the origin of strong proton-neutron correlations revealed in break-up reactions

Post on 14-Jan-2016

23 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

DESCRIPTION

W. Lynch, Monday T. Otsuka, Wednesday A. Wuosmaa, Thursday T. Aumann, Thursday. The origin of strong proton-neutron correlations revealed in break-up reactions. Mihai Horoi Department of Physics, Central Michigan University, Mount Pleasant, Michigan 48859, USA - PowerPoint PPT Presentation

TRANSCRIPT

M. Horoi CMU

The origin of strong proton-neutron correlations revealed in break-up

reactions

Mihai Horoi Department of Physics, Central Michigan University,

Mount Pleasant, Michigan 48859, USA

Supported by NSF grant PHY-1068217 and DOE grant DF-FC02-09ER41584

UNEDFNN2012 San Atonio, May 31, 2012

- W. Lynch, Monday

- T. Otsuka, Wednesday

- A. Wuosmaa, Thursday

- T. Aumann, Thursday

Staggering of Ca Isotopes Charge Radii: A Shell Model Approach

NN2012 San Atonio, May 31, 2012

M. Horoi CMU

Valence space: d3/2 , s1/2 , f7/2 , p3/2

Hvalence ≡ H2−body

r2

ch= r2

sdnsd

p + r2

pfnpf

p

E. Caurier et al, PLB 522, 240 (2001)

I. Talmi NPA 423, 189 (1984)

Evolution of lowest 0+ and 1+ states in N=Z nuclei

NN2012 San Atonio, May 31, 2012

M. Horoi CMU

Notice the energy scales!

3+

3+

5+

M. Horoi CMU

Shell Model Effective Hamiltonians

core polarization: Phys.Rep. 261, 125 (1995)

PRC 74, 34315 (2006), 78, 064302 (2008)

USDA

USDB

ME

NN2012 San Atonio, May 31, 2012

Hvalence = H2−body

can describe most correlations

around the Fermi surface!

empty

valence

frozen core

HvalenceΨ = EnΨ

N=Z sd-Nuclei

NN2012 San Atonio, May 31, 2012

M. Horoi CMU

Decoupling the singlet pn-pairing

NN2012 San Atonio, May 31, 2012

M. Horoi CMU

26 Al

H = HUSDB

Decoupling the singlet pairing

NN2012 San Atonio, May 31, 2012

M. Horoi CMU

28 Al

H = HUSDB

Decoupling the singlet pairing

NN2012 San Atonio, May 31, 2012

M. Horoi CMU

30 Al

H = HUSDB

NN2012 San Atonio, May 31, 2012

M. Horoi CMU

Spectroscopic Factors

One particle removal cross section: e.g. (p,d)

σ j− ≈ S j σ j( )

sp

S f , j , i =|< Ψf

A −1 J f || ˜ a j || ΨiA Ji >|2

2Ji +1

S f , j , i =< n j >if −

Sum rule: s.p. occupation probability

σ j+ ≈

2J f +1

2Ji +1S j σ j( )

spe.g. (d,p)

Are SFs (reliable) “observables”?

NN2012 San Atonio, May 31, 2012

M. Horoi CMU

[Jenny Lee et al, PRL 2010][Jenny Lee et al, PRL 2010]

[Gade et al, PRL 93, 042501] [Gade et al, PRL 93, 042501] g.s. SFs seem to be more reliable

NN2012 San Atonio, May 31, 2012

M. Horoi CMU

Spectroscopic factors in the pf-shell

J. Lee et al. Phys. Rev. C 79, 054601 (2009)B. Tsang et al. Phys. Rev. Lett. 102, 062501

(2009)

Spectroscopic Factors: (d,p) consistent with (p,d)

NN2012 San Atonio, May 31, 2012

M. Horoi CMU

B. Tsang, J. Lee, W. Lynch Phys. Rev. Lett. 95, 222501 (2005)

σ j− ≈ S j σ j( )

sp

σ j+ ≈

2 J f +1

2 Ji +1S j σ j( )

sp

pf-Nuclei

NN2012 San Atonio, May 31, 2012

M. Horoi CMU

Spectroscopic Factors: Independent Particle Model (IPM)

NN2012 San Atonio, May 31, 2012

M. Horoi CMU

IPM Model:

- n identical nucleons in

- One single j-shell: e.g. f7/2

- Only pairing interaction

S j = n n − even

S j =(2 j +1) − (n −1)

(2 j +1)n −odd

B. Tsang, J. Lee, W. Lynch Phys. Rev. Lett. 95, 222501 (2005)

Can one measure neutron S7/2 for N=28 isotones?

