the incorporation of unnatural amino acids into proteins by nonsense suppression jason k. pontrello...

Post on 28-Dec-2015

218 Views

Category:

Documents

2 Downloads

Preview:

Click to see full reader

TRANSCRIPT

The Incorporation of Unnatural Amino AcidsInto Proteins by Nonsense Suppression

Jason K. PontrelloOctober 25th, 2001

Outline

1. Receptor/Ligand Interactions

2. Biophysical Probes

3. Caged Amino Acids

4. Protein Structure/Function Relationships

1. Chemically Misacylated Suppressor tRNAs

2. In Vivo Misacylated Suppressor tRNAs

Nonsense Suppression Methodology

Applications

Methods for Unnatural Amino Acid Incorporation into Proteins

• synthesis

• tRNA selection

• tRNA modification

• selection process

Methods for Incorporation of Unnatural Amino Acids into Proteins

• Total chemical synthesis (greatest freedom in residues)

• Post-translational modification by chemical and enzymatic means

Largely limited to 30-50 residues

• Native chemical ligation of fragments

Dawson, P. E.; Muir, T. W.; Clark-Lewis, I.; Kent, S. B. H. Science 1997, 266, 776-779.

HN

R1

SR'

OH2N

HS

NH

O

HN

R1

S

OH2N

NH

O

HN

R1

NH

OHS

HN

O

Methods for Incorporation of Unnatural Amino Acids into Proteins

• In vivo - growth in unnatural amino acid

• In vitro - modification lysine/cysteine already acylated to tRNA

• 4 base codons

• Unnatural nucleotides (codon/anticodon pair)

Ma, C.; Kudlicki, W.; Odom, O. W.; Kramer, G.; Hardesty, B. Biochemistry 1993, 32, 7939-7945.

Bain, J. D.; Switzer, C.; Chamberlin, A. R.; Benner, S. A. Nature 1992, 356, 537-539.

ON

N

NH H

O

H

H

O

N

NN

H

NN

OHO

PO O

O

O

P

O

OO

O

OHO

P

O

O

O

OP

OO

O

ON

N

OH

N

H

H

N

O

NN

NN

OHO

PO O

O

O

P

O

OO

O

OHO

P

O

O

O

OP

OO

O

H

H

C-G pair isoC-isoG pair

Nonsense Suppression

Advantages

Limitations

• Ability to selectively incorporate a single unnatural amino acid at a specific site in a protein

• Can be used in vitro or in vivo

• Only works for -amino acids

• Cannot be used to incorporate D-amino acids

• Efficiency of incorporation is variable and not well understood

Translation of Proteins

GTP

elongation factor Tu

ATP

aminoacyl tRNAsynthetase

Translation Termination

Amber (UAG), Opal(UGA), Ochre(UAA)

Yeast tRNAPhe and Human eRF1 Release Factor

Bertram, G.; Innes, S.; Minella, O.; Richardson, J. P.; Stansfield, I. Microbiology 2001, 147, 255-269.

Nonsense Mutation

nonsensemutation

• No corresponding tRNA to continue normal translation of protein

• Causes truncated protein products

• Protein products are usually not functional

The First Suggestion to Use Nonsense Suppression

Shih, L. B.; Bayley, H. Anal. Biochem. 1985, 144, 132-141.

“Our long-term goal is to introduce 6 at specific sites in polypeptides during in vitro protein synthesis. Specifically, we intend to chemically acylate suppressor tRNAs and introduce the diazirine at amber mutation sites.”

CO2H

NH2

F3C NN

6

Nonsense Suppression Methodology

Noren, C. J.; Anthony-Cahill, S. J.; Griffith, M. C.; Schultz, P. G. Science 1989, 244, 182-188.

