the use of high-frequency data in financial econometrics...

Post on 22-Jul-2020

0 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

The Use of High-Frequency Datain Financial Econometrics:Recent Developments

Peter Reinhard Hansen

Department of Economics, Stanford University

Stanford Conference in Quantitative Finance, 2010

Peter Reinhard Hansen (Stanford) Financial Econometrics November 2010 1 / 96

Financial Econometrics

The Society for Financial Econometrics (SoFiE) Founded 2008

Journal of Financial Econometrics (2003).

Oxford-Man Institute @ Oxford University (2007)

Volatility Institute @ NYU Stern (Robert Engle) (2009)

VLAB

Peter Reinhard Hansen (Stanford) Financial Econometrics November 2010 2 / 96

Introduction

Part 1: Accurate Measures of VolatilityRealized Measures of Volatility Computed from High-Frequency Data

Ideal Case: Realized VarianceNoisy Data (Market Microstructure)Empirical Properties of NoiseRobust Estimators:Realized Kernel & Markov Chain Estimator

Part 2: ApplicationsUtilizing Realized Measures for Volatility Modeling and Forecasting

Realized GARCH Models

Peter Reinhard Hansen (Stanford) Financial Econometrics November 2010 3 / 96

Realized Measures

of

Volatility

Peter Reinhard Hansen (Stanford) Financial Econometrics November 2010 4 / 96

High-Frequency Prices

Peter Reinhard Hansen (Stanford) Financial Econometrics November 2010 5 / 96

A Measure of Variation of Asset Prices

Suppose that Yt = logPt is a semi-martingale

Yt =

∫ t

0

audu +

∫ t

0

σudBu + Jt ,

where

a is a predictable locally bounded drift,σ is a cadlag volatility process,B is a standard Brownian motion, andJt =

∑Nt

i=1Di is a �nite activity jump process.

Quadratic Variation (over [0, 1]) is

QV =

∫1

0

σ2udu +

N1∑i=1

D2

i .

Peter Reinhard Hansen (Stanford) Financial Econometrics November 2010 6 / 96

Intraday Returns

Divide day into n subintervals

0 = T0 < T1 < · · · < Tn−1 < Tn = 1,

(e.g. equidistant Tj − Tj−1 = 1

n).

Intraday returns

yj ,n = YTj− YTj−1 , j = 1, . . . , n.

Daily return is the sum of intraday returns,

Y1 − Y0 = y1,n + · · ·+ yn,n.

Peter Reinhard Hansen (Stanford) Financial Econometrics November 2010 7 / 96

Realized Variance (Empirical QV)

Realized variance is de�ned by

RV =n∑

j=1

y2j ,n.

Properties (ideal case)

RVp→ QV as supi=1,...,n |Ti − Ti−1| → 0.

No jumps (i.e. Jt = 0) then

QV = IV :=

∫1

0

σ2udu, (integrated variance)

and √n(RV − IV )

d→ N(0,V ).

Peter Reinhard Hansen (Stanford) Financial Econometrics November 2010 8 / 96

Literature

Literature Invigorated byAndersen and Bollerslev (1998)Realized Variance useful for evaluation of GARCH models

Statistical Properties of Realized VarianceAndersen et al. (2001)Barndor�-Nielsen and Shephard (2002)Jacod (1994), Jacod and Protter (1998)

Peter Reinhard Hansen (Stanford) Financial Econometrics November 2010 9 / 96

The Great Tragedy of Science:

The Slaying of a Beautiful

Hypothesis by an Ugly FactThomas H. Huxley (1825-1895).

Peter Reinhard Hansen (Stanford) Financial Econometrics November 2010 10 / 96

The Great Tragedy of Science:

The Slaying of a Beautiful

Hypothesis by an Ugly FactThomas H. Huxley (1825-1895).

Peter Reinhard Hansen (Stanford) Financial Econometrics November 2010 11 / 96

High-Frequency Prices: AA 2007-05-04

Peter Reinhard Hansen (Stanford) Financial Econometrics November 2010 12 / 96

High-Frequency Prices: AA 2007-01-16

Peter Reinhard Hansen (Stanford) Financial Econometrics November 2010 13 / 96

High-Frequency Prices: AA 2007-01-26

Peter Reinhard Hansen (Stanford) Financial Econometrics November 2010 14 / 96

High-Frequency Prices: AA 2007-01-26 (zoom)

Peter Reinhard Hansen (Stanford) Financial Econometrics November 2010 15 / 96

High-Frequency Returns are Autocorrelated

Autocorrelation causes RV to be biased/inconsistent.