NN2012 San Atonio, May 31, 2012

M. Horoi CMU

S7 / 2 0+ ↔7

2

− ⎛

⎝ ⎜

⎠ ⎟= ?

The Magic of Proton-Neutron Correlations

NN2012 San Atonio, May 31, 2012

M. Horoi CMU

New/MSU

2010/MSU

Data from J. Lee and B. Tsang

54Fe

56Ni

S7/2 for N=28 isotones and f7/2 n-occupation

NN2012 San Atonio, May 31, 2012

M. Horoi CMU€

S f , j , i =< n j >if −

∑€

2654Fe28

S7/2 for N=28 isotones and f7/2 n-occupation

NN2012 San Atonio, May 31, 2012

M. Horoi CMU€

S f , j , i =< n j >if −

in 53Fe

T =1

2

T =3

2

SF ↔ C2S

S7/2 for N=28 isotones described in the f7/2 shell

NN2012 San Atonio, May 31, 2012

M. Horoi CMU

J T V(JT) Vpn

0 1 -2.068 0.0

1 0 -2.061 0.0

2 1 -0.757

3 0 -0.989

4 1 0.119

5 0 -0.811

6 1 0.333

7 0 -2.218 0.0

f748 int: KUTCHERA et al. NUOVO CIM, VOL-1 NO-12

The case of 46Ar

NN2012 San Atonio, May 31, 2012

M. Horoi CMU

SDPF-U: PRC 79, 014301 (2009)

monopoles Vij ijT ≡ Vi j

T =

(2J +1)Vij ijTJ

J

(2J +1)J

monopole sensitivity :Vd 3/2 f7/2

T →Vd 3/2 f7/2

T =0,1 − 0.6

Vd3/2 f7/2

T =0 =− 2.475 Vd3/2 f7/2

T =1 = −0.928 €

N = 28

N = 28

?

M. Horoi CMU

Shell Model Effective Hamiltonians

core polarization: Phys.Rep. 261, 125 (1995)

PRC 74, 34315 (2006), 78, 064302 (2008)

USDA

USDB

ME

NN2012 San Atonio, May 31, 2012

Hvalence = ε ja j+a j +

j

∑ V2−body

can describe most correlations

around the Fermi surface!

empty

valence

frozen core

HvalenceΨ = EnΨ

The case of 46Ar

NN2012 San Atonio, May 31, 2012

M. Horoi CMU

SDPF-U + pn “monopole” modifications

Occupation probabilities in 46Ar:

Vd 3/2 f7/2

T =0 →Vd 3/2 f7/2

T =0 − 0.6

all J : Vd 3/2 f7/2

JT =1( )

pn→ Vd 3/2 f7/2

JT =1( )

pn− 0.6

46Ar

N = 28

M. Horoi CMU

Summary and Outlook Spectroscopic factors could be a good tool to identify the

enhanced proton-neutron correlations in N~Z nuclei. Large fluctuations of the neutron SF vs proton number are

predicted by the shell model and observed in experiments: strong proton-neutron correlations are essential in nuclei!

These correlations are challenging for mean field theories, but seems to be accommodated by the Green’s function approach!

Parts of the effective H responsible for these strong neutron-proton correlations were identified.

This seems to be just the tip of the iceberg for proton-neutron correlation! More work necessary.

