bacterial chemotaxis• Internal model necessary for robust chemotaxis• Reality is 3d, but…• Internal model virtual and 1d

Slow

Flexible

vision

Fast

Inflexible

VOR

colorvision

LayeringDistributedFeedback

Slow

Flexible

Fast

Inflexible

Impossible (law)

Architecture

Architecture (constraints that

deconstrain)

General Special

Universal laws and architectures (Turing)

ideal

Slow

Flexible

Fast

Inflexible

General Special

NP(time)

P(time)

analytic

Npspace=Pspace

Decidable

Computation(on and off-line)

Slow

Flexible

Fast

Inflexible

NPPanalytic

PspaceDecidable

Insight

Research progress

Control, OR

Compute

From toys to “real” systems

Slow

Flexible

Fast

Inflexible

NPPanalytic

PspaceDecidable

Insight

Research progress

Control, OR

Compute

Improved algorithms

Slow

Flexible

vision

Fast

Inflexible

VOR

colorvision

LayeringDistributedFeedback

Cortex

eye vision

Actslow

delay

VOR

This fast “forward”

path

Object motion

Head motion

Cerebellum

Error

+

ErrorTune gain

Slightly better

gainAOS

AOS = Accessory Optical system

Needs “feedback”

tuning

Via AOS and cerebellum (not cortex)

Cortex

eye vision

Actslow

delay

VOR

fast

Object motion

Head motion

Cerebellum

+

ErrorTune gain

gain

AOS

AOS = Accessory Optical system

noise

Act

sup ( ) ?T

• Real (NP hard)• Complex = LTI (??)• Operator valued or

Noncomm (P)

Scale with dimension?

Uncertainty everywhere

vision

eye vision

Actslow

delay

VOR

Slow

Flexible

Fast

Inflexible

Illusion

Highly evolved (hidden)

architecture

LayeringDistributedFeedback

eye vision

delay .3s

Act

delay

Control

l

1p

l

noiseerror

1x

2x

3x

Model?

• 1 dimension, 4 states?• Other 2 dimensions?• New issues arise

eye vision

Act

delay

Control

noiseerror

ET j

N

1x

2x

3x

eye vision

Act

delay

Control

noiseerror

ET j

N

1x

2x

3xeasy

easy

hard

eye vision

Act

delay

Control

noiseerror

ET j

N

1x

2x

3xeasy

easy

hard

eye vision

Act

delay

Control

noiseerror

ET j

N

Close one eye?

10

100

Length, m

.1 1.5.22 k10

-110

010

1100

101

too fragile

complex

No tradeoff

expensive

fragile

exp lnexp

T z pp

z pT

Slow

Flexible

vision

eye vision

Act slowdelay

Fast

Inflexible

VOR

fastUniversal

laws?

10

100

Length, m

.1 1.5.22

Slow

Flexible

vision

eye vision

Act slowdelay

Fast

Inflexible

VOR

fast

exp ln

expT z p

pz pT

How do these fit together?

slow

flexible

fast

inflexible

How do these fit together?

“waste”“efficient”

fragile

robust

vision

VORdelay

delaysec/m

.01

1

.1

area

.1 1 10diam(m)

.01 1 100

Retinal ganglion axons?

Other myelinated

Why such extreme diversity in axon size and delay?

.01

1

delaysec/m

C

.1

AγAδ

area

.1 1 10diam(m)

.01 1 100

Axon size and

speed

Fast

Small

Slow

Large

delaysec/m

.01

1

.1

area

.1 1 10diam(m)

.01 1 100

Retinal ganglion axons?

Other myelinated

Why such extreme diversity in axon size and delay?

VORNo

diversity in VOR?

Resolution and bandwidth are cheap

speed costs

axon

Same area= same “cost”

axonaxon

2 x resolution(less noise)

axon

x speed(less delay)

Double the area (and cost)?

speed costs Resolution and bandwidth are cheap

1delay

speed

vision

Act

delay

10

100

Speed 1/

.1 1.5.22

.3s

exp p

Slower

axon axon

axon

2 x resolution(less noise)

axon

x

speed doubly expensive

but necessary

Cortex

eye vision

Actslow

delay

VOR

fast

Object motion

Head motion

Cerebellum

+

ErrorTune gain

gain

AOS

AOS = Accessory Optical system

noise

Act

Delays everywhere

Distributed control

slowest

Cortex

eye vision

Actslow

delay

VOR

fast

Object motion

Head motion

Cerebellum

+

ErrorTune gain

gain

AOS

noise

Act

slowestHeterogeneous

delays everywhere

expE p N

Fast

Slow

Flexible InflexibleReflex

SenseMotor

Prefrontal

Fast

Learn

Evolve

Apps

OS

HW

vision

Act

delay

axon axon

axon

2 x resolution(less noise)

axon

x

speed doubly expensive

but necessary

slow

flexible

fast

inflexible

How do these fit together?