Site-directedmutagenesis

transcription

translation

In vitro and in vivo Systems to Produce Protein

Thorson, J. S.; Cornish, V. W.; Barrett, J. E.; Cload, S. T.; Yano, T.; Schultz, P. G. Methods Mol. Biol. 1998, 77, 43-73.Dougherty, D. A. Curr. Opin. Chem. Biol. 2000, 4, 645-652.

translationalmixture

Xenopusoocyte

in vitro in vivo

+

Misacylation of tRNAs

• The first report

Chapeville, F.; Lipmann, F.; von Ehrenstein, G.; Weisblum, B.; Ray, W. J.; Benzer, S. Proc. Natl. Acad. Sci. 1962, 48, 1086-1092.von Ehrenstein, G.; Weisblum, B.; Benzer, S. Proc. Natl. Acad. Sci. 1963, 49, 669-675.

• Significant contributions by Sidney M. Hecht

Hecht, S. M. Acc. Chem. Res. 1992, 25(12), 545-552.

cysteine-tRNACys alanine-tRNACys

chemicaldesulfurization

Misacylation of Suppressor tRNAs

in vivo

suppressor tRNA

aminoacyl tRNA synthetase

amino acid

chemical

suppressor tRNA(-CA)

pdCpA-amino acid

Suppressor tRNA(-CA) Synthesis by Runoff Transcription

Uhlenbeck, O. C.; Gumport, R. I. The Enzymes, 1982, 15, 31-58.Silber, R.; Malathi, V. G.; Hurwitz, J. Proc. Natl. Acad. Sci. 1972, 69, 3009-3013.

• Termination by mRNA hairpin loop formation

• Termination by runoff transcription

Overview Chemical Misacylation of Suppressor tRNAs

Gilmore, M. A.; Steward, L. E.; Chamberlin, A. R. Topics Curr. Chem. 1999, 202, 77-99.

suppressor tRNA(-CA)

ONO

O

P OO

O

O

O

P

O

O

O

N

O

NH2

N

NN

N

NH2

OHO

NH2

R

pdCpA-amino acid

T4 ligase+

Synthesis of pdCpA

Robertson, S. A.; Noren, C. J.; Anthony-Cahill, S. J.; Griffith, M. C.; Schultz, P. G. Nuc. Acid Res. 1989, 17(23), 9649-9660.

ONdMTrO

O

P

N

O

NHBz

NCCH2CH2O N

ONdMTrO

O

P ONCCH2CH2O

O

O

BzO

N

O

NHBz

N

NN

N

NBz2

OBz

ONO

O

P ONCCH2CH2O

O

O

BzO

N

O

NHBz

N

NN

N

NBz2

OBz

P

O

NCCH2CH2O

NCCH2CH2OONO

O

P OO

O

O

HO

P

O

O

O

N

O

NH2

N

NN

N

NH2

OH

1. A-Bz4, tetrazole

2. I2, THF/H2O

(76% yield)

conc. NH4OH

(used crude)

1. TsOH2. (iPr)2NP(OCH2CH2CN)2, tetrazole3. I2, THF/H2O

(80% yield)

Acylation of pdCpA with Amino Acid

Robertson, S. A.; Ellman, J. A.; Schultz, P. G. J. Am. Chem. Soc. 1991, 113, 2722-2729.

ONO

O

P OO

O

O

HO

P

O

O

O

N

O

NH2

N

NN

N

NH2

OH

NH

PGR

O

O

CN

DMF, nBu4N+OAc-

(76-87% yield)

ONO

O

P OO

O

O

O

P

O

O

O

N

O

NH2

N

NN

N

NH2

O

O HN

R

PGH

Ligation of pdCpA-aa to tRNA(-CA)

Heckler, T. G.; Chang, L.-H.; Zama, Y.; Naka, T.; Chorghade, M. S.; Hecht, S. M. Biochemistry 1984, 23, 1468-1473.