Computing RV with tick-by-tick returns says more about �noise� than�volatility�.

Ad-hoc resolution: Sample sparsely.

Compute RV using 5-minute returns.

Peter Reinhard Hansen (Stanford) Financial Econometrics November 2010 16 / 96

Sample Sparsely

Peter Reinhard Hansen (Stanford) Financial Econometrics November 2010 17 / 96

Volatility Signature Plot Reveals Bias Problem

Peter Reinhard Hansen (Stanford) Financial Econometrics November 2010 18 / 96

Price Without Noise

Peter Reinhard Hansen (Stanford) Financial Econometrics November 2010 19 / 96

Prices With Noise

Peter Reinhard Hansen (Stanford) Financial Econometrics November 2010 20 / 96

Properties of the Noise

Hansen and Lunde (2006)Journal of Business and Economic StatisticsInvited paper with Comments and Rejoinder.

Noise Ut is...

... serial dependent

... endogenous (not independent of Yt)

... has changed over time (tick size)

... is �small�.

Peter Reinhard Hansen (Stanford) Financial Econometrics November 2010 21 / 96

RobustRealized Measures

Peter Reinhard Hansen (Stanford) Financial Econometrics November 2010 22 / 96

Realized Kernel

Realized Autocovariances

γh =n∑

i=1

yi ,nyi−h,n.

So RV = γ0.

RK =∞∑

h=−∞k( h

H)γh,

where

k(·) is a kernel function andH is a bandwidth parameter.

Peter Reinhard Hansen (Stanford) Financial Econometrics November 2010 23 / 96

Kernel Functions

Peter Reinhard Hansen (Stanford) Financial Econometrics November 2010 24 / 96

Realized Kernel: Various Crises

Figure: Realized volatility for the period 1997-2009 (annualized) and the time ofsome of the major crises and events.

Peter Reinhard Hansen (Stanford) Financial Econometrics November 2010 25 / 96

Volatility Signature Plot

Peter Reinhard Hansen (Stanford) Financial Econometrics November 2010 26 / 96

Refresh Time and Semi-Stale Prices

Multivariate Problem

Asynchronous Trading (quoting)Refresh Time �aligns� observations,and induces additional noise

Peter Reinhard Hansen (Stanford) Financial Econometrics November 2010 27 / 96

Realized Beta from Realized Kernel

Peter Reinhard Hansen (Stanford) Financial Econometrics November 2010 28 / 96

Literature on Realized Kernel

Univariate Realized KernelBarndor�-Nielsen et al. (2008)

Multivariate Realized KernelBarndor�-Nielsen et al. (2010a)

Realized Kernels in PracticeBarndor�-Nielsen et al. (2009)

Relation to other estimatorsBarndor�-Nielsen et al. (2010b)

Peter Reinhard Hansen (Stanford) Financial Econometrics November 2010 29 / 96

Markov Chain Estimator(Personal Favorite)

Hansen and Horel (2009)

Peter Reinhard Hansen (Stanford) Financial Econometrics November 2010 30 / 96

Prices On A Grid

Peter Reinhard Hansen (Stanford) Financial Econometrics November 2010 31 / 96

The Markov Chain Estimator

Exploits discreteness of price changes.

Simple to compute

Estimate MC model (requires counting)Estimator computed with basic matrix operations

Inference...

Standard errors given in closed-formAsymptotics is reliable

Peter Reinhard Hansen (Stanford) Financial Econometrics November 2010 32 / 96

Empirical Example. GE 2004-11-01

x =

−3−2−11

2

3

P =

0.17 0.00 0.33 0.50 0.00 0.000.00 0.06 0.23 0.51 0.17 0.030.00 0.01 0.25 0.71 0.02 0.000.00 0.02 0.72 0.25 0.01 0.000.00 0.14 0.64 0.19 0.03 0.000.00 0.50 0.50 0.00 0.00 0.00

π =

0.000.020.480.480.020.00

.

Compute

Λπ = diag (π) , Z = (I − P + Π)−1 Π = ιπ′.