“waste”“efficient”

fragile

robust

vision

VORdelay

speed costs

slow

flexible

fast

inflexible

In general?

wastefulefficient

fragile

robust

slow

flexible

fast

inflexible

fragile

robust

wasteefficient

fragile

robust

slow

flexible

fast

inflexible

fragile

robust

waste

efficient

fragile

robust

Cyber-physicalCyber only

slow

flexible

fast

inflexible

waste

efficient

fragile

robust

Cyber-physical

accessibleaccountableaccurateadaptableadministrableaffordableauditableautonomyavailablecompatiblecomposable configurablecorrectnesscustomizabledebugabledegradabledeterminabledemonstrable

dependabledeployablediscoverable distributabledurableeffective

evolvableextensiblefail

transparentfastfault-tolerantfidelityflexibleinspectableinstallableIntegrityinterchangeabl

einteroperable learnablemaintainable

manageablemobilemodifiablemodularnomadicoperableorthogonalit

yportableprecisionpredictableproducibleprovablerecoverablerelevantreliablerepeatablereproducibleresilientresponsivereusable

safety scalableseamlessself-sustainableserviceablesupportablesecurablesimplestablestandardssurvivable

tailorabletestabletimelytraceableubiquitousunderstandableupgradableusable

efficient

robust

sustainable

PCA Principal Concept Analysis

flexible

fast

efficient

robust

slow

flexible

fast

inflexible

waste

efficient

slow

flexible

fast

inflexible

waste

efficient

Slow

InflexibleFra

gile

Waste

slow

inflexible

fragile

wasteSame picture

Control, OR

CommunicateCompute

Physics

Shannon

Bode

Turing

Gödel

EinsteinHeisenberg

Carnot

Boltzmann

Theory?Deep, but fragmented, incoherent, incomplete

Nash

Von Neumann

Priorities

• Functionality (behavior, semantics)• Robustness

– Uncertain environment and components– Fast (sense, decide, act)– Flexible (adaptable, evolvable)

• Efficiency– Energy– Other resources (make and maintain)

Control, OR

Compute

• Functionality (behavior, semantics)• Robustness

– Uncertain environment and components

– Fast (sense, decide, act)– Flexible (adaptable, evolvable)

• Efficiency– Energy– Other resources (make and maintain)

Function, delay,

robustness most

important

• Functionality (behavior, semantics)• Robustness

– Uncertain environment and components– Fast (sense, decide, act)– Flexible (adaptable, evolvable)

• Efficiency– Energy– Other resources (make and maintain)

Communicate

Physics

Info theory

• Functionality (behavior, semantics)• Robustness

– Uncertain environment and components– Fast (sense, decide, act)– Flexible (adaptable, evolvable)

• Efficiency– Energy– Other resources (make and maintain)

Communicate

Physics

Info theory

Noise, average, asymptotic

Control, OR

Info theoryCompute

Physics

Function, delay,

robustness most

important

Function, delay,

robustness least

important

Control, OR

Info theoryCompute

Physics

Shannon

Bode

Turing

Einstein

Heisenberg

Carnot

Boltzmann

Function, delay,

robustness most

important

Function, delay,

robustness least

important

Dominates “high impact

science” literature

Slow

Flexible

Fast

Inflexible

NPPanalytic

PspaceDecidable

Insight

Research progress

Control, OR

Compute

From toys to “real” systems

Slow

Flexible

Fast

Inflexible

NPPanalytic

PspaceDecidable

Insight

Research progress

Control, OR

Compute

Improved algorithms

Control, OR

Info theoryCompute

Physics

Shannon

Bode

Turing

Einstein

Heisenberg

Carnot

Boltzmann

Function, delay,

robustness most

important

Function, delay,

robustness least

important

Function, delay,

robustness most

important

Function, delay,

robustness least

important

Control, OR

CommunicateCompute

Physics

Shannon

Bode

Turing

New progress!

Control, OR

Compute

Physics

Bode

Turing

New progress!

Coherent structures and turbulent drag

Function, delay,

robustness least

important

Shear flow turbulence• Exhaustively studied

– Extensive experiments and big data– Detailed models and big simulations– Great! But all just deepen the mystery

• Perfectly illustrates robust/fragile• Without which? Bewilderment.

Physics of Fluids (2011)

Physics of Fluids (2011)

wU

z x

y

uzx

yFlow

upflowhigh-speed

region

downflowlow speed

streak

Blunted turbulent velocity profile

Laminar

Turbulent

wU3D coupling

Coherent structures and turbulent drag

wasteful

fragile Laminar

Turbulent

efficient

robust

Laminar

Turbulent

wU

?

Control?

Fundamentals!

Control, OR

Compute

Bode

Turing

New progress!

Communications for control,

computing, biology

Function, delay,

robustness least

important

Internal delays

SenseMotor

Prefrontal

Fast

Learn

Reflex

Evolve

vision

VOR

Communications for control,

computing, biology

Internal delays

New theory: Distributed control with delays everywhere.

