turbulent flows...turbulent flows are acutely sensitive to perturbations turbulence is only...

Post on 20-May-2020

15 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Turbulent Flows

Flow visualisation of a turbulent round jet

Turbulence

Leonardo da Vinci

Turbulence

Laminär

Turbulent

Osborne Reynolds (1883)

ULReReynolds number:

O. Reynolds (1883)

Turbulence

• Random

• 3D

• Diffusive

• Dissipative

• Property of the flow

• High Reynolds number

• Continuum

Turbulence

Pulsed flow

Impinging Jet

Impingement wall

inlopp

utlopp

Mean Sherwood number Sherwood number fluctuation

Turbulence

Big whirls have little whirls

Which feed on their velocity

Little whirls have lesser whirls

And so on to viscosity – in the molecular

sense

L F Richardson

Kolmogorov’s hypotheses

• At sufficiently high Reynolds number, the small scale

turbulent motions are statistically isotropic.

• In every turbulent flow, at sufficiently high Reynolds

number, the statistics of the small scale motions have

a universal form and are uniquely determined by

viscosity () and dissipation rate (e).

• In every turbulent flow, at sufficiently high Reynolds

number, there is a range of scales, much smaller than

the largest scales and much larger than the smallest

scales, where the statistics of the motions have a

universal form and are uniquely determined by e

idependent of .

Isotropic=equal in all directions

Homogeneous=equal at all locations

Kolmogorov microscales

Length

Time

Velocity

Reynolds number

e : dissipation rate, i.e. the

rate at which turbulent

kinetic energy is dissipated

to heat

Turbulent kinetic energy

spectrum

(Kolmogorov theory for isotropic & homogenous turbulence)

log(E

(k))

log(k)

Dissipation

subrange

Inertial

subrange

Large

scales

Universal range

-5/3

k: wave number = (2*p)/l l=wave length

production

dissipationtransport

Lorenz equations

xyzdt

dz

xzyxdt

dy

xydt

dx

10

3

8

Two cases:23 28

Initial values:

1.0)0(

1.0)0(

1.0)0(

z

y

x

Lorenz equations

Two cases:23 28

Lorenz equations

231.0)0( x 1000001.0)0( x

Difference

Lorenz equations

281.0)0( x 1000001.0)0( x

Difference

Lorenz equations

Observations:

23 28

What can we learn from this exercise regarding flows?

There are always perturbations

originating from boundary conditions,

initial conditions etc. present in a flow.

Turbulent flows are acutely sensitive to

perturbations

Turbulence is only meaningful to

describe in a statistical sense

Turbulence modelling

Direct simulation of isotropic turbulence

Domain: Cubic box of size 118L

8.048

211

11

110 pp

k LL

L

Required resolution: 5.1max k

1.25.1

p

xIn physical space

Turbulence modelling

Turbulence modelling

Direct simulation of isotropic turbulence

Required number of grid

nodes in each direction: pk

k

k

k L

L

LL

L

L

LN 1111

110

max

0

max 12

43

Re6.16.1 L

LN

2

94

9

06.0Re4.43lRN L In 3D:

e

2

RekLk

L

ll

guR

e

23

kL

Lengthscale of

large eddies:

Turbulence Reynolds number:

Taylor scale Reynolds number:

Turbulence modelling

Direct simulation of isotropic turbulence

Required temporal resolution

x

tkC

e

kTurbulence time scale:

The Courant number:

Assume that sampling over at least 4 turbulence

time scales is needed, then the number of time

steps is:

