the structures of simple solids - yazd chemistry... · 2016-01-04 · 1 agorji@yazd.ac.ir. 1 the...

Post on 14-Mar-2020

1 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

1

agorji@yazd.ac.ir.1

The structures of

simple solids

Alireza Gorji

agorji@yazd.ac.ir

Department of Chemistry, Yazd University

agorji@yazd.ac.ir.

Solid State Chemistry

• Introduction

• Metals

• Alloys

• Ionic Solids

• Crystal Defects

• Band Theory

2

2

agorji@yazd.ac.ir.

Unit Cell & Lattice

3

agorji@yazd.ac.ir.4

3

agorji@yazd.ac.ir.5

agorji@yazd.ac.ir.6

5

agorji@yazd.ac.ir.9

agorji@yazd.ac.ir.10

6

agorji@yazd.ac.ir.

1926 Goldschmidt proposed atoms could be

considered as packing in solids as hard spheres

11

agorji@yazd.ac.ir.12

Hexagonal

Close-Packing

7

agorji@yazd.ac.ir.13

agorji@yazd.ac.ir.14

Film hcp

8

agorji@yazd.ac.ir.15

agorji@yazd.ac.ir.16

Cubic

Close-Packing

9

agorji@yazd.ac.ir.17

agorji@yazd.ac.ir.18

Film ccp

10

agorji@yazd.ac.ir.19

agorji@yazd.ac.ir.20

11

agorji@yazd.ac.ir.21

agorji@yazd.ac.ir.22

12

agorji@yazd.ac.ir.rh=0.414 r 23

Holes in close-packed structures

agorji@yazd.ac.ir.24

13

agorji@yazd.ac.ir.rh=0.225 r 25

agorji@yazd.ac.ir.26

14

agorji@yazd.ac.ir.

Features of Close-Packing

Coordination Number = 12

74% of space is occupied

Largest interstitial sites are: octahedral (O) ( r = 0.414) ~ 1 per sphere

tetrahedral (T±) (r = 0.225) ~ 2 per sphere

27

agorji@yazd.ac.ir.

A NON-CLOSE-PACKED structure adopted by some metals is:

68% of space is occupiedCoordination Number 8

8 Nearest Neighbors at 0.87a

6 Next-Nearest Neighbors at 1a

28

bcc

15

agorji@yazd.ac.ir.29

Primitive cubic

agorji@yazd.ac.ir.30

16

agorji@yazd.ac.ir.31

Polymorphism of metals

agorji@yazd.ac.ir.32

Alloys and Intermetallic compounds

17

agorji@yazd.ac.ir.33

agorji@yazd.ac.ir.34

18

agorji@yazd.ac.ir.35

agorji@yazd.ac.ir.36

19

agorji@yazd.ac.ir.37

Some of these intermetallic compounds contain a very electropositive metal

(for example, K or Ba) in combination with a less electropositive metal or

metalloid (for example, Ge or Zn), and in a Ketelaar triangle lie above the true

alloys. Such combinations are called Zintl phases.

agorji@yazd.ac.ir.

Molecular

Solids

38

20

agorji@yazd.ac.ir.39

agorji@yazd.ac.ir.

Ionic

Solids

40

21

agorji@yazd.ac.ir.41

agorji@yazd.ac.ir.

STRUCTURES DERIVED

FROM CUBIC CLOSE

PACKING

CCP/FCC

42

22

agorji@yazd.ac.ir.43

agorji@yazd.ac.ir.

Ionic structures from the cubic close-packed

44

23

agorji@yazd.ac.ir.

Rock Salt

45

agorji@yazd.ac.ir.46

24

agorji@yazd.ac.ir.47

agorji@yazd.ac.ir.

Rock Salt

48

25

agorji@yazd.ac.ir.

CCP Cl- with Na+ in all Octahedral holes

Lattice: fcc

4NaCl in unit cell

Coordination: 6:6 (octahedral)

Cation and anion sites are topologically identical

49

agorji@yazd.ac.ir.50

26

agorji@yazd.ac.ir.51

agorji@yazd.ac.ir.

CaF2 Fluorite

52

27

agorji@yazd.ac.ir.53

CaF2 Fluorite / {Na2O Anti-Fluorite}

agorji@yazd.ac.ir.

CCP Ca2+ with F- in all Tetrahedral holes

Lattice: fcc

4CaF2 in unit cell

Coordination: Ca2+ 8 (cubic) : F- 4 (tetrahedral)

In the related Anti-Fluorite structure Cation and Anion positions are reversed

CaF2 Fluorite / {Na2O Anti-Fluorite}

54

28

agorji@yazd.ac.ir.

ZnS Zinc Blende (Sphalerite)

55

agorji@yazd.ac.ir.

ZnS Zinc Blende (Sphalerite)

56

29

agorji@yazd.ac.ir.57

agorji@yazd.ac.ir.

CCP S2- with Zn2+ in half Tetrahedral holes (only

T+ {or T-} filled)

Lattice: fcc

4ZnS in unit cell

Coordination: 4:4 (tetrahedral)

Cation and anion sites are topologically identical

ZnS Zinc Blende (Sphalerite)

58

30

agorji@yazd.ac.ir.

