the new accelerator complex at gsi per-erik tegnér, nuclear physics su

Post on 11-Jan-2016

53 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

DESCRIPTION

The new accelerator complex at GSI Per-Erik Tegnér, Nuclear Physics SU. Nuclear Structure Physics. Atomic Physics. Hadron Physics. Plasma Physics. Nuclear Matter Physics. Applications. History Costs Time schedule The accelerators and physics High-energy antiprotons, PANDA. - PowerPoint PPT Presentation

TRANSCRIPT

The new accelerator complex at GSIPer-Erik Tegnér, Nuclear Physics SU

Nuclear Structure Physics

Hadron Physics

Nuclear Matter Physics

Atomic Physics

Plasma Physics

Applications

HistoryCostsTime scheduleThe accelerators and physicsHigh-energy antiprotons, PANDA

Lots of info on: www.gsi.deConceptual Design ReportMaterial from “Second international workshop on the future accelerator facilityfor beams of ions and antiprotons”, October 2003 (H. Geissel, M. Steck, N. Angert, R. Hayano …)PANDA Letter of Intent

History

Present GSI: UNILAC (linear accelerator) 1975SIS18 (synchrotron 18 Tm) 1990ESR (experimental storage ring) 1990

New elements Z=107 - 112New radioactive isotopesPrecise mass measurements of radioactive isotopesRadiation therapy with carbon ions

Parallel operation

Highest Beam IntensitiesBrilliant Beam QualityHigher Beam EnergiesHighest Beam PowerParallel Operation

GSI Conceptual Design Report to the German Research Council: november 2001XFEL and GSI were recommended: end of 2002Minister Bulmahn announced her decision to support 4 projects: Magnet Lab at Dresden, stratospheric air plane, XFEL and GSI: februari 2003

Cost GSI: Building and infrastructure 225 MEURAccelerator 265 MEURExp. stations and detectors 185 MEUR

TOTAL 675 MEUR

To be shared 65/10/25% between German Government, State of Hessen and partners from outside Germany.

SCHEDULE

2010-2011

The new accelerator complexThe central machines SIS100/300

SIS100: 100Tm, primary beamsIntense pulsed (50 ns, 2-4 Hz)Uranium 28+, 1012 ions/pulse1 GeV/nucleonProtons, 2.5×1013 /pulse, 29 GeV

SIS300(200): primary beams“continuous” beams Uranium 92+, 34 GeV/nucleon

Collecting secondary beamsCooling to good beam qualityDecelerationStoring - experiments

The “old” machines UNILAC andSIS18 used as injectors.

Physics with primary beamsPlasma physicsAtomic physicsNuclear matter physics

Plasma physics

Intense ion beams, short pulses (50ns) up to 12000 GW/gSIS100

Ion beams from the “old” SIS18 andlaser pulses from PHELIX serve as diagnostic tools.

Dense plasmas

Atomic physics with highly charged ions

QED in extreme static fieldsin extremely strong dynamical fields

Atomic physics group at SU

Nuclear matter at extreme conditions

Heavy ions around 30 GeV/nucleonSIS18 - SIS100 - SIS300, 109 per sec

Equation of state, quark-gluon plasmaNeutron stars

Secondary beams

Rare isotope beams (RIB)(Beams of shortlived (radioactive) nuclei)

Intensity increase factor of 10000 relative to presentNuclear structure physics

Atomic physics

Antiproton beamsNew at GSI, high intensity, good quality

Hadron physicsAtomic physics

Geissels nuklidkarta

Physics with radioactive (exotic) nuclei

N

Z

Radioactive ion beams

Super FRS

SIS100

Production of radioactive isotopes

Selecting isotopes

Expected production rates

Low-energy and stopped beams

Gamma-ray spectroscopy, AGATA (Nuclear Physics, KTH)

Ion and atom traps

Stored radioactive beams

Precision mass, half-life, measurementsElastic and in-elastic electron scattering

740 MeV/u, dp/p=2.5%

740 MeV/u, dp/p=0,05%

740 - 100 MeV/u, dp/p=0,05%

4 - 740 MeV/u, dp/p=10-6

Electron ring 200 - 500 MeV

Electron coolingGas target, electron target

Antiproton beams

SIS100/300

HESR

NESRCR/RESR

pbar target

NESR

FLAIR

Antiprotons

3 GeV, dp/p=0,1%

0.8 - 3 GeV, dp/p=0,05%108 - 1011 stored antiprotons

30 MeV

30 - 0.3 MeVdown to 20 keV

FLAIRCRYRING?

3 GeV, dp/p=3%

Physics with low-energy antiprotons, examplesdown to 20 keV at FLAIRcooled beam

Antihydrogen spectroscopyAntiprotonic atoms

High-energy antiprotonsSIS100-pbar prod-CR-RESR-SIS100-HESR

HESR

number of protons stored 1011

Electron cooler: Energy resolution about 100 keV (dp/p = 7×10-6 )Hydrogen target (cluster, pellet): Luminosity 2×1032 cm-2 s-1 (TSL, Uppsala)Nuclear targetsDetector: PANDA

Design involves The Svedberg Lab (Uppsala) and MSL (Stockholm)

Some physics topics:

ConfinementThe mass of hadrons

Glueballs

Experimental studies:

Charmonium (cc-bar) spectroscopyPrecision measurements of mass, width and decay branches. Precise due to beam energy resolution.

Search for predicted gluonic excitationsin the charmonium mass range (3 - 5 GeV/c2).

Meson properties in the nuclear medium

Single and double hypernucleiPrecision gamma-ray spectroscopyhyperon-nucleon, hyperon-hyperon interactions

and more …

Requirements for a detector

Detection of lepton pairsGood kaon identificationDetection of low-energy photonsGood vertex recognition

must withstand large radiation doses (especially using nuclear targets)

Target: pellet, wire,fiber

Micro vertex detector (MVD)Silicon pixel

Tracking detectorsStraw tube, Mini drift chambers

Internally reflected Cherenkovdetectors (DIRC)

Muon counters

Electromagnetic calorimeterLead-tungsten scintillators

OUTLINE OF PANDA

PANDA has to be modular

Nuclear physics groups at SU and KTH

The PANDA collaboration

Letter-of-intent january 200443 universities, institutes (or university departments)250 researchers

top related