Markov Chain Estimator is: MC = x ′[

nclog

Λπ(2Z − I )]x

= x ′

0.007 −0.000 −0.001 0.000 −0.000 −0.000−0.000 0.035 −0.013 −0.003 0.010 0.002−0.000 −0.012 0.533 0.256 −0.004 −0.002−0.001 −0.004 0.250 0.532 −0.008 −0.000−0.000 0.008 0.004 −0.014 0.033 0.000−0.000 0.004 −0.001 −0.003 0.000 0.004

x = 0.7469.

Peter Reinhard Hansen (Stanford) Financial Econometrics November 2010 33 / 96

Filtering Argument

Observed Prices: XTj, j = 0, 1, . . . , n, with

∆XTj= XTj

− XTj−1 a homogeneous ergodic MC.

Consider �ltered pricesE(XTj+h

|FTj).

Easy to compute within the MC framework because

E(XTj+h|FTj

) = XTj+

h∑i=1

E(∆XTj+i|FTj

).

Even as h→∞!

Peter Reinhard Hansen (Stanford) Financial Econometrics November 2010 34 / 96

Martingale Representation

We haveXTj

= µj + YTj+ UTj

,

where

µj = µ · j , with µ = E(∆XTj);

YTj= lim

h→∞E(XTj+h

− µj+h|FTj)

is a Martingale; and

UTjis stationary, ergodic, bounded process.

Peter Reinhard Hansen (Stanford) Financial Econometrics November 2010 35 / 96

MC Estimator is RV of Filtered Price

XTj= µj + YTj

+ UTj,

MC estimator is basically the realized variance of YTj,

MC# = nx ′Λπ(2Z − I )x .

Consistent with a Gaussian limit distribution under appropriateassumption.

Log-correction

MC =nx ′Λπ(2Z − I )x

1

n

∑nj=1

X 2

Tj

.

Peter Reinhard Hansen (Stanford) Financial Econometrics November 2010 36 / 96

Con�dence Intervals

Peter Reinhard Hansen (Stanford) Financial Econometrics November 2010 37 / 96

Financial Crisis:

Markov Chain Estimates

USD/YEN

Peter Reinhard Hansen (Stanford) Financial Econometrics November 2010 38 / 96

Peter Reinhard Hansen (Stanford) Financial Econometrics November 2010 39 / 96

Peter Reinhard Hansen (Stanford) Financial Econometrics November 2010 40 / 96

Peter Reinhard Hansen (Stanford) Financial Econometrics November 2010 41 / 96

Peter Reinhard Hansen (Stanford) Financial Econometrics November 2010 42 / 96

Peter Reinhard Hansen (Stanford) Financial Econometrics November 2010 43 / 96

Peter Reinhard Hansen (Stanford) Financial Econometrics November 2010 44 / 96

Peter Reinhard Hansen (Stanford) Financial Econometrics November 2010 45 / 96

Peter Reinhard Hansen (Stanford) Financial Econometrics November 2010 46 / 96

Peter Reinhard Hansen (Stanford) Financial Econometrics November 2010 47 / 96

Peter Reinhard Hansen (Stanford) Financial Econometrics November 2010 48 / 96

Peter Reinhard Hansen (Stanford) Financial Econometrics November 2010 49 / 96

Peter Reinhard Hansen (Stanford) Financial Econometrics November 2010 50 / 96

Peter Reinhard Hansen (Stanford) Financial Econometrics November 2010 51 / 96

Peter Reinhard Hansen (Stanford) Financial Econometrics November 2010 52 / 96

Peter Reinhard Hansen (Stanford) Financial Econometrics November 2010 53 / 96

Peter Reinhard Hansen (Stanford) Financial Econometrics November 2010 54 / 96

Financial Crisis:

Markov Chain Estimates

SPY

Peter Reinhard Hansen (Stanford) Financial Econometrics November 2010 55 / 96

Peter Reinhard Hansen (Stanford) Financial Econometrics November 2010 56 / 96

Peter Reinhard Hansen (Stanford) Financial Econometrics November 2010 57 / 96

Peter Reinhard Hansen (Stanford) Financial Econometrics November 2010 58 / 96

Peter Reinhard Hansen (Stanford) Financial Econometrics November 2010 59 / 96

Peter Reinhard Hansen (Stanford) Financial Econometrics November 2010 60 / 96

Peter Reinhard Hansen (Stanford) Financial Econometrics November 2010 61 / 96

Peter Reinhard Hansen (Stanford) Financial Econometrics November 2010 62 / 96

Peter Reinhard Hansen (Stanford) Financial Econometrics November 2010 63 / 96

Peter Reinhard Hansen (Stanford) Financial Econometrics November 2010 64 / 96

High-Frequency Data andForecasting

Peter Reinhard Hansen (Stanford) Financial Econometrics November 2010 65 / 96

Volatility Forecasting using High-Frequency Data

Hansen and Lunde (2011) (Oxford Handbook of Economic Forecasting).