NN2012 San Atonio, May 31, 2012

S7/2 for N=28 isotones described in the f7/2 shell

NN2012 San Atonio, May 31, 2012

M. Horoi CMU

J T V(JT) Vpn

0 1 -2.068 0.0

1 0 -2.061 0.0

2 1 -0.757

3 0 -0.989

4 1 0.119

5 0 -0.811

6 1 0.333

7 0 -2.218 0.0

f748 int: KUTCHERA et al. NUOVO CIM, VOL-1 NO-12

IPM

Short Overview

• Few more examples of proton-neutron correlations effects in nuclei

• Proton-neutron correlations effects observed in transfer reactions

• Which pieces of the shell model Hamiltonian seem to be responsible for these effects

NN2012 San Atonio, May 31, 2012

M. Horoi CMU

pn-pairing vs pp/nn pairing: Why the difference?

NN2012 San Atonio, May 31, 2012

M. Horoi CMU

Experimental positive parity levels

sd-Nuclei

NN2012 San Atonio, May 31, 2012

M. Horoi CMU

Which pieces of H2 are responsible? The case of S5/2 for N=14 isotones

NN2012 San Atonio, May 31, 2012

M. Horoi CMU

f →0d5 / 2

r → 0d1/ 2, 1s1/ 2

κ =1.1

A. Zuker, PRL 90 (2003)

Which pieces of H2 are responsible? The case of S5/2 for N=14 isotones

NN2012 San Atonio, May 31, 2012

M. Horoi CMU€

(5 /2, 5 /2)01 |V | (5 /2, 5 /2)01 = −2.5 →− 8.5

(5 /2, 5 /2)01 |V | (3/2, 3/2)01 = −1.1 →− 0.1

(5 /2, 5 /2)01 |V | (1/2, 1/2)01 = −1.6 →−0.6

No sensibilty to JT =10 matrix elements

f →0d5 / 2

r → 0d1/ 2, 1s1/ 2

Proton-Neutron Pairing: A mean field approach ?

NN2012 San Atonio, May 31, 2012

M. Horoi CMU

Staggering of charge radii of Sn isotopes, MH, PRC 50, 2834 (1995)

H3 ∝ Pn+Pnρ p ← Zawischa, PRL 61, 149(1988)

NN2012 San Atonio, May 31, 2012

M. Horoi CMU

W. Dickhoff’s talk

Can one measure S7/2 for N=27 isotones?

NN2012 San Atonio, May 31, 2012

M. Horoi CMU

2754Co27

2552Mn27

2350V27

2148Sc27

S7 / 2 0+ ↔7

2

− ⎛

⎝ ⎜

⎠ ⎟= ?

sd-Nuclei

NN2012 San Atonio, May 31, 2012

M. Horoi CMU

26Al Spectroscopic Factors vs (H01)pn

NN2012 San Atonio, May 31, 2012

M. Horoi CMU

26 Al : n = 5 ⇒ S5 / 2(IPM) =6 − 4

6= 0.33

H = H(USDB) +ε H01(USDB)[ ]t3 =0

1124Na13(0+)→11

23 Na12(5 /2+) + n : S5 / 2(USDB) = 0.1

1326Al13(0+)→13

25 Al12(5 /2+) + n : S5 / 2(USDB) =1.24

26Al Spectroscopic Factors Experimental Data

NN2012 San Atonio, May 31, 2012

M. Horoi CMU

26 Al : S5 / 2(USDB) =1.24 ≈ 4 × S5 / 2(IPM)

(3 He, d) reactions

J. Vernotte et al. NPA 571, 1 (1994)

Are SFs (reliable) “observables”?

NN2012 San Atonio, May 31, 2012

M. Horoi CMU

[Jenny Lee et al, PRL 2010][Jenny Lee et al, PRL 2010]

[Gade et al, PRL 93, 042501] [Gade et al, PRL 93, 042501] g.s. SFs seem to be more reliable

NN2012 San Atonio, May 31, 2012

M. Horoi CMU

Spectroscopic factors in the pf-shell

J. Lee et al. Phys. Rev. C 79, 054601 (2009)B. Tsang et al. Phys. Rev. Lett. 102, 062501

(2009)

Spectroscopic Factors: (d,p) consistent with (p,d)

NN2012 San Atonio, May 31, 2012

M. Horoi CMU

B. Tsang, J. Lee, W. Lynch Phys. Rev. Lett. 95, 222501 (2005)

σ j− ≈ S j σ j( )

sp

σ j+ ≈

2 J f +1

2 Ji +1S j σ j( )

sp

Evolution of lowest 0+ and 1+ states in N=Z nuclei

NN2012 San Atonio, May 31, 2012

M. Horoi CMU

Notice the energy scales!