Sense/Act

Compute/communicate

Physical

Info Thry

Control, OR

Compute

PhysicsOrthophysics (Eng/Bio/Math)

Optimization Statistics

Comms for Comp/Cntrl/Bio

Theory

wasteful

fragile Laminar

Turbulent

efficient

robust ?

Control?

Info Thry

PhysicsOrthophysics (Eng/Bio/Math)

Laminar

Turbulent

uzx

yFlow

Doyle, Csete, Proc Nat Acad Sci USA, JULY 25 2011

For more infoMost accessible

No mathReferences

wasteful

fragile

efficient

robust

Impossible (law)

Architecture

Universal laws and architectures

Flexibly achieves what’s possible

Efficiency/instability/layers/feedback

• Sustainable infrastructure? (e.g. smartgrids)• Money/finance/lobbyists/etc• Industrialization• Society/agriculture/weapons/etc• Bipedalism• Maternal care• Warm blood• Flight• Mitochondria• Oxygen• Translation (ribosomes)• Glycolysis (2011 Science)

Major transitions

Evolvability?

control feedback

RNA

mRNA

RNApTranscription

Other Control

Gene

AminoAcids

Proteins

Ribosomes

Other Control

Translation

Metabolism Products

Signal transductionATP

DNA

New gene

SensoryMotor

Prefrontal

Striatum

Reflex

LearningSoftware

Hardware

Digital

Analog

Horizontal Gene

Transfer

Horizontal App

Transfer

Horizontal Meme

Transfer

Accelerating evolution

Requires shared “OS”

Horizontal Gene

Transfer

Sequence ~100 E Coli (not chosen randomly)• ~ 4K genes per cell• ~20K different genes in total (pangenome)• ~ 1K universally shared genes • ~ 300 essential (minimal) genes

control feedback

RNA

mRNA

RNApTranscription

Other Control

Gene

AminoAcids

Proteins

Ribosomes

Other Control

Translation

Metabolism Products

Signal transductionATP

DNA

New gene

SensoryMotor

Prefrontal

Striatum

Reflex

LearningSoftware

Hardware

Digital

Analog

Horizontal Gene

Transfer

Horizontal App

Transfer

Horizontal Meme

Transfer

What can go wrong?

Horizontal Bad Gene Transfer

Horizontal Bad App Transfer

Horizontal Bad Meme

Transfer

Parasites &

Hijacking

Fragility?

Exploiting layered

architecture

Virus

Virus

Meme

Horizontal Bad Meme

Transfer

Our greatest fragility?

Meme

Many human beliefs are:• False• Unhealthy

Slow

Flexible

vision

Fast

Inflexible

VOR

Slow

Flexible

vision

eye vision

Actslow

delay

Fast

Inflexible

VOR

fast

Cortex

eye vision

Actslow

delay

VOR

fast

Object motion

Head motion

Cerebellum

+

ErrorTune gain

gain

AOS

AOS = Accessory Optical system

noise

Act

Delays everywhere

Distributed control

slowest

Slow

Flexible

vision

eye vision

Actslow

delay

Fast

Inflexible

VOR

fast

Vision

-slow

VOR

fast

Fast

Slow

Flexible Inflexible

slower

Mixed

Redraw(not anatomical)

Vision

-3d+motionB&W

slowVOR

fast

Fast

Slow

Flexible Inflexible

slower

Objects

Mixed

Redraw(not anatomical)

3d+motionB&W

slow

Fast

Slow

Flexible Inflexible

slower

Objects

-3d+motionB&W

slowVOR

fast

Fast

Slow

Flexible Inflexible

Faces

slower

Objects

Mixed

Not sure how to draw this…

Chess experts• can reconstruct entire chessboard with < ~ 5s inspection• can recognize 1e5 distinct patterns• can play multiple games blindfolded and simultaneous• are no better on random boards

(Simon and Gilmartin, de Groot)

www.psywww.com/intropsych/ch07_cognition/expertise_and_domain_specific_knowledge.html

Specific brain lesions can cause “blindness” to• Faces• Fruit or Animals or Tools or ??• Left side of body• Movement• Nonmovement• ???

Fast

Slow

Flexible Inflexible

Faces

slower

Objects

Not sure how to draw this…

Learning+evolution

When needed, even wasps can do it.

• Polistes fuscatus can differentiate among normal wasp face images more rapidly and accurately than nonface images or manipulated faces. • Polistes metricus is a close relative lacking facial recognition and specialized face learning. • Similar specializations for face learning are found in primates and other mammals, although P. fuscatus represents an independent evolution of specialization. • Convergence toward face specialization in distant taxa as well as divergence among closely related taxa with different recognition behavior suggests that specialized cognition is surprisingly labile and may be adaptively shaped by species-specific selective pressures such as face recognition.