HF data improves...

understanding of volatility dynamics � key for forecasting.understanding of the driving forces of volatility.For instance: Study of news announcements and their e�ect on the�nancial markets.evaluation of models/forecast

Realized measures...

good predictors of future volatility.led to new and better volatility models... yield more accurateforecasts.facilitate better estimation of complex volatility models.

Peter Reinhard Hansen (Stanford) Financial Econometrics November 2010 66 / 96

Realized GARCH Models

joint with

Albert Huang and Howard Shek

Peter Reinhard Hansen (Stanford) Financial Econometrics November 2010 67 / 96

ARCH and GARCH Models

ARCH-type models (Engle, 1982)

µt ≡ Et−1(rt) ht ≡ vart−1(rt).

Studentized returns

zt =rt − µt√

ht∼ (0, 1)

GARCH(1,1) (Bollerslev, 1986)

ht = ω + αr2t−1 + βht−1.

β ≈ 0.95 and α ' 0.05 in practice.

Peter Reinhard Hansen (Stanford) Financial Econometrics November 2010 68 / 96

GARCH Model

Squared returns, r2t−1, de�nes the dynamic of the conditional variance

ht = ω + αr2t−1 + βht−1.

r2t can be viewed as a noisy measure of volatility

Realized measures provide more accurate measurements of volatility.

Peter Reinhard Hansen (Stanford) Financial Econometrics November 2010 69 / 96

GARCH-X Model

Engle (2002), and many others

ht = ω + αr2t−1 + βht−1 + γxt−1.

xt is a realized measure of volatility (e.g. RV)

Huge improvement in the empirical �t.

Typically

γ ' 0.5.α ' 0. (ARCH parameter becomes insigni�cant)

Peter Reinhard Hansen (Stanford) Financial Econometrics November 2010 70 / 96

GARCH Model

Re-write GARCH(1,1) equation:

ht = ω + πht−1 + α(r2t−1 − ht−1)

π = α + β measures how persistent is volatility.

α ' �the strength of the signal r2t−1�

β ≈ 0.95 and α ' 0.05 in practice.

Peter Reinhard Hansen (Stanford) Financial Econometrics November 2010 71 / 96

GARCH is Slow

Peter Reinhard Hansen (Stanford) Financial Econometrics November 2010 72 / 96

GARCH-X with a Realized Measure is Fast

Peter Reinhard Hansen (Stanford) Financial Econometrics November 2010 73 / 96

GARCH-X is Incomplete

Data (rt , xt), but model only speci�es rt |rt−1,xt−1, . . .Simple case

rt =√htzt .

ht = ω + αr2t−1 + βht−1 + γxt−1.

Need a Model for xt .

Peter Reinhard Hansen (Stanford) Financial Econometrics November 2010 74 / 96

Realized GARCH

Peter Reinhard Hansen (Stanford) Financial Econometrics November 2010 75 / 96

Realized GARCH: Simple Case

GARCH-X structure

rt =√htzt

ht = ω + αr2t−1 + βht−1 + γxt−1

Measurement Equation completes the model

xt = ξ + ϕht + Errort .

xt is noisy measurement of QVt

QVt is ht + volatility shock.

Peter Reinhard Hansen (Stanford) Financial Econometrics November 2010 76 / 96

Logarithmic Speci�cation

Logarithmic speci�cation is preferred

log ht = ω + β log ht−1 + γ log xt−1.

log xt = ξ + ϕ log ht + τ(zt) + ut .

Leverage Function:

τ(z) = τ1z + τ2(z2 − 1)

Captures the joint dependence between

return shocks, ztvolatility shocks, τ(zt) + ut .

Peter Reinhard Hansen (Stanford) Financial Econometrics November 2010 77 / 96

Key Features of Realized GARCH

Empirical Features

Easy to estimate.Captures return-volatility dependence (leverage e�ect).Properties of multiperiod returns (skewness and kurtosis)Outperforms conventional GARCH

Theoretical Features (elegant mathematical structure)

Parsimonious

Tractable analysis (quasi maximum likelihood).Induced simple ARMA structure for both x and h

Natural extension of conventional GARCH

Peter Reinhard Hansen (Stanford) Financial Econometrics November 2010 78 / 96

Data

Dow Jones Industrial Average stocks and SPY (ETF).