3+

3+

5+

Enhanced realization probability of JT=01,10 g.s. for Odd-Odd nuclei

NN2012 San Atonio, May 31, 2012

M. Horoi CMU

H = HTBRE

PJT =01 ≡# states(JT = 01)

# states(M = 0)= 2.5%

PJT =10 ≡# states(JT =10)

# states(M = 0)=1.6%

Percentage 1530P15 g.s. realizations

pn-pairing vs pp/nn pairing: Why the difference?

NN2012 San Atonio, May 31, 2012

M. Horoi CMU

Experimental positive parity levels

Spin-triplet vs singlet pn-pairing in 30P

NN2012 San Atonio, May 31, 2012

M. Horoi CMU

H = H(USDB) +ε H10(USDB)[ ]

ja jb JT | P10 | jc jd JT =

2(−1) ja − jb (2 ja +1)(2 jb +1)(2 jc +1)(2 jd +1)

(1+δ ab )(1+δ cd )

×1/2 ja la

jb 1/2 1

⎧ ⎨ ⎩

⎫ ⎬ ⎭

1/2 jc lc

jd 1/2 1

⎧ ⎨ ⎩

⎫ ⎬ ⎭δ la lb

δ lc ldδ J 1δT 0

ja jb JT |V | jc jd JT ∝δ la lbδ lc ld

δ J 1δT 0

PLB 430, 203 (1988)

0

Preliminary

Proton-Neutron Pairing and Binding Energies

NN2012 San Atonio, May 31, 2012

M. Horoi CMU

Odd − Odd

Even − Even

P. Vogel, nucl-th:9805015

transfer versus knockout

[Jenny Lee et al, PRL 2009][Jenny Lee et al, PRL 2009]

[Gade et al, Phys. Rev. Lett. 93, 042501] [Gade et al, Phys. Rev. Lett. 93, 042501]

[FN, Deltuva, Hong, PRC submitted 2011][FN, Deltuva, Hong, PRC submitted 2011]

NN2012 San Atonio, May 31, 2012

M. Horoi CMU

M. Horoi CMU

Nuclear Configuration Interaction

0hω

1hω

(0 + 2)hω

(1+ 3)hω

d = 2 (2 j + 1)

H = Hone −body + H two−body + H3b +L

|α >= Ciα

i

∑ | i(JT) >

|α >= Ciα

i

∑ | i(JTz) >

|α >= Ciα

i

∑ | i(MTz) >

H '= H + β (HCoM − 3/2hω)

Ψ(J ) = [ΦCoM (NL)Φ int(J ' )](J ) → ΦCoM (00)Φ int

(J )

JT-scheme: OXBASH, NuShell

Center-of-mass spurious states

Nmax

sd

Lanczos algorithm: provides few lower energies, especially the M-scheme codes.

pf

< i | H | j > C jα

j

∑ = Eα Ciα

J-scheme: NATHAN, NuShellX

M-scheme: Oslo-code, Antoine, MFDN, MSHELL, CMichSM, …

NN2012 San Atonio, May 31, 2012

Limits: 1010 – 1011 m-scheme basis states

pf-Nuclei

NN2012 San Atonio, May 31, 2012

M. Horoi CMU

Spectroscopic Factors: SM vs IPM for N=Z nuclei

NN2012 San Atonio, May 31, 2012

M. Horoi CMU

IPM:

- n identical nucleons in

- One single j-shell: e.g. f7/2

- Only pairing interaction

S j = n n − even

S j =(2 j +1) − (n −1)

