todd d. little university of kansas director, quantitative training program director, center for...

Post on 25-Feb-2016

46 Views

Category:

Documents

3 Downloads

Preview:

Click to see full reader

DESCRIPTION

Dynamic P-Technique Structural Equation Modeling. Todd D. Little University of Kansas Director, Quantitative Training Program Director, Center for Research Methods and Data Analysis Director, Undergraduate Social and Behavioral Sciences Methodology Minor - PowerPoint PPT Presentation

TRANSCRIPT

1crmda.KU.edu

Todd D. LittleUniversity of Kansas

Director, Quantitative Training ProgramDirector, Center for Research Methods and Data Analysis

Director, Undergraduate Social and Behavioral Sciences Methodology MinorMember, Developmental Psychology Training Program

crmda.KU.eduWorkshop presented 3-7-2012 @

Society for Research in Adolescence Peer Preconference

Special Thanks to: Ihno Lee, Chapter co-author in Handbook.

Dynamic P-Technique Structural Equation Modeling

www.crmda.ku.edu 2

Cattell’s Data Box• Cattell invented the Box to help us think

‘outside the box’

• Given the three primary dimensions of variables, persons, and occasions, at least 6 different structural relationships can be utilized to address specific research questions

www.crmda.ku.edu 3

Cattell’s Data Box

Occasions of Measurement

Variables (or T

ests)

Pers

ons (

or E

ntiti

es)

www.crmda.ku.edu 4

Cattell’s Data Box• R-Technique: Variables by Persons

• Most common Factor Analysis approach• Q-Technique: Persons by Variables

• Cluster analysis – subgroups of people• P-Technique: Variables by Occasions

• Intra-individual time series analyses• O-Technique: Occasions by Variables

• Time-dependent (historical) clusters• S-Technique: People by Occasions

• People clustering based on growth patterns• T-Technique: Occasions by People

• Time-dependent clusters based on people

www.crmda.ku.edu 5

Michael Lebo’s Example Data• Lebo asked 5 people to rate their energy for

103 straight days• The 5 folks rated their energy on 6 items

using a 4 point scale:• Active, Lively, Peppy• Sluggish, Tired, Weary

• A priori, we would expect two constructs, positive energy and negative energy

www.crmda.ku.edu 6

Lag 0

Observational RecordO1

Observational RecordO2

Observational RecordO3

Observational RecordO4

Observational RecordOnObservational RecordOn-1On-1

On

Selected VariablesV

P-Technique Data Setup

www.crmda.ku.edu 7

Multivariate Time-series(Multiple Variables x Multiple Occasions for 1 Person)

www.crmda.ku.edu 8

1st 15 days for Subject 4, Lag 0 1 111 212 2 333 011 3 111 333 4 333 011 5 233 111 6 333 111 7 344 000 8 222 111 9 222 111 10 333 001 11 434 011 12 101 443 13 343 111 14 334 111 15 110 343

The Obtained Correlations All Days

Positive Items Negative Items

1.000 0.849 1.000 0.837 0.864 1.000 -0.568 -0.602 -0.660 1.000 -0.575 -0.650 -0.687 0.746 1.000 -0.579 -0.679 -0.724 0.687 0.786 1.000

www.crmda.ku.edu 9

Var 1Var 2

Three Indicators of the Same Construct in a Time Series

Var 3

Time

www.crmda.ku.edu 10

L15.1.s1.Lag0.LS8

Positive Negative

1.15 .99 .86 .81 1.27 .92

-.19(-.64)

.09 .18 .18 .21 .08 .13

Active WearyTiredSluggishPeppyLively

.19 .56

Model Fit: χ2(8, n=101) = 9.36, p = .31, RMSEA = .039(.000;.128), TLI/NNFI = .994, CFI=.997

X.21 .15 -.35 .03 .01 -.04

.88 .52

www.crmda.ku.edu 11

L15.1.s2.Lag0.LS8

Positive Negative

1.04 1.10 .86 .92 1.03 1.05

-.74(-.65)

.41 .04 .19 .72 .22 .21

Active WearyTiredSluggishPeppyLively

.93 1.43

Model Fit: χ2(8, n=101) = 8.36, p = .40, RMSEA = .014(.000;.119), TLI/NNFI = .999, CFI=.999