2002-01-01 to 2007-12-31 as in-sample data and2008-01-01 to 2008-08-31 as out-of-sample.

For x , we use the realized kernel (RK) by BHLS (2008)

xt ≈ ht with open-to-close returnsxt<ht (on average) with close-to-close returns

Peter Reinhard Hansen (Stanford) Financial Econometrics November 2010 79 / 96

Linear Model (SPY Open-to-Close)

GARCH Equation

ht = 0.09(0.05)

+ 0.29(0.16)

ht−1 + 0.63(0.18)

xt−1

Measurement Equation

xt = −0.05(0.09)

+ 1.01(0.19)

ht +−0.02(0.02)

zt + 0.06(0.01)

(z2t − 1)︸ ︷︷ ︸τ(z)

+ ut

Standard deviation of ut : σu = 0.51(0.05)

.

Peter Reinhard Hansen (Stanford) Financial Econometrics November 2010 80 / 96

Linear Model (SPY Close-to-Close)

GARCH Equation

ht = 0.07(0.04)

+ 0.29(0.15)

ht−1 + 0.87(0.25)

xt−1

Measurement Equation

xt = +0.00(0.08)

+ 0.74(0.14)

ht +−0.07(0.02)

zt + 0.03(0.01)

(z2t − 1)︸ ︷︷ ︸τ(z)

+ ut

Standard deviation of ut : σu = 0.51(0.06)

.

Peter Reinhard Hansen (Stanford) Financial Econometrics November 2010 81 / 96

Log-Linear Model (SPY Open-to-Close)

GARCH Equation

log ht = 0.04(0.02)

+ 0.70(0.05)

log ht−1 + 0.45(0.04)

log xt−1 − 0.18(0.06)

log xt−2

Measurement Equation

log xt = −0.18(0.05)

+ 1.04(0.07)

log ht +−0.07(0.01)

zt + 0.07(0.01)

(z2t − 1)︸ ︷︷ ︸τ(z)

+ ut

Standard deviation of ut : σu = 0.38(0.08)

.

Persistence Parameter

π = β + (γ1 + γ2)ϕ = 0.986

Peter Reinhard Hansen (Stanford) Financial Econometrics November 2010 82 / 96

Log-Linear Model (SPY Close-to-Close)

GARCH Equation

log ht = 0.11(0.02)

+ 0.72(0.05)

log ht−1 + 0.48(0.06)

log xt−1 − 0.21(0.07)

log xt−2

Measurement Equation

log xt = −0.42(0.06)

+ 1.00(0.10)

log ht +−0.11(0.01)

zt + 0.04(0.01)

(z2t − 1)︸ ︷︷ ︸τ(z)

+ ut

Standard deviation of ut : σu = 0.38(0.08)

.

Persistence Parameter

π = β + (γ1 + γ2)ϕ = 0.987

Peter Reinhard Hansen (Stanford) Financial Econometrics November 2010 83 / 96

Estimated News Impact Curve

Peter Reinhard Hansen (Stanford) Financial Econometrics November 2010 84 / 96

Skewness and Kurtosis of Cumulative Returns

Figure: Skewness and kurtosis in line with empirical returns

Peter Reinhard Hansen (Stanford) Financial Econometrics November 2010 85 / 96

Multi-Period Forecast

Multi-period ahead predictions with the Realized GARCH model isstraightforward.

When p = q = 1. we obtain VARMA(1,1) structure[htxt

]=

[β γϕβ ϕγ

] [ht−1xt−1

]+

ξ + ϕω

]+

[0

τ(zt) + ut

],

so we can write, Yt = AYt−1 + µ+ εt .

Peter Reinhard Hansen (Stanford) Financial Econometrics November 2010 86 / 96

Realized GARCH Volatility

during the

Global Financial Crisis

Peter Reinhard Hansen (Stanford) Financial Econometrics November 2010 87 / 96

Realized GARCH: Global Financial Crisis

Figure: Conditional volatility during the global �nancial crisis with some of themajor events .Peter Reinhard Hansen (Stanford) Financial Econometrics November 2010 88 / 96

Extensions

Realized GARCH

Peter Reinhard Hansen (Stanford) Financial Econometrics November 2010 89 / 96

Realized EGARCH with Multiple RM (w. Huang)

Multiple Realized Measures (like MEM by Engle & Gallo)

log ht = ω + β log ht−1 + γ ′ logXt−1 + τ(zt−1)

logXt = ξ +ϕ log ht + δ(zt) + Ut .

