trailing edge noise prediction for rotating serrated blades · 20th aiaa/ceas aeroacoustics...

Post on 18-Aug-2020

2 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Trailing edge noise prediction for rotating serratedblades

Samuel Sinayoko1 Mahdi Azarpeyvand2 Benshuai Lyu3

1University of Southampton, UK2University of Bristol, UK

3University of Cambridge, UK

AVIATION 201420th AIAA/CEAS Aeroacoustics conference

Atlanta, 20 June 2014

1 / 24

Outline

1 Introduction

2 Theory

3 Results

4 Generalized Amiet model for isolated serrated edges

5 Conclusions

2 / 24

Outline

1 Introduction

2 Theory

3 Results

4 Generalized Amiet model for isolated serrated edges

5 Conclusions

3 / 24

Introduction

MotivationWind turbines (Oerlemans et al 2007)Open rotors (Node-Langlois et al AIAA-2014-2610, Kingan et alAIAA-2014-2745)

ExperimentsGruber et al (AIAA-2012)Moreau and Doolan (AIAA J. 2013)

NumericalJones and Sandberg (JFM 2012)Sanjose et al (AIAA-2014-2324)

4 / 24

Introduction

MotivationWind turbines (Oerlemans et al 2007)Open rotors (Node-Langlois et al AIAA-2014-2610, Kingan et alAIAA-2014-2745)

ExperimentsGruber et al (AIAA-2012)Moreau and Doolan (AIAA J. 2013)

NumericalJones and Sandberg (JFM 2012)Sanjose et al (AIAA-2014-2324)

4 / 24

Introduction

MotivationWind turbines (Oerlemans et al 2007)Open rotors (Node-Langlois et al AIAA-2014-2610, Kingan et alAIAA-2014-2745)

ExperimentsGruber et al (AIAA-2012)Moreau and Doolan (AIAA J. 2013)

NumericalJones and Sandberg (JFM 2012)Sanjose et al (AIAA-2014-2324)

4 / 24

Turbulent boundary layer trailing edge noise (TEN)A subtle process

1 Hydrodynamic gust convecting past the trailing edge2 Scattered into acoustics at the trailing edge3 Acoustic field induces a distribution of dipoles near the TE4 The dipoles radiate efficiently (M5) to the far field

5 / 24

Outline

1 Introduction

2 Theory

3 Results

4 Generalized Amiet model for isolated serrated edges

5 Conclusions

6 / 24

TEN modelling for isolated airfoilsHowe’s serrated edge model

Howe (1991) & Azarpeyvand (2012)

Spp = A D Φ

AssumptionsHigh frequency (kC > 1)Frozen turbulenceSharp edgeFull Kutta condition (∆PTE = 0)Low Mach number (M < 0.2)

7 / 24

TEN modelling for isolated airfoilsSerration profiles

x1

x3

U

2hs

ls

ls

2hs

ls

2hs

h′

slit thickness d

8 / 24

Edge spectra for serrated edges

Rewriting of Howe (1991) & Azarpeyvand et al. (2013)

Φ = ψ(K1δ)

ψ(ρ) =ρ2

[ρ2 + 1.332]2

10-2 10-1 100 101 102

ρ

10-5

10-4

10-3

10-2

10-1

100

ψ

9 / 24

Edge spectra for serrated edges

Rewriting of Howe (1991) & Azarpeyvand et al. (2013)

Φ =∑

n an(K1h) ψ(ρnδ)

