the structure of nuclear force in a chiral quark-diquark model

Post on 12-Jan-2016

29 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

DESCRIPTION

The Structure of Nuclear force in a chiral quark-diquark model. K. Nagata and A. Hosaka RCNP, Osaka University. K. Nagata and A. Hosaka, hep-ph/0312161. ’03 3/23 @ RCNP. Contents. Introduction Motivation, outline 2. Lagrangian quark-diquark lagrangian - PowerPoint PPT Presentation

TRANSCRIPT

1

K. Nagata and A. Hosaka RCNP, Osaka University

The Structure of Nuclear force in a chiral quark-diquark model

K. Nagata and A. Hosaka, hep-ph/0312161

’03 3/23 @ RCNP

2

1. Introduction Motivation, outline2. Lagrangian quark-diquark lagrangian meson baryon lagrangian3. Structure of NN force   Long range part Short range part4. Summary

Contents

3

1. Introduction・ Motivation: Understanding of hadron physics      from the quark level

Hadronization of chiral quark-diquark model

Nuclear force

1.long and medium range ; OBEP

2.short range ; internal structure (repulsive core)

To describe the nuclear force in a unified way,

we need to include

1. chiral symmetry

2. hadrons as composites

4

NJL model and Auxiliary field method (Bosonization)

NJL model : chiral sym.

q

q

Auxiliary field method :

NJL(quark) model →   meson Lagrangian

(Eguchi, Sugawara(1974), Kikkawa (1976))

q

M

Path-integral identity q

Basic idea of hadronization

5

◇ Bosonization was extended to baryon by including diquark.

B

D

q

・ Ebert, Jurke (1998)

・ Abu-Raddad, Hosaka, Ebert, Toki (2002)

1. chiral symmety →    O.K

2. hadrons as composites →    O.K

B = q + D

◇ GT relation, WT identity is satisfied.

6

(Abu-Raddad et al, PRC, 66, 025206 (2002))

I. Quark-meson

2. Lagrangian

M

q

q

chiral sym. breaking

25

20 )()(

2)( qiqqq

GqmiqLNJL

qqiqq 5,

)(2

1)( 22

50 G

qimiqLNJL

2/1

555 ,rep.linear-Non

f

iq

)()(2

1)()( 0

25 mOm

GamviiL qqNJL

55555555 2

1,

2

1

ia

iv

7

(0, 0)  ‥‥  scalar diquark

(1, 1)  ‥‥  axial-vector diquark

・ Pauli principle

for quark

・ Color singlet for baryon

(Spin, Isospin)

◇As a first step, we take into account only scalar diquark

III. Quark-diquark interaction

→ local interaction D

q

◇ Microscopic(q, D, M) lagrangian

II. Introduction of diquark

DDGDMD

mOmG

amviiL

S

qq

~)(

)()(2

1)()(

22

02

5

8

BBG

BDχBDχGDDχSχL ~1

)(~

Δ 11

AiAxdiD logtrexpexp 4

221

51 γ,)(

S

q

vσMMmiS

II. q and D are integrated out by

◇ Meson baryon lagrangian

I. Baryons are introduced as auxiliary fields B=D

)1(logtr)1(logtr T SBBΔiSMiL

meson baryon

quark diquark

Hadronization

n

pB

9

)1(logtr T SBBΔiL

)()z()()(tr

trtr

zBySyxΔxB

ΔSBBA

ΔSBBΔSBBA trtr 2

2tr)1log( tr:Expansion

2AAA

M

000

1

MSSSS

MmiS q

q-M interaction

BD

q

10

・ Two types of NN force

OBEP with form factor

→   long and medium range

q-D loop

→   short range

・ Magnetic moment, radius, gA was calculated.

・ GT relation, WT identity is satisfied.

Nucleon properties (one N term)

Nuclear force (two N term)

Abu-Raddad et al (2002)

11

3. Structure of NN force

chiral σ and π exchange

loop diagram in terms of

quark and diquark

long and medium

short range

12

OPEP potential

range ~ mπ

= +

NN axial- coupling

・ gA =0.87

・ GT relation is satisfied

‥‥ exchange potentiallong range part

13

We evaluate for various B.E.

1.the range, mass and strength of q-D loop

2. relation between these values and nulceon size

and compare our results to OBEP

m q =390, Ms=600 MeV, =630 MeV

・ Fixed parameters

・ Free parameter

constantcouplingdiquarkquark;~

G

)E. B.(

mass.nucleon size,nulceon energy, binding - controls~

NSq MMm

DqG

Short range part

14

qDloop

2212

222

22221

22

4

42

)()()(

)())(()())((

2

tr

qSqS

qq

c

NN

mkppMkpmkMkp

pBmkpppBpBmkpB

kdNZi

ΔSBBΔSBBiL

),(1 pEp p

),(2 pEp p

),(2 pEp p

),(1 pEp p

pp

systemCoMtheincaseelastic

15)0,()( 2,

2, qFqF VSVS

222222

2212

222

22221

22

4

42

),(),(

)()()(

)())(()())((

2

BBPqFBBPqF

mkppMkpmkMkp

pBmkpppBpBmkpB

kdNZiL

VS

qSqS

qq

cNN

ppP

ppq

p

p

p

p

attractive repulsive

0casetheineinvestigatWe P

16

・ B.E. becomes larger (nulceon becomes smaller), interaction ranges becomes shorter.

scalar Fs(q) vector FV(q)

Form factors for various B.E

)(GeV22q

)(GeV22q

B.E.290

140

10

17

Interaction range, mass and strength

Range vs size

(fm)1/22r

Rs

VR

B.E. weak

0

2

2,

2,

2,

)(

)(

16

q

VS

VSVS q

qF

qFR

2,

2

2,2

, )(VS

VSVS mq

gqF

Range

Mass and Strength

2/126.1 rRS

2/120.1 rRV

18

strength vs size

gS = 23 (10) (attractive)

gV = 4 (13) (repusive)

Vm

SmSg

Mass vs size

(fm)1/22r (fm)

1/22r

mS = 610 MeV ~ mσ

mV = 790 MeV ~ mω  

 

Vg

0.8fm

19

・  Nuclear force is composed of two part short range part → qD loop long and medium range part → chiral meson exchange

・ qD loop is composed of scalar type (attraction) and vector type (repulsion).

4. Summary・ Hadronization of q-D model gives the

composite     meson- baryon Lagrangian.

・ We need to include P-dependence, exchange term, a.v.diquark

and calculate phase shifts, cross section…

・ Interaction range and mass → good strength → scalar type is stronger than vector type.

top related