ONO

O

P OO

O

O

O

P

O

O

O

N

O

NH2

N

NN

N

NH2

O

O HN

R

PGH

ONO

O

P OO

O

O

O

P

O

O

O

N

O

NH2

N

NN

N

NH2

O

O HN

R

PGH

tRNA

tRNA-C OH

T4 RNA ligase

deprotect

ONO

O

P OO

O

O

O

P

O

O

O

N

O

NH2

N

NN

N

NH2

O

O NH2

RH

tRNA

Misacylation of tRNAs: Protecting Groups for Amino Acids

Patchornik, A.; Amit, B.; Woodward, R. B. J. Am. Chem. Soc. 1970, 92, 6333-6335.Yip, R. W.; Wen, Y. X.; Gravel, D.; Giasson, R.; Sharma, D. K. J. Phys. Chem. 1991, 95, 6078-6081.

6-Nitroveratryl oxycarbonyl (NVOC)

4-Pentenoyl

Lodder, M.; Golovine, S.; Laikhter, A. L.; Karginov, V. A.; Hecht, S. M. J. Org. Chem. 1998, 63, 794-803. Madsen, R.; Roberts, C.; Fraser-Reid, B. J. Org. Chem. 1995, 60, 7920-7926.

H3CO

H3CO

N

OHN

O

O

O

R1

O H

N

O

OCH3

H3CO

hv = 350nm

1mM KOAc, pH 4.5+

O

O

tRNAH2N

O

O

R1

tRNA

OHN

O

O

O

R1

I2, H2O

( 92% yield)+tRNA H2N

O

O

R1

tRNAO

O

I

Selection of Suppressor tRNA for Chemical Misacylation

• Not acylated by endogenous synthetases

• High Suppression Efficiency

UnnaturalAmino acid

IncorporatedInto protein

reacylation

none

Selection of Suppressor tRNA

Fersht, A. R.; Dingwall, C. Biochemistry 1979, 18, 2627-2631.

• No “double-sieve” editing for glycyl-tRNA synthetases

• Two base pair changes in acceptor stem:

Bain, J. D.; Diala, E. S.; Glabe, C. G.; Wacker, D. A.; Lyttle, M. H.; Dix, T. A.; Chamberlin, A. R. Biochemistry 1991, 30, 5411-5421

Optimal T7 RNA polymerase promoter into the DNA template

Eliminated recognition for E. coli Gly synthetase

Selection of Suppressor tRNA

Cload, S. T.; Liu, D. R.; Froland, W. A.; Schultz, P. G. Chem. & Biol. 1996, 3, 1033-1038.Ellman, J.; Mendel, D.; Anthony-Cahill, S.; Noren, C. J.; Schultz, P. G. Methods in Enzymology 1991, 202, 301-336.

• Poorly recognized by the E. coli Phe synthetase

• Low suppressor efficiency

• E. coli ribosome affinity reduced for yeast tRNAPhe

• Polar amino acids poorly incorporated

• New suppressor tRNAs

Selection of Suppressor tRNA

Saks, M.; Sampson, J. R.; Nowak, M. W.; Kearney, P. C.; Du, F.; Abelson, J. N.; Lester, H. A.; Dougherty, D. A. J. Biol. Chem. 1996, 271, 23169-23175.

Cload, S. T.; Liu, D. R.; Froland, W. A.; Shultz, P. G. Chem. & Biol. 1996, 3, 1033-1038.

• Naturally introduces Glutamine at UAG codon

• Modified acceptor stem mutants (THG73 and THA73)

• Good suppression in vivo and in vitro

Selection of Suppressor tRNA

Cload, S. T.; Liu, D. R.; Froland, W. A.; Shultz, P. G. Chem. & Biol. 1996, 3, 1033-1038.

• E. coli tRNAAsnCUA and T. thermophila tRNAGln

CUA best overall

• Suppression Efficiency subject to variables not understood:Different proteins and different sites can give varied results

T4 lysozyme at site 82 Chorismate mutase at site 88

Misacylation of Suppressor tRNAs

chemical

suppressor tRNA(-CA)

pdCpA-amino acid

in vivo

suppressor tRNA

aminoacyl tRNA synthetase

amino acid

Requirements for In Vivo Misacylation

• Uptake of Unnatural Amino Acid not toxic to cell

• Suppressor tRNA only acylated by correct synthetase (orthogonal tRNA/synthetase pair)

Saks, M. E. Proc. Natl. Acad. Sci. 2001, 98, 2125-2127.