ψ(ρ) =ρ2

[ρ2 + 1.332]2ρn =

√K2

1 + n2k2s

10-2 10-1 100 101 102

ρ

10-5

10-4

10-3

10-2

10-1

100

ψ

9 / 24

Edge spectra for serrated edges

Modal amplitudes an, K1hs = 25

30 20 10 0 10 20 300.0

0.2

0.4

0.6

0.8

1.0 Straight

30 20 10 0 10 20 300.00

0.01

0.02

0.03

0.04

0.05

0.06 Sinusoidal

30 20 10 0 10 20 300.00

0.05

0.10

0.15

0.20

0.25 Sawtooth

30 20 10 0 10 20 300.00

0.02

0.04

0.06

0.08

0.10 Slitted Sawtooth

10 / 24

TEN for Rotating Airfoils

Observer

Flow

γ

x

y

z

α

θΩ

Time averaged PSD vs Instantaneous PSD

Spp(ω) =1

T

∫T0

Spp(ω, t)dt

11 / 24

TEN for Rotating Airfoils

Observer

Flow

γ

x

y

z

α

θΩ

Time averaged PSD vs Instantaneous PSD

Spp(ω) =1

T

∫T0

Spp(ω, t)dt

11 / 24

Amiet’s model for rotating airfoils

Spp(ω) =1

T

∫T0

(ω ′

ω

)2

S ′pp(ω′, τ)dτ

Main steps:Ignore acceleration effects (ω Ω)Power conservation: Spp(ω, t)∆ω = S ′pp(ω

′, τ)∆ω ′

Change of variable: ∂t∂τ = ω ′ω

Doppler shift:

ω ′ω = ωS

ωO= 1− MSO·e

1+MFO·e

References:Schlinker and Amiet (1981)Sinayoko, Kingan and Agarwal (2013)

12 / 24

Outline

1 Introduction

2 Theory

3 Results

4 Generalized Amiet model for isolated serrated edges

5 Conclusions

13 / 24

Sawtooth serration designWind turbine blade element

Wind turbine blade element:Pitch angle: 10 degChord: 2m

Span: 7.25m

Rotational speed Ω = 2.6rad/s (RPM=25)Angle of attack: 0 degMblade = 0.165

Mchord = 0.167

14 / 24

Sawtooth serration designEffect of serration height

Wide sawtooth ls = 2δ

δ=0.5ls

100 101 102

Non-dimensional frequency kC

10

15

20

25

30

35

40

45

50

Sound P

ow

er

Level (S

PW

L) [

dB

re 1·1

0−12

]

4h/ls= 0

15 / 24

Sawtooth serration designEffect of serration height

Wide sawtooth ls = 2δ

δ=0.5ls

100 101 102

Non-dimensional frequency kC

10

15

20

25

30

35

40

45

50

Sound P

ow

er

Level (S

PW

L) [

dB

re 1·1

0−12

]

4h/ls= 0

4h/ls= 1

15 / 24

Sawtooth serration designEffect of serration height

Wide sawtooth ls = 2δ

δ=0.5ls

100 101 102

Non-dimensional frequency kC

10

15

20

25

30

35

40

45

50

Sound P

ow

er

Level (S

PW

L) [

dB

re 1·1

0−12

]

4h/ls= 0

4h/ls= 1

4h/ls= 2

15 / 24

Sawtooth serration designEffect of serration height

Wide sawtooth ls = 2δ

δ=0.5ls

100 101 102

Non-dimensional frequency kC

10

15

20

25

30

35

40

45

50

Sound P

ow

er

Level (S

PW

L) [

dB

re 1·1

0−12

]

4h/ls= 0

4h/ls= 1

4h/ls= 2

4h/ls= 4

15 / 24

Sawtooth serration designEffect of serration height

Wide sawtooth ls = 2δ

δ=0.5ls

100 101 102

Non-dimensional frequency kC

10

15

20

25

30

35

40

45

50

Sound P

ow

er

Level (S

PW

L) [

dB

re 1·1

0−12

]

4h/ls= 0

4h/ls= 1

4h/ls= 2

4h/ls= 4

4h/ls= 8

15 / 24

Sawtooth serration designEffect of serration height

Narrow sawtooth ls = δ/2

δ=2.0ls

100 101 102

Non-dimensional frequency kC

10

15

20

25

30

35

40

45

50

Sound P

ow

er

Level (S

PW

L) [

dB

re 1·1

0−12

]