NaCl (Halite)

Very common (inc. 'ionics', 'covalents' & 'intermetallics' )

Most alkali halides (CsCl, CsBr, CsI excepted)

Most oxides / chalcogenides of alkaline earths

Many nitrides, carbides, hydrides (e.g. ZrN, TiC, NaH)

CaF2 (Fluorite)

Fluorides of large divalent cations, chlorides of Sr, Ba

Oxides of large quadrivalent cations (Zr, Hf, Ce, Th, U)

Na2O (Anti-Fluorite)

Oxides /chalcogenides of alkali metals

ZnS (Zinc Blende/Sphalerite)

Formed from Polarizing Cations (Cu+, Ag+, Cd2+, Ga3+...)

and Polarizable Anions (I-, S2-, P3-, ...);

e.g. Cu(F,Cl,Br,I), AgI, Zn(S,Se,Te), Ga(P,As), Hg(S,Se,Te)

Examples of Structure Adoption

59

agorji@yazd.ac.ir.

COMPLEX-ION VARIANTS

60

31

agorji@yazd.ac.ir.

STRUCTURES DERIVED

FROM HEXAGONAL

CLOSE PACKING

hcp

61

agorji@yazd.ac.ir.62

32

agorji@yazd.ac.ir.

NiAs Nickel Arsenide

63

agorji@yazd.ac.ir.64

NiAs Nickel Arsenide

33

agorji@yazd.ac.ir.

NiAs Nickel Arsenide

65

agorji@yazd.ac.ir.

HCP As with Ni in all Octahedral holes

Lattice: Hexagonal - P

a = b, c (8/3)a

2NiAs in unit cell

Coordination: Ni 6 (octahedral): As 6

(trigonal prismatic)

NiAs Nickel Arsenide

66

34

agorji@yazd.ac.ir.

ZnS Wurtzite

67

agorji@yazd.ac.ir.

ZnS Wurtzite

68

35

agorji@yazd.ac.ir.69

agorji@yazd.ac.ir.

ZnS WurtziteHCP S2- with Zn2+ in half Tetrahedral holes

(only T+ {or T-} filled)

Lattice: Hexagonal - P

a = b, c (8/3)a

2ZnS in unit cell

Coordination: 4:4 (tetrahedral)

70

36

agorji@yazd.ac.ir.

Comparison of Wurtzite and Zinc Blende

71

agorji@yazd.ac.ir.

Comparison of Wurtzite and Zinc Blende

72

37

agorji@yazd.ac.ir.73

Rutile

agorji@yazd.ac.ir.

Rutile

74

38

agorji@yazd.ac.ir.

NON CLOSE-PACKED STRUCTURES

CsCl Cesium Chloride

75

agorji@yazd.ac.ir.

CsCl Cesium Chloride

76

39

agorji@yazd.ac.ir.

Lattice: Cubic - P (N.B. Primitive!)

1CsCl in unit cell

Coordination: 8:8 (cubic)

Adoption by chlorides, bromides and iodides of

larger cations, e.g. Cs+, Tl+, NH4+

CsCl Cesium Chloride

77

agorji@yazd.ac.ir.78

40

agorji@yazd.ac.ir.79

agorji@yazd.ac.ir.80

41

agorji@yazd.ac.ir.81

The Perovskite structure ABO3

agorji@yazd.ac.ir.82

42

agorji@yazd.ac.ir.83

The Spinel structure AB2O4

Normal Spinel

O2- fcc

AII (1/8)hT

BIII (1/2)hO

MgAl2O4

agorji@yazd.ac.ir.84

The rationalization of structures

43

agorji@yazd.ac.ir.85

agorji@yazd.ac.ir.86

44

agorji@yazd.ac.ir.87

agorji@yazd.ac.ir.88

The energetics of ionic bonding

Lattice enthalpy and the Born–Haber cycle

45

agorji@yazd.ac.ir.89

The Born–Mayer equation

agorji@yazd.ac.ir.90

The Born–Mayer equation

46

agorji@yazd.ac.ir.91

The Madelung constant

agorji@yazd.ac.ir.92

47

agorji@yazd.ac.ir.93

agorji@yazd.ac.ir.94

The Kapustinskii equation

48

agorji@yazd.ac.ir.95

agorji@yazd.ac.ir.96

Consequences of lattice enthalpies

49

agorji@yazd.ac.ir.97

agorji@yazd.ac.ir.98

50

agorji@yazd.ac.ir.99

حلشدن گرماگیر

حلشدن گرمازا

گرمای حلشدن

agorji@yazd.ac.ir.100

51

agorji@yazd.ac.ir.101

Defects and nonstoichiometry

Types of Defects

agorji@yazd.ac.ir.102

Point Defects

52

agorji@yazd.ac.ir.103

agorji@yazd.ac.ir.104

53

agorji@yazd.ac.ir.105

agorji@yazd.ac.ir.106

M1+aX M1-aX

54

agorji@yazd.ac.ir.107

agorji@yazd.ac.ir.108

55

agorji@yazd.ac.ir.109

agorji@yazd.ac.ir.110

56

agorji@yazd.ac.ir.111

The electronic structures of solids

The conductivities of inorganic solids

agorji@yazd.ac.ir.112

Band formation by orbital overlap

57

agorji@yazd.ac.ir.113

agorji@yazd.ac.ir.114

58

agorji@yazd.ac.ir.115

Extrinsic semiconductors

Intrinsic

semiconductors

Ge/As Ge/Ga

agorji@yazd.ac.ir.116

top related