Mutation Sites to Generate Suppressor tRNATyr Library

Wang, L.; Schultz, P. G. Chem. & Biol. 2001, 8, 883-890.

Double Selection Screen for Orthogonal tRNA/Synthtase Pair

Wang, L.; Schultz, P. G. Chem. & Biol. 2001, 8, 883-890.

• orthogonal tRNAs• non-functional tRNAs

Toxic barnase tRNA library endogenous

negativeselection

-lactamase endogenoustRNA library

synthetasepositiveselection

ampicillin• orthogonal tRNA/ synthetase pair

M. jannaschii E. coli

Applications of Nonsense Suppression

1. Receptor/Ligand Interactions

2. Biophysical Probes

3. Caged Amino Acids

4. Protein Structure/Function Relationships

Receptor/Ligand Interactions:Nicotinic Acetylcholine Receptor (nAChR)

Li, L.; Zhong, W.; Zacharias, N.; Gibbs, C.; Lester, H. A. Dougherty, D. A. Chem & Biol 2001, 8, 47-58.

Synthesis of Tethered Agonists for nAChR

Li, L.; Zhong, W.; Zacharias, N.; Gibbs, C.; Lester, H. A. Dougherty, D. A. Chem & Biol 2001, 8, 47-58.

Acetylcholine (ACh)O

O

NMe3

NH

O

OCH2CH2CN

O

NMe3

NVOCNH

O

OCH2CH2CN

O

CMe3

NVOC

n 3

n = 2,3,4,5

Probing Activity of nAChR with Tethered Agonists

NH

O

O

NMe3n

n = 2,3,4,5

Li, L.; Zhong, W.; Zacharias, N.; Gibbs, C.; Lester, H. A. Dougherty, D. A. Chem & Biol 2001, 8, 47-58.

Proposed View of nAChR Agonist Binding Site

Li, L.; Zhong, W.; Zacharias, N.; Gibbs, C.; Lester, H. A. Dougherty, D. A. Chem & Biol 2001, 8, 47-58.

Biophysical Probes

• Unnatural amino acids as fluorescence or spin labels

• Uses in:

Protein-protein interactions

Protein-ligand interactions

Sensitive detection

Protein structure determination and conformational changes

Fluorescence Resonance Energy Transfer (FRET)for Investigating Receptor/Ligand Interactions

sensitizedemission

FRET

donoremission

GFP(donor)

absorbanceemission

emission

tag(acceptor)

absorbance

+

Receptor/Ligand Interactions:Neurokinin (Tachykinin)-2 Receptor (NK2)

Turcatti, G.; Nemeth, K.; Edgerton, M. D.; Meseth, U.; Talabot, F.; Peitsch, M.; Knowles, J.; Vogel, H.; Chollet, A. J. Biol. Chem. 1996, 271, 19991-19998.

Probe

548nm572nm

Emission550nm

Abs476nm

Antagonist ligand

NH

CO2H

NH2

NON

O2N

3-N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl)-2,3- diamino-propionic acid (NBD-Dap)

PhCO-K(TMR)-A-DW-F-DP-P-Nle-NH2

(TMR = tetramethylrhodamine)

Receptor/Ligand Interactions: NK2

G-Protein Coupled Receptor (7-Transmembrane Receptor)

Turcatti, G.; Nemeth, K.; Edgerton, M. D.; Meseth, U.; Talabot, F.; Peitsch, M.; Knowles, J.; Vogel, H.; Chollet, A. J. Biol. Chem. 1996, 271, 19991-19998.

Biophysical Probes: Fluorescence

Steward, L. E.; Collins, C. S.; Gilmore, M. A.; Carlson, J. E.; Ross, J. B. A.; Chamberlin, A. R. J. Am. Chem. Soc. 1997, 119, 6-11.