4h/ls= 0

16 / 24

Sawtooth serration designEffect of serration height

Narrow sawtooth ls = δ/2

δ=2.0ls

100 101 102

Non-dimensional frequency kC

10

15

20

25

30

35

40

45

50

Sound P

ow

er

Level (S

PW

L) [

dB

re 1·1

0−12

]

4h/ls= 0

4h/ls= 1

16 / 24

Sawtooth serration designEffect of serration height

Narrow sawtooth ls = δ/2

δ=2.0ls

100 101 102

Non-dimensional frequency kC

10

15

20

25

30

35

40

45

50

Sound P

ow

er

Level (S

PW

L) [

dB

re 1·1

0−12

]

4h/ls= 0

4h/ls= 1

4h/ls= 2

16 / 24

Sawtooth serration designEffect of serration height

Narrow sawtooth ls = δ/2

δ=2.0ls

100 101 102

Non-dimensional frequency kC

10

15

20

25

30

35

40

45

50

Sound P

ow

er

Level (S

PW

L) [

dB

re 1·1

0−12

]

4h/ls= 0

4h/ls= 1

4h/ls= 2

4h/ls= 4

16 / 24

Sawtooth serration designEffect of serration height

Narrow sawtooth ls = δ/2

δ=2.0ls

100 101 102

Non-dimensional frequency kC

10

15

20

25

30

35

40

45

50

Sound P

ow

er

Level (S

PW

L) [

dB

re 1·1

0−12

]

4h/ls= 0

4h/ls= 1

4h/ls= 2

4h/ls= 4

4h/ls= 8

16 / 24

Effect of rotation on PSDDoppler factor

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8Blade element Mach

5

10

15

20

25

30

35

40

Pit

ch a

ngle

(deg)

CF

WT

PTO

PCR

Maximum Doppler factor (ω′/ω)2 (dB)

0.0

1.2

2.4

3.6

4.8

6.0

WT: wind turbine CF: cooling fanPTO: propeller take-off PC: propeller cruise

17 / 24

Outline

1 Introduction

2 Theory

3 Results

4 Generalized Amiet model for isolated serrated edges

5 Conclusions

18 / 24

Generalized Amiet model for serrated edgesTheory

Inspired by Roger et al (AIAA-2013-2108)Fourier series in spanwise direction.Pressure formulation and scattering approachDiscretize the solution using n Fourier modes

LP = DP +C∂P

∂y1

L =

(β2 + σ2

) ∂2∂y21

+∂2

∂y22+ 2ikM

∂y1

.

19 / 24

Generalized Amiet model for serrated edgesIterative solution

1 Refine the solution iteratively

P = limn→+∞Pn

2 Decoupled solution (order 0)

LP0 = DP0

3 Coupled solution (order 1)

LP1 = DP1 +C∂P0

∂y1.

20 / 24

Generalized Amiet model for serrated edgesResults

100 101

Non-dimensional frequency kC

5

0

5

10

15

20

25

30

∆SPL

(Str

aig

ht

Edge -

Saw

tooth

) [d

B]

order 0

order 1

Howe

Isolated sawtooth blade, M = 0.1, ls/δ = 1, hs/ls = 3.75.

21 / 24

Outline

1 Introduction

2 Theory

3 Results

4 Generalized Amiet model for isolated serrated edges

5 Conclusions

22 / 24

Conclusions

1 Rotation effect can be incorporated easily using Amiet’s approach2 Rotation has little effect (< 1dB) for low speed fans3 Rotation has significant effect (up to 5dB) on high speed fans4 Preliminary results for new model improves significantly on

Howe’s theory

23 / 24

Acknowledgements

Further information

http://www.sinayoko.comhttp://bitbucket.org/sinayokos.sinayoko@soton.ac.uk@sinayoko

Thank you!

24 / 24

Acknowledgements

Further information

http://www.sinayoko.comhttp://bitbucket.org/sinayokos.sinayoko@soton.ac.uk@sinayoko

Thank you!

24 / 24

Acknowledgements

Further information

http://www.sinayoko.comhttp://bitbucket.org/sinayokos.sinayoko@soton.ac.uk@sinayoko

Thank you!24 / 24

top related