Fig. 1 Images used for training wasps.

M J Sheehan, E A Tibbetts Science 2011;334:1272-1275Published by AAAS

vision

eye vision

Actslow

delay

VOR

Slow

Flexible

Fast

Inflexible

Illusion

Highly evolved (hidden)

architecture

Seeing is dreaming

-3d+motionB&W

slowVOR

fast

Fast

Slow

Flexible Inflexible

Faces

slower

Objects

Mixed

Not sure how to draw this…

Learning+evolution

Sense

Universal tradeoffs?

Fast

Slow

Flexible Inflexible

Motor

Prefrontal

Fast

Learn

Reflex

Evolve

Learning can be very slow.

Evolution is even slower.

control feedback

RNA

mRNA

RNApTranscription

Other Control

Gene

AminoAcids

Proteins

Ribosomes

Other Control

Translation

Metabolism Products

Signal transductionATP

DNA

New gene

SensoryMotor

Prefrontal

Striatum

Reflex

LearningSoftware

Hardware

Digital

Analog

Horizontal Gene

Transfer

Horizontal App

Transfer

Horizontal Meme

Transfer

Accelerating evolution

Requires shared “OS”

control feedback

RNA

mRNA

RNApTranscription

Other Control

Gene

AminoAcids

Proteins

Ribosomes

Other Control

Translation

Metabolism Products

Signal transductionATP

DNA

New gene

SensoryMotor

Prefrontal

Striatum

Reflex

LearningSoftware

Hardware

Digital

Analog

Gene Transfer

App Transfer

Meme Transfer

Some genes, apps, ideas

are “invented”

But most bacteria and

people get most of them from

others

costly

fragile

efficient

robust

Learning

Cortex

eye vision

Actslow

delay

VOR

fast

Object motion

Head motion

Cerebellum

+

ErrorTune gain

gain

AOS

AOS = Accessory Optical system

noise

Act

Cortex

eye vision

Actslow

delay

VOR

fast

Object motion

Head motion

Cerebellum

+

Error

Tune gain

gain

AOS

AOS = Accessory Optical system

noise

Act

Reflex

SensoryMotor

Prefrontal

Striatum

SlowFlexible

Learning

Ashby & Crossley

Slow

Reflex(Fastest,

LeastFlexible)

Extreme heterogeneity

SensoryMotor

Prefrontal

Striatum

Fast

FastInflexible

SlowFlexible

Learning

Reflex(Fastest,

LeastFlexible)

Ashby & Crossley

Learning can be very slow.

Sense

Fast

Slow

Flexible Inflexible

Motor

Prefrontal

Fast

Learn

Reflex

Evolve

HMTTeach

Horizontal Meme

Transfer

Sense

Fast

Slow

Flexible Inflexible

Motor

Prefrontal

Fast

Learn

Reflex

Evolve

Horizontal Hardware Transfer

HHT

Sense

Fast

Slow

Flexible Inflexible

Motor

Prefrontal

Fast

Learn

Reflex

Evolve

Apps

OS

HW

HMT

HHT

Sense

Fast

Slow

Flexible Inflexible

Motor

Prefrontal

Fast

Learn

Reflex

Evolve

HMT

Soma

Reactive

Adaptive

Contextual

Sense

Fast

Slow

Flexible Inflexible

Motor

Prefrontal

Fast

Learn

Reflex

Evolve

Apps

OS

HW

FastCostly

SlowCheap

Flexible Inflexible

General Special

Layered Architecture

AppsOS

HW

Digital

Lumped

Distrib.

OSHW

Digital

Lumped

Distrib.

DigitalLumped

Distrib.

LumpedDistrib. Distrib.

Any layer needs all lower layers.

Fast

Slow

Flexible Inflexible

Apps

OS

HW

AppsOS

HardwareDigital

LumpedDistributed

Tech implications/extensions

Slow

Flexible

Fast

Inflexible

Impossible (law)

Architecture

Architecture (constraints that

deconstrain)

General Special

Universal laws and architectures (Turing)

ideal

Slow

Flexible

Fast

Inflexible

General Special

NP(time)

P(time)

analytic

Npspace=Pspace

Decidable

Computation(on and off-line)

Slow

Flexible

Fast

Inflexible

General Special

NP

P

analytic

Pspace

Decidable

Computation(on and off-line)

InsightAccessibleVerifiable

Slow

Flexible

Fast

Inflexible

NPPanalytic

PspaceDecidable

Insight

Research progress

Control, OR

Compute

From toys to “real” systems

Slow

Flexible

Fast

Inflexible

NPPanalytic

PspaceDecidable

Insight

Research progress

Control, OR

Compute

Improved algorithms

P(time)(delay)

Pspace(memory, bandwidth)

Resource cost vs effectiveness

Cheap Costly

Strong

Weak

To make

In use

Talk

Energy

Pspace(memory, bandwidth)

Cheap

Strong

To make

In use

1 TB < $100

$50

$??