-galactosidase at 340nm excitation

dnsLys (13.6 nM, —)Phe (21.4 nM, ----)wild-type (10.5 nM, . . . . )

NH

CO2H

NH2

HO

NH

N

CO2H

NH2

S

HN CO2H

NH2OO

N

5-Hydroxytryptophan(5-OHTrp)

7-Azatryptophan(7-azaTrp)

-Dnsyllysin(dnsLys)

Cornish, V. W.; Benson, D. R.; Altenbach, C. A.; Hideg, K.; Hubbell, W. L.; Schultz, P. G. Proc. Natl. Acad. Sci. 1994, 91, 2910-2914.

Biophysical Spin Labeled Probes

CO2H

NH2

S

N

O

CO2H

N

O

NH2

CO2H

NH2

NO

TOAC

T4 Lysozyme (pmole)Ser44 to spin label

X-band EPR spectrum

Caged Amino Acids:Caged Tyrosine to Investigate Membrane Trafficking

Tong, Y.; Brandt, G. S.; Li, M.; Shapovalov, G.; Slimko, E.; Karschin, A.; Dougherty, D. A.; Lester, H. A.J. Gen. Physiol. 2001, 117, 103-118.

O(H)

PO3-2

Mus musculus Kir 2.1 inwardly rectifying K+ channel

kinaseATP ADP

or O(H)

O2N

PO3-2

Tong, Y.; Brandt, G. S.; Li, M.; Shapovalov, G.; Slimko, E.; Karschin, A.; Dougherty, D. A.; Lester, H. A.J. Gen. Physiol. 2001, 117, 103-118.

Caged Tyrosine to Investigate Membrane Trafficking

kinaseATP ADP

NH

O

NO2

O

NH

OH

NOO

H

O

+

hv300-350 nm

Protein Structure/Function Relationship:Photochemical Protein Backbone Cleavage

England, P. M.; Lester, H. A.; Davidson, N.; Dougherty, D. A. Proc. Natl. Assoc. Sci. 1997, 94, 11025-11030.

o-Nitrophenyl Glycine (Npg)

NH

R1HN

O

NH

O R2

ONO2

NH2

O

NH

R1

NO

NHO

O R2

O

hv +

England, P. M.; Lester, H. A.; Davidson, N.; Dougherty, D. A. Proc. Natl. Assoc. Sci. 1997, 94, 11025-11030.

Drosophila Shaker B K+ ion channel

Protein Structure/Function Relationship:Photochemical Protein Backbone Cleavage

England, P. M.; Lester, H. A.; Davidson, N.; Dougherty, D. A. Proc. Natl. Assoc. Sci. 1997, 94, 11025-11030.

Nicotinic Acetylcholine Receptor (nAChR)

Protein Structure/Function Relationship:Photochemical Protein Backbone Cleavage

Protein Structure/Function Relationship:Firefly Luciferase

Mamaev, S. V.; Laikhter, A. L.; Arslan, T.; Hecht, S. M. J. Am. Chem. Soc. 1996, 118, 7243-7244.

HO S

N N

S

CO2H

O S

N N

S

O

luciferin Oxyluciferine dianion

Protein Structure/Function Relationship:Firefly Luciferase

Mamaev, S. V.; Laikhter, A. L.; Arslan, T.; Hecht, S. M. J. Am. Chem. Soc. 1996, 118, 7243-7244.Arslan, T.; Mamaev, S. V.; Mamaeva, N. V.; Hecht, S. M. J. Am. Chem. Soc. 1997, 119, 10877-10887.

NH

O

HO

Wild-type Serine (584nm) Serine Phosphonate (584nm)

NH

O

PO O

O

Glycosyl Serine (584nm)

NH

O

OO

OH

OH

HOHO

NH

O

OP

O

OO

Tyrosine Phosphate (593nm)

NH

O

PO

OO

Tyrosine Phosphonate (603nm)Tyrosine (613nm)

NH

O

HO

Protein Structure/Function Relationship:Tyrosine and Proline Analogs in Adenylate Kinase

Zhao, Z.; Liu, X.; Shi, Z.; Danley, L.; Huang, B.; Jiang, R.-T.; Tsai, M.-D. J. Am. Chem. Soc. 1996, 118, 3535-3536.