X.27 -.06 -.21 .01 .01 -.02

1.09 .96

www.crmda.ku.edu 12

L15.1.s3.Lag0.LS8

Positive Negative

1.07 1.11 .83 .73 1.17 1.10

-.21(-.43)

.40 .19 .33 .14 .10 .09

Active WearyTiredSluggishPeppyLively

.77 .32

Model Fit: χ2(8, n=101) = 9.70, p = .31, RMSEA = .050(.000;.134), TLI/NNFI = .992, CFI=.997

X.31 -.11 -.20 .00 .01 -.01

1.26 .28

www.crmda.ku.edu 13

L15.1.s4.Lag0.LS8

Positive Negative

.91 1.01 1.08 .95 1.05 1.00

-.82(-.81)

.20 .16 .15 .48 .28 .32

Active WearyTiredSluggishPeppyLively

.97 1.05

Model Fit: χ2(8, n=101) = 14.6, p = .07, RMSEA = .084(.000;.158), TLI/NNFI = .983, CFI=.991

X.19 .03 -.22 -.13 .11 .03

1.86 1.05

www.crmda.ku.edu 14

L15.1.s5.Lag0.LS8

Positive Negative

1.03 .96 1.02 .08 1.67 1.25

-.59(-.60)

.35 .52 .63 .17 .46 1.20

Active WearyTiredSluggishPeppyLively

1.19 .81

Model Fit: χ2(8, n=101) = 5.11, p = .75, RMSEA = .000(.000;.073), TLI/NNFI = 1.02, CFI=1.0

X.09 .16 -.25 -.03 .21 -.18

1.15 1.03

www.crmda.ku.edu 15

Measurement Invariance by ParticipantModel χ2 df p RMSEA 90% CI TLI/NNFI CFI Constraint

Tenable

Null 3351.349 123 <.001 --- --- - --- --- --- ---

Configural 47.161 40 .203 .038 .000-.082 0.993 0. 998 ---Invariance

Loading 166.392 56 <.001 .137 .113-.162 0.925 0.966 NoInvariance

Intercept 373.738 72 <.001 .192 .172-.213 0.843 0.907 NoInvariance

Partial 90.255 63 <.014 .063 .025-.092 0.984 0.982 YesInvariance

(L3.alternative null fit.xls)

(L15.s1-s5.0.Lag0.null)(L15.s1-s5.1.Lag0.config)(L15.s1-s5.2.Lag0.weak)

(L15.s1-s5.3.Lag0.partial)(L15.s1-s5.4.Lag0.strong)

www.crmda.ku.edu 16

Some Thoughts• The partial invariance across persons

highlights the ideographic appeal of p-technique

• Nomothetic comparisons of the constructs is doable, but the composition of the constructs is allowed to vary for some persons (e.g., person 5 did not endorse ‘sluggish’).

• In fact, Nesselroade has an idea that turns the concept of invariance ‘on its head’

www.crmda.ku.edu 17

Lag 0

Non-matched recordObservational RecordO1

Observational RecordO2

Observational RecordO3

Observational RecordOnObservational RecordOn-1On-1

On

Selected Variables(V )Lag 1

Observational RecordO1

Observational RecordO2

Observational RecordO3

Observational RecordO4

Observational RecordO4 Observational RecordO5

Non-matched recordObservational RecordOn

Selected Variables (V*)2V,or V+V*

Dynamic P-Technique Setup

www.crmda.ku.edu 18

C 12

C 13

CL 21*

CL 12*

C 1*3* C 2*3*

C 1*2*

CL 13* CL 23*

CL 31*

CL 32*

AR 11*

AR 22*

AR 33*

C 23

21

22

23

21*

22*

23*

Variable 1

Variable 2

Variable 3

Variable 1*

Variable 2*

Variable 3*

Variable 1 Variable 2 Variable 3 Variable 1* Variable 2* Variable 3*

Lag 0 Lag 1

A Lagged Covariance Matrix

AR = Autoregressive CorrelationCL = Cross-lagged CorrelationC = Within Lag Covariance

www.crmda.ku.edu 19

1st 15 days for Subject 4, 3 Lags 1 111 212 333 011 111 333 2 333 011 111 333 333 011 3 111 333 333 011 233 111 4 333 011 233 111 333 111 5 233 111 333 111 344 000 6 333 111 344 000 222 111 7 344 000 222 111 222 111 8 222 111 222 111 333 001 9 222 111 333 001 434 011 10 333 001 434 011 101 443 11 434 011 101 443 343 111 12 101 443 343 111 334 111 13 343 111 334 111 110 343 14 334 111 110 343 444 000 15 110 343 444 000 333 120