1 TB = 1e12B

P(time)

Pspace(memory, bandwidth)

What dominates tradeoffs

Cheap Costly

Strong

Weak

To make

In use

Talk

Energy

time

What dominates tradeoffs

CostlyCheap

Fast

Slow

Energy

time

What dominates tradeoffs

CostlyCheap

Fast

Slow

Energy

Flexible

Inflexible

time

What dominates tradeoffs

Fast

Slow

Flexible

Inflexible

Slow

Flexible

Fast

Inflexible

General Special

NP(time)

P(time)

analytic

Pspace

Decidable

Computation(on and off-line)

Slow

Flexible

Fast

Inflexible

General Special

NP(time)

P(time)

analytic

Pspace

Decidable

Universal architecture

Universal TM

10

100

Length, m

.1 1.5.22 k10

-110

010

1100

101

too fragile

complex

No tradeoff

expensive

fragile

exp lnexp

T z pp

z pT

Slow

Flexible

vision

eye vision

Act slowdelay

Fast

Inflexible

VOR

fastSlow

Flexible

Fast

Inflexible

General Special

NPPanalytic

Pspace

Decidable

control feedback

RNA

mRNA

RNApTranscription

Other Control

Gene

AminoAcids

Proteins

Ribosomes

Other Control

Translation

Metabolism Products

Signal transductionATP

DNA

New gene

SensoryMotor

Prefrontal

Striatum

Reflex

LearningSoftware

Hardware

Digital

Analog

Horizontal Gene

Transfer

Horizontal App

Transfer

Horizontal Meme

Transfer

Accelerating evolution

Requires shared “OS”

Sense

Fast

Slow

Flexible Inflexible

Motor

Prefrontal

Fast

Learn

Reflex

Evolve

Apps

OS

HW

HMT

Fast

Slow

Flexible Inflexible

General Special

Apps

OS

HW

Exploiting layered

architecture

Core protocols

• OS seems to confuse• Replace with “core protocols”?• Examples different than OS or translation:

– Core metabolism– 2 component signal transduction

• Highly conserved/constrained core (knot)• Highly diverse/deconstrained edges

153

slow

flexible

fast

inflexible

waste

efficient

fragile

robust

slow

flexible

fast

inflexible

waste

efficient

body

brain

Combo

Sense

Fast

Slow

Flexible Inflexible

Motor

Prefrontal

Fast

Learn

Reflex

Evolve

HMT

Soma

Reactive

Adaptive

Contextual

Combo

Slow

Fast

Flexible InflexibleGeneral Special

AppsOSHWDig.Lump.Distrib.

OSHWDig.Lump.Distrib.

DigitalLump.Distrib.

LumpedDistrib. Distrib.

HGT DNA repair Mutation DNA replication Transcription

Translation

Metabolism Signal

SenseMotor

Prefrontal

Fast

Learn

Reflex

Evolve

vision

VOR

Slow

Fast

Flexible InflexibleGeneral Special

AppsOSHWDig.Lump.Distrib.

OSHWDig.Lump.Distrib.

DigitalLump.Distrib.

LumpedDistrib. Distrib.

Apps

OS

HW

Fast

Slow

Flexible Inflexible

General Special

Apps

OS

HW

Horizontal App

Transfer

Horizontal Hardware Transfer

Fast

Slow

Flexible Inflexible

General Special

Apps

OS

HW

OS

Horizontal App

Transfer

Horizontal Hardware Transfer

Constrained

Deconstrained

Deconstrained

Horizontal Transfer

Horizontal Transfer

Constrained

Deconstrained

Deconstrained

Con

stra

ined

Dec

onst

rain

ed

Dec

onst

rain

ed

food

Glucose

Oxygen

OrgansTissuesCellsMolecules

Universal metabolic system

Blood

EfficientRobust

Evolvable

food

Glucose

Oxygen

OrgansTissuesCellsMolecules

Blood

EfficientRobust

Evolvable

Constrained

DeconstrainedDeconstrained

EfficientRobust

Evolvable

Constrained

DeconstrainedDeconstrained

DiverseDiverse

EfficientRobust

Evolvable

Constrained

DeconstrainedDeconstrained

DiverseDiverse

OS

Deconstrained(Hardware)

Deconstrained(Applications)