RK crowds out RV and Range (High minus Low)

var(Ut) yields information about accuracy about RMs.

Peter Reinhard Hansen (Stanford) Financial Econometrics November 2010 90 / 96

Multivariate Realized GARCH (w. Lunde & Voev)

Build Realized GARCH for Market Returns, r0,t = µ0 +√h0,tz0,t .

Asset i 's returns, ri ,t = µi +√hi ,tzi ,t , conditional on r0,t , x0,t .

Key in this model:ρt = cov(z0,t , zi,t |Ft−1).

Measurement equation with Fisher transform

z(ρt) = a0i + b0iz(ρt−1) + c0iz(y1,t−1).

1-factor structure where we can extract

βt = ρt

√hi ,t/h0,t .

Peter Reinhard Hansen (Stanford) Financial Econometrics November 2010 91 / 96

Correlation Measurement Equation (CVX)

Peter Reinhard Hansen (Stanford) Financial Econometrics November 2010 92 / 96

Time Series for ρt and βt (CVX)

Peter Reinhard Hansen (Stanford) Financial Econometrics November 2010 93 / 96

Cross Sectional Beta-Quantiles

Peter Reinhard Hansen (Stanford) Financial Econometrics November 2010 94 / 96

Conclusion

Realized Measures

Empirical Issues with High-Frequency DataRealized Variance, Realized Kernel, Markov Chain Estimator

Volatility Forecasting

Realized GARCH

Easy to estimate, Tractable, can explain empirical �stylized facts�.Multivariate extension very promising.

Peter Reinhard Hansen (Stanford) Financial Econometrics November 2010 95 / 96

Bibliography

Andersen, T. G., Bollerslev, T., 1998. Answering the skeptics: Yes, standard volatility models do provide accurateforecasts. International Economic Review 39 (4), 885�905.

Andersen, T. G., Bollerslev, T., Diebold, F. X., Ebens, H., 2001. The distribution of realized stock return volatility.Journal of Financial Economics 61 (1), 43�76.

Barndor�-Nielsen, O. E., Hansen, P. R., Lunde, A., Shephard, N., 2008. Designing realised kernels to measure theex-post variation of equity prices in the presence of noise. Econometrica 76, 1481�536.

Barndor�-Nielsen, O. E., Hansen, P. R., Lunde, A., Shephard, N., 2009. Realised kernels in practice: Trades andquotes. Econometrics Journal 12, 1�33.

Barndor�-Nielsen, O. E., Hansen, P. R., Lunde, A., Shephard, N., 2010a. Multivariate realised kernels: consistentpositive semi-de�nite estimators of the covariation of equity prices with noise and non-synchronous trading. Jounalof Econometrics forthcoming.

Barndor�-Nielsen, O. E., Hansen, P. R., Lunde, A., Shephard, N., 2010b. Subsampling realised kernels. Journal ofEconometrics forthcoming, forthcoming.

Barndor�-Nielsen, O. E., Shephard, N., 2002. Econometric analysis of realised volatility and its use in estimatingstochastic volatility models. Journal of the Royal Statistical Society B 64, 253�280.

Hansen, P. R., Horel, G., 2009. Quadratic variation by markov chains. working paper

http://www.stanford.edu/people/peter.hansen.Hansen, P. R., Lunde, A., 2006. Realized variance and market microstructure noise. Journal of Business and Economic

Statistics 24, 127�218, the 2005 Invited Address with Comments and Rejoinder.

Hansen, P. R., Lunde, A., 2011. Forecasting volatility using high frequency data. In: Clements, M., Hendry, D. (Eds.),Handbook of Economic Forecasting. Oxford University Press.

Jacod, J., 1994. Limit of random measures associated with the increments of a Brownian semimartingalePreprintnumber 120, Laboratoire de Probabilitiés, Université Pierre et Marie Curie, Paris.

Jacod, J., Protter, P., 1998. Asymptotic error distributions for the Euler method for stochastic di�erential equations.Annals of Probability 26, 267�307.

Peter Reinhard Hansen (Stanford) Financial Econometrics November 2010 96 / 96

top related