www.crmda.ku.edu 20

L15.4.s4.3lags: Subject 4

NegativeLag 0

PositiveLag 0

1*

1*

NegativeLag 1

.84

PositiveLag 1

.95

NegativeLag 2

.82

PositiveLag 2

.95

-.79 -.88 -.88

.65

.23

.65

.23

.36 .36

Model Fit: χ2(142, n=101) = 154.3, p = .23; RMSEA = .02; TLI/NNFI = .99

(Initial model: L15.3.s4.3lags)

www.crmda.ku.edu 21

L15.4.s1.3lags: Subject 1

NegativeLag 0

PositiveLag 0

1*

1*

NegativeLag 1

.94

PositiveLag 1

1

NegativeLag 2

.94

PositiveLag 2

1

-.64 -.66 -.66

.24 .24

Model Fit: χ2(144, n=101) = 159.9, p = .17; RMSEA = .05; TLI/NNFI = .99

(Initial model: L15.3.s1.3lags)

www.crmda.ku.edu 22

L15.4.s5.3lags: Subject 5

NegativeLag 0

PositiveLag 0

1*

1*

NegativeLag 1

1

PositiveLag 1

.94

NegativeLag 2

.94

PositiveLag 2

.94

-.61 -.66 -.66

.24 .24

Model Fit: χ2(143, n=101) = 93.9, p = .99; RMSEA = .00; TLI/NNFI = 1.05

.24

(Initial model: L15.3.s5.3lags)

www.crmda.ku.edu 23

L15.4.s3.3lags: Subject 3

NegativeLag 0

PositiveLag 0

1*

1*

NegativeLag 1

.94

PositiveLag 1

1

NegativeLag 2

.92

PositiveLag 2

.88

-.41 -.51 -.51

.24 .24

.37

.31 .31

Model Fit: χ2(142, n=101) = 139.5, p = 1.0; RMSEA = .0; TLI/NNFI = 1.0

(Initial model: L15.3.s3.3lags)

www.crmda.ku.edu 24

L15.4.s2.3lags: Subject 2

NegativeLag 0

PositiveLag 0

1*

1*

NegativeLag 1

.95

PositiveLag 1

.95

NegativeLag 2

.91

PositiveLag 2

.94

-.63 -.63 -.63

.24 .24

-.17

-.24 -.24

Model Fit: χ2(142, n=101) = 115.2, p = .95; RMSEA = .0; TLI/NNFI = 1.0

(Initial model: L15.3.s2.3lags)

www.crmda.ku.edu 25

As Represented in Growth Curve Models

• How does mood fluctuate during the course of a week?

• Restructure chained, dynamic p-technique data into latent growth curve models of daily mood fluctuation

• Examine the average pattern of growth • Variability in growth (interindividual

variability in intraindividual change)

www.crmda.ku.edu 26

Weekly Growth TrendsWeek 1 Week 2 Week 3

Week 4 Week 5 Week 6

Carrig, M., Wirth, R.J., & Curran, P.J. (2004). A SAS Macro for Estimating and Visualizing Individual Growth Curves. Structural Equation Modeling: An Interdisciplinary Journal, 11, 132-149.

www.crmda.ku.edu 27

P-technique Data TransformationTraditional P-technique

Dynamic P-tech, Arbitrary

Dynamic P-tech, Structured

Singleperson

- Identical variable relationships (same r at every time point)- Independent observations

- With time lags, how do scores at T1 affect those at T2- Time points are unstructured(Time 1, Time 2)

- Time dependency- Time points are non-arbitrary (Mon, Tues, Wed)- Compare equivalent relationships

Chained / 2+ people

- Stacked subject data, pools intra-individual info- Assume identical relationships

- With time lags- Time dependency- Unstructured time points

- Time dependency- Structured time points- Compare equivalent relationships across a sample

www.crmda.ku.edu 28

Data Restructuring• Add 7 lags – autoregressive effects of energy/mood within a

one-week period• Ex:

