topologicalpropertiesofquasiperiodictilings...topologicalpropertiesofquasiperiodictilings yaroslav...

Post on 29-Jan-2021

1 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

  • TopologicalPropertiesofQuasiperiodicTilingsYaroslav Don, Dor Gitelman, Eli Levy and Eric AkkermansDepartment of Physics, Technion – Israel Institute of Technology, Israel

    AbstractTopological properties of finite quasiperiodic tilings are examined. We study twospecific physical quantities: (a) the structure factor related to the Fourier transformof the structure; (b) spectral properties (using scattering matrix formalism) of thecorresponding quasiperiodic Hamiltonian. We show that both quantities involve aphase, whose windings describe topological numbers. We link these two phases,thus establishing a “Bloch theorem” for specific types of quasiperiodic tilings.

    Contact InformationEmail: yarosd@campus.technion.ac.ilThis work was supported by the Israel Science Foundation Grant No. 924/09.

    1D TilingsSubstitutions and Atomic DistributionsDefine a binary substitution rule by

    σ (a) = aαbβσ (b) = aγbδ ⇐⇒ a 7→ aαbβb 7→ aγbδ

    Associate occurrence matrix: M = ( α βγ δ )Consider only primitive matrices:• Largest eigenvalue λ1 > 1 (Perron-Frobenius)• Left and right first eigenvectors are strictly positiveDistribution of letters underlies distribution of atoms:

    x0• a x1• b x2• b x3• a x4• b x5• a x6• b x7• . . .Define atomic density

    ρ (x) =∑kδ (x − xk )

    with distances for a and b given by δk = xk+1 − xk = da,b.Let d̄ be the mean distance and uk the deviations from the mean. Definexk = d̄ k + δ uk , δ ≡ da − db

    Let g (ξ) = ∑k e−iξxk be the diffraction pattern, and S (ξ) = |g (ξ)|2 the structurefactor. Bragg peaks are located at [1]ξm,N = 2πd̄ mλN1 .We consider the following families:

    Pisot. The second eigenvalue |λ2| 1).• All these features have been observed experimentally [4, 5].

    References[1] J. M. Luck, C. Godrèche, A. Janner, and T. Janssen, J. Phys. A 26, 1951 (1993).[2] J. M. Dumont, in Springer proceedings in physics, edited by J.-M. Luck, P. Moussa,and M. Waldschmidt, (Springer Berlin Heidelberg, 1990), pp. 185–194.[3] C. Godrèche, and J. M. Luck, Phys. Rev. B 45, 176 (1992).[4] F. Baboux, E. Levy, A. Lemaître, C. Gómez, E. Galopin, L. Le Gratiet, I. Sagnes,A. Amo, J. Bloch, and E. Akkermans, Phys. Rev. B 95, 161114 (2017).

    [5] A. Dareau, E. Levy, M. B. Aguilera, R. Bouganne, E. Akkermans, F. Gerbier, andJ. Beugnon, Phys. Rev. Lett. 119, 215304 (2017).[6] J. Bellissard, A. Bovier, and J.-M. Chez, Rev. Math. Phys. 04, 1 (1992).[7] E. Akkermans, G. V. Dunne, and E. Levy, in Optics of aperiodic structures: funda-mentals and device applications, edited by L. Dal Negro, (Pan Stanford Publish-ing, 2014), pp. 407–449.

    [8] E. Levy, A. Barak, A. Fisher, and E. Akkermans, (2015) https://arxiv.org/abs/1509.04028.[9] M. Duneau, and A. Katz, Phys. Rev. Lett. 54, 2688 (1985).[10] Y. Don, D. Gitelman, E. Levy, and E. Akkermans, (in preperation), 2018.[11] L. A. Sadun, Vol. 46, University Lecture Series (American Mathematical Society,2008).

    [12] J. E. Anderson, and I. F. Putnam, Ergod. Th. Dynam. Sys. 18, 509 (1998).[13] J. Kellendonk, and I. F. Putnam, in Directions in mathematical quasicrystals,Vol. 13, edited by M. Baake, and R. V. Moody, CRM Monograph Series (AmericanMathematical Society, 2000), pp. 186–215.[14] J. Kellendonk, J. Phys. A: Math. Gen. 36, 5765 (2003).[15] E. Bombieri, and J. E. Taylor, J. Phys. Colloq. 47, C3–19–C3 (1986).

top related