Constrained

universal architectures

Fast

Slow

Flexible Inflexible

General Special

Apps

OS

HW

Horizontal App

Transfer

Horizontal Hardware Transfer

FastCostly

SlowCheap

Flexible Inflexible

HGT DNA repair

Mutation DNA replication

Transcription Translation

MetabolismSignal…

Layered Architecture

control feedback

RNA

mRNA

RNApTranscription

Other Control

Gene

AminoAcids

Proteins

Ribosomes

Other Control

Translation

Metabolism Products

Signal transductionATP

DNA

New gene

FastCostly

SlowCheap

Flexible Inflexible

HGT DNA repair

Mutation DNA replication

Transcription Translation

MetabolismSignal…

Layered Architecture RNA

mRNA

RNApTranscription

Gene

AminoAcids

Proteins

RibosomesTranslation

Metabolism Products

Core Protocols

FastCostly

SlowCheap

Flexible

control feedback

RNA

mRNA

RNApTranscription

Other Control

Gene

AminoAcids

Proteins

Ribosomes

Other Control

Translation

Metabolism Products

Signal transductionATP

DNA

New gene

Metabolism

FastCostly

SlowCheap

Flexible

control feedback

RNA

mRNA

RNApTranscription

Other Control

Gene

AminoAcids

Proteins

Ribosomes

Other Control

Translation

Metabolism Products

Signal transductionATP

DNA

New gene

Metabolism

FastCostly

SlowCheap

Flexible

control feedback

RNA

mRNA

RNApTranscription

Other Control

Gene

AminoAcids

Proteins

Ribosomes

Other Control

Translation

Metabolism Products

Signal transductionATP

DNA

New gene

Signal Transduction

FastCostly

SlowCheap

Flexible

control feedback

RNA

mRNA

RNApTranscription

Other Control

Gene

AminoAcids

Proteins

Ribosomes

Other Control

Translation

Metabolism Products

Signal transductionATP

DNA

New gene

Signal Transduction

Tra

nsm

itte

r

Rec

eive

r

Variety ofLigands &Receptors

Variety ofresponses

Tra

nsm

itte

r

Rec

eive

r

Variety ofLigands &Receptors

Variety ofresponses

Tra

nsm

itte

r

Rec

eive

r

Variety ofLigands &Receptors

Variety ofresponses

Tra

nsm

itte

r

Rec

eive

r

Variety ofLigands &Receptors

Variety ofresponses

Tra

nsm

itte

r

Rec

eive

r

Variety ofLigands &Receptors

Variety ofresponses

Tra

nsm

itte

r

Rec

eive

r

Variety ofLigands &Receptors

Variety ofresponses

Tra

nsm

itte

r

Rec

eive

r

Variety ofLigands &Receptors

Variety ofresponses

Tra

nsm

itte

r

Rec

eive

r

Variety ofLigands &Receptors

Variety ofresponses

Tra

nsm

itte

r

Rec

eive

r

Variety ofLigands &Receptors

Variety ofresponses

Tra

nsm

itte

r

Rec

eive

r

Variety ofLigands &Receptors

Variety ofresponses

Tra

nsm

itte

r

Rec

eive

r

Variety ofLigands &Receptors

Variety ofresponses

Tra

nsm

itte

r

Rec

eive

r

Variety ofLigands &Receptors

Variety ofresponses

Tra

nsm

itte

r

Rec

eive

r

Variety ofLigands &Receptors

Variety ofresponses

• 50 such “two component” systems in E. Coli• All use the same protocol

- Histidine autokinase transmitter- Aspartyl phospho-acceptor receiver

• Huge variety of receptors and responses• Also multistage (phosphorelay) versions

Signal transduction

Tran

smit

ter

Rec

eive

r

Ligands &Receptors

Responses

Shared protocols

Flow of “signal”

Recognition,specificity

• “Name resolution” within signal transduction• Transmitter must locate “cognate” receiver and avoid non-cognate receivers• Global search by rapid, local diffusion• Limited to very small volumes

Tran

smit

ter

Rec

eive

r

Ligands &Receptors

Responses

Tran

smit

ter

Rec

eive

r

Ligands &Receptors

Responses

Tran

smit

ter

Rec

eive

r

Ligands &Receptors

Responses

Shared protocols

Flow of “signal”

Recognition,specificity

Variety ofLigands &Receptors

Variety ofresponses

Variety ofLigands &Receptors

Variety ofLigands &Receptors

Variety ofLigands &Receptors

Variety ofLigands &Receptors

Variety ofLigands &Receptors

Variety ofresponses

Variety ofLigands &Receptors

Variety ofresponses

Variety ofLigands &Receptors

Variety ofresponses

Variety ofLigands &Receptors

Variety ofresponses

Variety ofLigands &Receptors

Variety ofresponses

Variety ofLigands &Receptors

Variety ofresponses

Variety ofLigands &Receptors

Variety ofresponses

Variety ofLigands &Receptors

Variety ofresponses

Huge

variety

Huge variety

Tran

smit

ter

Rec

eive

rTran

smit

ter

Rec

eive

rTran

smit

ter

Rec

eive

r

Recognition,specificity

Huge variety• Combinatorial• Almost digital• Easily reprogrammed• Located by diffusion

Tran

smit

ter

Rec

eive

rTr

ansm

itte

r

Rec

eive

rTr

ansm

itte

r

Rec

eive

r

Flow of “signal”

Limited variety• Fast, analog (via #)• Hard to change

Reusable in different pathways

InternetsitesUsers

Tran

smit

ter

Rec

eive

r

Ligands &Receptors

Responses

Shared protocols

Flow of “signal”

Recognition,specificity

Note: Any wireless system and the Internet to which it is connected work the same way.