Subj Day Lag0 Lag1 Lag2 Lag3 Lag4 Lag5 Lag6 1 Mo . . . . . . 1 1 Tu . . . . . 1 2 1 We . . . . 1 2 1 1 Th . . . 1 2 1 0 1 Fr . . 1 2 1 0 1 1 Sa . 1 2 1 0 1 0 1 Su 1 2 1 0 1 0 1 1 Mo 2 1 0 1 0 1 2 1 Tu 1 0 1 0 1 2 2 1 We 0 1 0 1 2 2 1

• Impute empty records• Create parcels by averaging 3 positive/negative items

www.crmda.ku.edu 29

Data Restructuring• Retain selected rows (with Monday as the

beginning of the week)• Stack participant data setsSubj Day PA_Mo PA_Tu PA_We PA_Th PA_Fr PA_Sa PA_Su 1 Mo1 1.00 0.67 0.67 1.33 1.00 1.33 0.67 1 Mo2 0.67 0.67 1.00 1.00 1.33 0.67 1.00 1 Mo3 0.33 1.00 1.00 1.67 1.67 0.00 1.00 1 . . . . . . . . 1 Mo15 1.00 0.67 0.67 1.33 1.00 1.33 0.67 2 Mo1 1.00 0.33 0.67 0.33 0.67 2.33 0.00 2 Mo2 0.00 0.00 1.00 0.67 1.33 1.33 2.67 2 Mo3 1.33 3.00 1.33 3.00 1.67 0.00 2.67 . . . . . . . . . . . . . . . . . . 5 Mo15 0.00 1.67 0.00 1.33 0.67 1.00 0.33

• Note: meaning assigned to arbitrary time points

www.crmda.ku.edu 30

Raw Means and Standard Deviations

Energy ratings on a 5-point scale:Mon Tues Wed Thurs Fri Sat Sun

Positive /High Energy

1.23(1.05)

1.23(.97)

1.24(1.10)

1.24(.97)

1.32(1.01)

1.18(.94)

1.29(1.02)

Negative /Low Energy

0.97(1.14)

0.92(1.17)

0.90(1.05)

0.81(.97)

0.96(1.17)

0.84(1.06)

1.05(1.08)

N = 75[15 weeks x 5 subjects]

www.crmda.ku.edu 31

Level and Shape model

0*

a1 a2

Mon

NegIntercept

NegSlope

1*1* 1* 1*

1.35 -.30

.01.24

-.04

1*

Tues Wed Thurs Fri Sat Sun

1*1*1*

a1 a2

PosSlope

1.08 .13

.08

.0021*S4

1*S3

1*S2

1*S1

.04Pos

Intercept

Model fit: χ2 (116) = 126.79, p = .23, RMSEA = .000, CFI = .98, TLI/NNFI = .98

.06 .12.06 -.10

(L15.7lags.LevShape)

www.crmda.ku.edu 32

Positive Affect model

1*

a1 a3

1*

1.23 .07

.05.19 .09 SundayFriday

.01

a2.07

.09.002

Model fit: χ2 (25) = 25.96, p = .41, RMSEA = .021, CFI = .99, TLI/NNFI = .99

Mon Tues Wed Thurs Fri Sat Sun

1* 1* 1* 1* 1*1*

1*

.79

(L15.7lags.pos)

Pos Intercept

www.crmda.ku.edu 33

Negative Affect model

Model fit: χ2 (20) = 18.46, p = .56, RMSEA = .000, CFI = 1.00, TLI/NNFI = 1.01

Mon Tues Wed Thurs Fri Sat Sun.70

1*

1*

1* 1* 1* 1*1*

1*

Friday Sunday

1*2*3*

.40 .01 .09 .12

.02

.10

-.03

.001

.003

-.001a1

.84a4

.21

a2 a3.05 .13

(L15.7lags.neg)

NegIntercept

NegSlope

www.crmda.ku.edu 34

Cost-benefit analysis• Extrapolates the average within-person

change from pooled time series data• But obscures unique information about

each individual’s variability and growth patterns

• Does not utilize the strengths of P-technique data

• Add subject covariates to detect individual differences at the mean level

www.Quant.KU.edu 35

UpdateDr. Todd Little is currently at

Texas Tech UniversityDirector, Institute for Measurement, Methodology, Analysis and Policy (IMMAP)

Director, “Stats Camp”Professor, Educational Psychology and Leadership

Email: yhat@ttu.eduIMMAP (immap.educ.ttu.edu)Stats Camp (Statscamp.org)

top related