23

2.9120

80804

lpe

R

L

x

Lk

x

k

tM

20

1C

Computational work:633 66.0Re160 lRMN L

Turbulence modelling

Direct simulation of isotropic turbulence

Required time in days at a computing rate of 82 Gflop

Re N N3 M N3M CPU

time

Memory

94 104 1.1E06 1.2E03 1.3E09 14s 18 Mb

375 214 1.0E07 3.3E03 3.2E10 6.6 min 150 Mb

1500 498 1.2E08 9.2E03 1.1E12 3.8 h 2 Gb

6000 1260 2.0E09 2.6E04 5.2E13 7.3 days 30 Gb

24000 3360 3.8E10 7.4E04 2.8E15 1.1 years 565 Gb

96000 9218 7.8E11 2.1E05 1.6E17 61 years 11 Tb

N3= number of grid points

M= number of time steps

N3M= total work required

Averaging

Time average: duT

tu

Tt

t

1

Ensemble average: tuN

tu

N

n

n

1

)(1

Averaging

Variance: duuT

u

Tt

t

22 1

N

n

n uuN

u

1

2)(2 1

Standard deviation:rmsuu 2

uu

u

Averaged equations

Average:

Fluctuation:

Instantaneous: u

u

'u

Reynolds’ decomposition

'uuu

u

'u

Notation:

Averaged equations

0

y

v

x

u

2

2

2

2

2

2

2

2

1

1

y

v

x

v

y

p

y

vv

x

uv

t

v

y

u

x

u

x

p

y

uv

x

uu

t

u

Properties of the

averaging:

v'u'vuvu

vuvu

x

u

x

u

´(x,t)u

(x,t) u (x,t) u

0

Mass

Momentum

0

y

v

x

u

First mass conservation:

uuxx

u

Decomposition:

x

u

x

u

x

u

x

u

x

uuu

xx

u

Also note

Averaged equations

Similarly in y-dir:

0

y

v

x

u

In x-dir:

y

v

y

v

0

y

v

x

u

Momentum equation

t

u

t

u

2

2

2

2

x

u

x

u

x

p

x

p

11

Averaged equations

2

2

2

21

y

u

x

u

x

p

y

uv

x

uu

t

u

vuy

vuy

vuvuy

vuuvvuvuy

vvuuyy

uv

Convective terms

Reynolds Averaged Navier-Stokes (RANS)

equations

In 2D:

•3 equations

•3+3 unknowns

Leads to the closure problem.

0

y

v

x

u

y

vv

x

vu

y

v

x

v

y

p

y

vv

x

uu

t

v

y

vu

x

uu

y

u

x

u

x

p

y

uv

x

uu

t

u

2

2

2

2

2

2

2

2

1

1

Reynolds stress tensor

wwwvwu

wvvvvu

wuvuuu

wux

w

z

u

vux

v

y

u

uux

u

turbxz

viskxz

totxz

turbxy

viskxy

totxy

turbxx

viskxx

totxx

)()()(

)()()(

)()()( 2

jj

i

ij

jii

xx

u

x

p

x

uu

t

u

21

0

i

i

x

u

0

i

i

x

u

ji

jjj

i

ij

i

j

i uuxxx

u

x

p

x

uu

t

u

21

Reynolds

stress tensor

Averaged equations

Turbulence Modelling

N-eq. Models (e.g. k-e)- Short computational time

- Simple, robust

- Limited range of validity

Reynolds Stress Models, RSM- More general, still not universal

- More complex, seven PDE:s

- Extensive modeling

- Longer computational time

Reynolds Averaged Navier-Stokes:

”RANS”

Turbulence model

i

j

j

i

Tijjix

u

x

ukuu

3

2Boussinesq’s

hypothesis

Turbulent kinetic enegryii

uuwvu

k

2

1

2

222

Eddy viscosityMean rate of strain

Turbulence model

jk

T

jj

jx

k

xP

x

ku

t

k

e

j

T

jj

jxxk

CPk

Cx

ut

e

eeee

eee

2

21

e

2kCT

Turbulent kinetic energy

Dissipation rate

Production Dissipation rate

Turbulence model

jk

T

jj

jx

k

xP

x

ku

t

k

e

j

T

jj

jxxk

CPk

Cx

ut

e

eeee

eee

2

21

e

2kCT

The whole system of equations0

i

i

x

u

i

j

j

iT

jij

ij

i

x

u

x

u

xx

p

x

uu

t

u

1

ijijT SSP 2

i

j

j

iij

x

u

x

uS

2

1

top related