Lap

top

Ro

ute

r

Flow of packets

Recognition,Specificity (MAC)

FastCostly

SlowCheap

Flexible Inflexible

HGT DNA repair

Mutation DNA replication

Transcription Translation

Metabolism Signaling

Layered Architecture

control feedback

RNA

mRNA

RNApTranscription

Other Control

Gene

AminoAcids

Proteins

Ribosomes

Other Control

Translation

Metabolism Products

Signal transductionATP

DNA

New gene

gradient

Biased random walk

Ligand

SignalTransduction

Motion Motor

CheY

+CH 3R

ATP ADPP

~

flagellarmotor

Z

Y

PY

~

PiB

B~P

Pi

CW-CH3

ATP

WA

MCPs

WA

+ATT

-ATT

MCPsSLOW

FAST

ligand binding

motor

More necessity and robustness

• Integral feedback and signal transduction (bacterial chemotaxis, G protein) (Yi, Huang, Simon)

• Example of “exploratory process”

Random walk

Ligand Motion Motor

Bacterial chemotaxis

gradient

Biased random walk

Ligand

SignalTransduction

Motion Motor

CheY

Ligand

SignalTransduction

Motion Motor

CheY

Ligand

SignalTransduction

Motion Motor

CheY

Component of feedback controller

Ligand Motion Motor

CheY

Tra

nsm

itte

r

Rec

eive

r

Receptor Response

Component of feedback controller

PMF

++

++

From Taylor, Zhulin, Johnson

Variety of receptors/

ligands Common cytoplasmic

domains

Common signal carrier

Common energy carrier

Tra

nsm

itte

r R

ecei

ver

MotorVarietyof receptors& ligands

Ligand Motion Motor

CheY

Tra

nsm

itte

r R

ecei

ver

MotorVarietyof receptors& ligands

CheY

Tra

nsm

itte

r

Rec

eive

r

Receptor Response

Integral feedback internal to signaling

network

Ligand Motion Motor

CheY

Tra

nsm

itte

r

Rec

eive

r

Receptor Response

Integral feedback internal to signaling

network

Main feedback control loop

Ligand

SignalTransduction

Motion Motor

CheY

gradient

Biased random walk

Ligand

SignalTransduction

Motion Motor

CheY

Tumbling bias

pCheY

SignalTransduction

Motor

Perfect adaptation is necessary …

ligandpCheY

Tumbling bias

ligand

Perfect adaptation is necessary …

…to keep CheYp in the responsive range of the motor.

pCheY pCheY

Tumbling bias

Ligand

F

y+

d

F ln(S)

1

1

yS

d F

ˆ ( ) ˆ( ) , (0) 0

(0)

(0) 0

F sF s F

s

F

S

Integral feedback

Tran

smit

ter

Rec

eive

r

Variety ofLigands &Receptors

Response

DiverseDeconstrained

(Hardware)

Deconstrained(Applications)

Diverse

Layered architectures

ConstrainedBut hidden

Apps

OS

HW

Core Protocols

?

Deconstrained(Hardware)

Deconstrained(Applications)

Next layered architectures (SDN)

Constrained Optimize & control, share, virtualize, manage resources

CommsMemory, storageLatencyProcessingCyber-physical

Few global variables

Don’t cross layers

The essence of layering

Physical resources

Optimize & control, share, virtualize, manage resources

Optimize & control, share, virtualize, manage resources

Optimize & control, share, virtualize, manage resources

Optimize & control, share, virtualize, manage resources

Applications

The essence of networking

Physical

Control

Control

Apps

Control

Physical

Apps

Control

Physical

Apps

Virtual

Prosen-cephalon

Telen-cephalon

Rhinencephalon, Amygdala,

Hippocampus, Neocortex, Basal ganglia, Lateral

ventricles

Dien-cephalon

Epithalamus, Thalamus,

Hypothalamus, Subthalamus, Pituitary

gland, Pineal gland, Third ventricle

Brain stem

Mesen-cephalon

Tectum, Cerebral peduncle, Pretectum, Mesencephalic duct

Rhomb-encephalon

Meten-cephalon

Pons, Cerebellum

Myelen-cephalon

Medulla oblongata

Spinal cord

CNS HW “stack”

?

Diverse?Deconstrained

(Hardware)

Deconstrained?(Applications)

Diverse

Layered architectures??

ConstrainedBrain

Fast

Slow

Flexible Inflexible

General Special

Apps

OS

HW

Horizontal App

Transfer

Horizontal Hardware Transfer

FastCostly

SlowCheap

Flexible Inflexible

General Special

Layered Architecture

AppsOSHW

DigitalLumpedDistrib.