(2 j +1)n −odd

54Co2750Mn25

2754Co27 : S7 / 2(GXPF1A) =1.9 ≈ 8 × S7 / 2(IPM)

2754Co27 : S7 / 2(IPM) =

8 − 6

8= 0.25

B. Tsang, J. Lee, W. Lynch Phys. Rev. Lett. 95, 222501 (2005)

26Al Spectroscopic Factors: SM vs IPM

NN2012 San Atonio, May 31, 2012

M. Horoi CMU

Model:

- n identical nucleons in

- One single j-shell: e.g. d5/2

- Only pairing interaction

S j = n n − even

S j =(2 j +1) − (n −1)

(2 j +1)n −odd

26 Al : n = 5 ⇒ S5 / 2(IPM) =6 − 4

6= 0.33

26 Al : S5 / 2(USDB) =1.24 ≈ 4 × S5 / 2(IPM)

B. Tsang, J. Lee, W. Lynch Phys. Rev. Lett. 95, 222501 (2005)

Staggering of Ca Charge Radii: A Shell Model Approach

NN2012 San Atonio, May 31, 2012

M. Horoi CMU

Valence space: d3/2 , s1/2 , f7/2 , p3/2

Hvalence ≡ H2−body

r2

ch= r2

sdnsd

p + r2

pfnpf

p

E. Caurier et al, PLB 522, 240 (2001)

I. Talmi NPA 423, 189 (1984)

sd-nuclei: N=13 odd-odd isotones

NN2012 San Atonio, May 31, 2012

M. Horoi CMU€

1326Al13(0+)→13

25 Al12(5 /2+) + n : S5 / 2(USDB) =1.24

1124Na13(0+)→11

23 Na12(5 /2+) + n : S5 / 2(USDB) = 0.1

sd-nuclei: N=13 odd-odd isotones

NN2012 San Atonio, May 31, 2012

M. Horoi CMU€

1326Al13(0+)→13

26 Al12(5 /2+) + n : S5 / 2(USDB) =1.24

26 Al

24 Na

1124Na13(0+)→11

23 Na12(5 /2+) + n : S5 / 2(USDB) = 0.1

22 Na

NN2012 San Atonio, May 31, 2012

M. Horoi CMU

Spectroscopic factors in the pf-shell

J. Lee et al. Phys. Rev. C 79, 054601 (2009)B. Tsang et al. Phys. Rev. Lett. 102, 062501

(2009)

Proton-Neutron Pairing and Binding Energies

NN2012 San Atonio, May 31, 2012

M. Horoi CMU

Odd − Odd

Even − Even

P. Vogel, nucl-th:9805015

Pair Transfer Amplitudes

NN2012 San Atonio, May 31, 2012

M. Horoi CMU

26Al -> 24Mg <(0T)_f ||| a_j a_j ||| (0T)_i>

01 -> 00

j=5/2 0.198

j=3/2 0.185

j=1/2 0.193

01 -> 01

j=5/2 0.045

j=3/2 0.244

j=1/2 0.155

Si isotopes: Staggering of Occupation Probabilities

NN2012 San Atonio, May 31, 2012

M. Horoi CMU

Overview• The status of the effective Hamiltonians

• Shell model description of the low-lying states

• Shell model spectroscopic factors

• Nuclear structure analysis of charge-exchange reactions

• Shell model analysis of double-beta decay

• Novel developments with shell model nuclear level densities and reaction rates

M. Horoi CMUNN2012 San Atonio, May 31, 2012

Proton Breakup of 23Al

NN2012 San Atonio, May 31, 2012

M. Horoi CMU

4.3 =< nd 5 / 2 >5 / 2+

USDB

12C(23 Al, 22Mg) E = 50 MeV / A€

S f , k, i =< nk >if −

Jπ 23 Al( ) =5

2

⎝ ⎜

⎠ ⎟+

Sp23 Al( ) =141 keV

S f , d 5 / 2, 5 / 2+ = 3f −

∑ 70%( )

22Mg(p,γ)23 Al

top related