NH2

CO2H

HONH2

CO2H

Tyrosine(Tyr)

2,5-Dihydrophenylalanine(DiHPhe)

Tyr-95 does not have to be aromatic

Pro-17 can bemore flexible,but not less (Aze)

NH

CO2H

NH

CO2H

NH

CO2H

NH

CO2H

NH

CO2H

Proline(Pro)

3,4-Dehydroproline (DHP)

Pipecolic Acid(Pip)

Homopipecolid Acid(HPip)

Azetidine 2-Carboxylic Acid(Aze)

MgATP + AMP MgADP + ADP

Protein Structure/Function Relationship: -Branched Amino Acids in T4 Lysozyme -Helix

Cornish, V. W.; Kaplan, M. I.; Veenstra, D. L.; Kollman, P. A.; Schultz, P. G. Biochemistry 1994, 33, 12022-12031.

ADBA destabilizes at Ser44 and stabilizes at Asn68

Molecular dynamics: disruption of helix, but stabilizing hydrophobic packing

• Can destabilize by restriction of rotation

• Can stabilize by improved side-chain van der Waals interactions

CO2H

NH2

CO2H

NH2

CO2H

NH2

CO2H

NH2

CO2H

NH2

CO2H

NH2

L-Alanine(Ala)

L-2-Aminobutanoic Acid(ABA)

L-2-Aminopentanoic Acid(APA)

L-2-Aminohexanoic Acid(AHA)

L-Valine(Val)

L-2-Amino-3,3-Dimethylbutanoic Acid(ADBA)

Protein Structure/Function Relationship:HIV Protease and Aspartic Acid Analogs

Short, G. F. III; Laikhter, A. L.; Lodder, M.; Shayo, Y.; Arslan, T.; Hecht, S. M. Biochemistry 2000, 39, 8768-8781.

H2N CO2H

O

OCH2CH=CH2

H2N CO2H

O

OCH2CH=CH2H3C

H3C

H2N CO2H

O

OCH3

H2N CO2H

O

OH

H2N CO2H

O

OHH3C

H2N CO2H

O

OHH3C

H2N CO2H

O

OHH3C

H3C

H2N CO2H

O

OHH3C

H2N CO2H

SO3H

NH

CO2H

O

OH

H3CNH

CO2H

O

OH

H2N CO2H

PO3H2

Aspartic Acid Analogs

Short, G. F. III; Laikhter, A. L.; Lodder, M.; Shayo, Y.; Arslan, T.; Hecht, S. M. Biochemistry 2000, 39, 8768-8781.

Short, G. F. III; Laikhter, A. L.; Lodder, M.; Shayo, Y.; Arslan, T.; Hecht, S. M. Biochemistry 2000, 39, 8768-8781.

4.7 Å

7.7 Å

7.8 Å

7.0 Å

4.1 Å

8.0 Å

Val 82

Ile 84

Asp 25(+deriv.) aspartic acid

H2N CO2H

O

OH

erythro29% increase

H2N CO2H

O

OHH3C

4.2 Å

5.3 Å

7.8 Å

6.2 Å

4.3 Å

7.0 Å

threo87% decrease

H2N CO2H

O

OHH3C

dimethylno activity

H2N CO2H

O

OHH3C

H3C

Binding Pockets of HIV Protease by Molecular Dynamics

Conclusion

Nonsense Suppression Applications:

• Receptor/Ligand Interactions

• Biophysical Probes

• Caged Amino Acids

• Protein Structure/Function Relationships

Unnatural Amino Acids

Phosphorylated/glycosylated Proline derivatives

Fluorescent/spin labels Tethered agonists

Thanks

• Kiessling Group

• 3rd years Jen , Val, Whitney, Margaret, Chris

• Periodic Table tie for holding up my pants

top related