OSHW

DigitalLumpedDistrib.

DigitalLumpedDistrib.

LumpedDistrib. Distrib.

Any layer needs all lower layers.

0. HGT1. DNA repair2. Mutation 3. DNA replication4. Transcription5. Translation6. Metabolism7. Signal transduction8. …

AppsOS

HardwareDigital

LumpedDistributed

Any layer needs all lower layers.

control feedback

RNA

mRNA

RNApTranscription

Other Control

Gene

AminoAcids

Proteins

Ribosomes

Other Control

Translation

Metabolism Products

Signal transductionATP

DNA

New gene

Horizontal Gene

Transfer

Sequence ~100 E Coli (not chosen randomly)• ~ 4K genes per cell• ~20K different genes in total (pangenome)• ~ 1K universally shared genes • ~ 300 essential (minimal) genes

control feedback

RNA

mRNA

RNApTranscription

Other Control

Gene

AminoAcids

Proteins

Ribosomes

Other Control

Translation

Metabolism Products

Signal transductionATP

DNA

New gene

FastCostly

SlowCheap

Flexible Inflexible

General Special

HGT DNA repair

Mutation DNA replication

Transcription Translation

MetabolismSignal…

Layered Architecture

Slow

Fast

Flexible InflexibleGeneral Special

AppsOSHWDig.Lump.Distrib.

OSHWDig.Lump.Distrib.

DigitalLump.Distrib.

LumpedDistrib. Distrib.

HGT DNA repair Mutation DNA replication Transcription

Translation Metabolism

Signal

SenseMotor

Prefrontal

Fast

Learn

Reflex

Evolve

vision

VOR

Slow

Fast

Flexible InflexibleGeneral Special

AppsOSHWDig.Lump.Distrib.

OSHWDig.Lump.Distrib.

DigitalLump.Distrib.

LumpedDistrib. Distrib.

HGT DNA repair Mutation DNA replication Transcription

Translation

Metabolism Signal

SenseMotor

Prefrontal

Fast

Learn

Reflex

EvolveVOR

Many systems/organisms only use lower layers

LumpedDistrib. Distrib.

Metabolism

Signal

SenseMotor Fast

Reflex

EvolveVOR

Many systems/organisms only use lower layers

Analog

Red blood cellsNormocephalic anucleosis

Most metazoans

SenseMotor Fast

Reflex

Evolve

Analog?

Most metazoans

LumpedDistrib. Distrib.

Metabolism

Signal

SenseMotor Fast

Reflex

Evolve

Many systems/organisms only use lower layers

Analog

Red blood cellsNormocephalic anucleosis

Most metazoans

200 microns

Denucleated neurons

Megaphragma mymaripenne

5 day lifespan7,400 neurons vshousefly 340,000 honeybee 850,000.

Normocephalic anucleosis

Slow

Fast

Flexible InflexibleGeneral Special

AppsOSHWDig.Lump.Distrib.

OSHWDig.Lump.Distrib.

DigitalLump.Distrib.

LumpedDistrib. Distrib.

HGT DNA repair Mutation DNA replication Transcription

Translation Metabolism

Signal

SenseMotor

Prefrontal

Fast

Learn

Reflex

Evolve

vision

VOR

10

100

Length, m

.1 1.5.22 k10

-110

010

1100

101

too fragile

complex

No tradeoff

expensive

fragile

exp lnexp

T z pp

z pT

Slow

Flexible

vision

eye vision

Act slowdelay

Fast

Inflexible

VOR

fastSlow

Flexible

Fast

InflexibleGeneral Special

NPPanalytic

PspaceDecidable

control feedback

RNA

mRNA

RNApTranscription

Other Control

Gene

AminoAcids

Proteins

Ribosomes

Other Control

Translation

Metabolism Products

Signal transductionATP

DNA

New gene

SensoryMotor

Prefrontal

Striatum

Reflex

LearningSoftware

Hardware

Digital

Analog

Horizontal Gene

Transfer

Horizontal App

Transfer

Horizontal Meme

Transfer

What can go wrong?

Before exploring

mechanisms

Horizontal Bad Gene Transfer

Horizontal Bad App Transfer

Horizontal Bad Meme

Transfer

Parasites &

Hijacking

Fragility?

Exploiting layered

architecture

Virus

Virus

Meme

Horizontal Bad Meme

Transfer

Our greatest fragility?

Meme

Many human beliefs are:• False• Unhealthy

Horizontal Bad Meme

Transfer

Our greatest fragility?

Meme

Many human beliefs are:• False• Unhealthy

• Masculinity• Compassion

Horizontal Transfer

Horizontal Transfer

Constrained

Deconstrained

Deconstrained

Universal architectures

Universal laws

Fast

Slow

Flexible InflexibleGeneral Special

SW Apps

OS

HW

top related