tectonic heat flow modelling for basin maturation: method .... vanwees...tectonic heat flow...

Post on 05-Sep-2020

3 Views

Category:

Documents

1 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Tectonic heat flow modelling for basin maturation: method and applications

J.D. van Wees1,2,

R. Abdul-Fattah1, D. Bonte1,2,

H. Kombrink1, H. Verweij1, F. van Bergen, P. David

F. Beekman2, S. Cloetingh2

2Vrije Universiteit Amsterdam 1TNO

Content

• Definition of tectonic heat flow

• Workflow

• Added value of tectonic heat flow

• Tectonic models for the Netherlands

• West Netherlands Basin

• Netherlands Antilles

• Terschelling Basin

• Variscan Foreland evolution

shale k=1.7

sandstone k=2.5

salt k=6

Temperature (T) �

Dep

th (z) �

PD heat flow

q=60

q=80

q=40

q=30

Best fit

Heat flow (q) relates to the temperature

gradient. Present day (PD) Temperature data

(■) in wells can be directly related to (q)

kqdz

dT/=

tectonic heat flow is calculated from the temperature gradient in the top of the numerical kinematic models, which predict temperature effects of lithosphere deformation.

The 1D McKenzie Model (1978) is a classic for continental lithosphere extension (rifting)

crust

mantle

β =Li/Le

McKenzie model: lithosphere (Li) is instantaneously

thinned by factor β

Li

Le

Temperature (T) �

Dep

th (z) �

120 km

t=100My

t=0My

t=10My

t=30My

t=300My

1330 C

Tectonics:Lithosphere extension –

Predicted Mass surplus

Sediment record:Burial history-observed mass deficit

Tectonic Subsidence Model (δ δ δ δ = 1.47)

0

200

400

600

800

1000

1200

1400

1600

050100150200

Age [Ma]

Air

lo

ad

ed

te

cto

nic

su

bs

ide

nc

e [

m]

Observed

Model

For the McKenzie model a very simple analytical solution for the heat flow exist

(McKenzie, 1978)

Heat flow McKenzie Model (for various ββββ -values)

0

20

40

60

80

100

120

020406080100

Age[MA]

Heat

Flo

w [

mW

m-2

]

1.25

1.5

2

3

120 km

McKenzie heat flow

No Good:

•No crustal heat production•No sediment infill

Heat Flow Model, stretching (β=1.44)

Basement Heat Flow ( Heat production, ββββ=1.44)

45

50

55

60

65

70

75

050100150200

Age[Ma]

He

at

Flo

w [

mW

m-2

]

no sediments

sediments

synrift

Water filled

Sediment filled

Van Wees and Beekman, 2000 sed

crust

crust

mantle

1/β

Lith

osp

heric

thick

ness

Norm

al geo

therm

dT/dz

stretched

geo

therm

dT/dz

Tectonic

Subsidence

curve

Subsidence Inversion

– tectonic heat flow

Lithosphere

Parameters

Inverted

Tectonic model

TECTONICHEAT FLOW

Experimental design

SUB

SUBmin, PWDmin

SUBmax, PWDmax

SUBmax, PWDmin

SUBmin, PWDmax

PWDSample, interpolate from

Experimental nodes

Tectonic

Subsidence

curve

Subsidence Inversion

– tectonic heat flow

Lithosphere

Parameters

Inverted

Tectonic model

TECTONICHEAT FLOW

Uncertainty

Tectonic Subsidence

(PWD/erosion)

Heat flow Uncertainty

Uncertainty

Lithosphere

Parameters

(crust/lith)

Experimental designalternative

Inverted

Tectonic models

End-members

UNCERTAINTY TECTONIC

HEAT FLOW

MC sampling

Van Wees et al., 2008

Marine and Petroleum Geology

Calibration to Ro – PD temperatures – sensitivity analysis

Tectonic

Subsidence

curve

Subsidence Inversion

– tectonic heat flow

Lithosphere

Parameters

Inverted

Tectonic model

TECTONICHEAT FLOW

Uncertainty

Tectonic Subsidence

(PWD/erosion)

Heat flow Uncertainty

Uncertainty

Lithosphere

Parameters

(crust/lith)

Experimental designalternative

Inverted

Tectonic models

End-members

UNCERTAINTY TECTONIC

HEAT FLOW

MC sampling

UncertaintyMaturation

Maturation Uncertainty

Uncertainty

Sedimentary

Thermal properties

MC sampling

West Netherlands Basin – WAS-2

A priori Uncertainty

•Lithospheric thickness 90-130 km

•Erosion during Late Cretaceous Inversion 500-1500 m

•Porosity depth curves ���� sediment conductivity

Calibration

•Ro depth trend

•PD temperature gradient-

Subsidence NWB

0

200

400

600

800

1000

1200

050100150200250300350

Age [Ma]

Tecto

nic

su

bs [

m]

data

model

56

50

62

800+-300 m

EROSION

117+-10km

Lithosphere

thickness

1500

2000

2500

3000

3500

0.2 0.4 0.6 0.8 1 1.2 1.4

Ro [%]

De

pth

[m

]

was-32-

observed

Model

B

0

500

1000

1500

2000

2500

3000

3500

0 50 100 150Temperature[C]

De

pth

[m

]

was-32 -observed

Model

A

-0.875

Lithospheric thickness [m]

PD

Tem

per

ature

[C

]

Porosity-depth / subsidence 1.7 Ma [m]

PD

Tem

per

ature

[C

]

-0.215

Lithospheric Thickness

Porosity-depth relationship

Sensitivity

Tornado-plot

• 3D Basin Modeling: How to predict heat flow away from wells?

well

Best fit q=30

q=30?Use linear

extrapolation?

Added value of tectonic heat flow modeling

70&80s wells, NO HC

SHALLOW WATER, 28 mW

DEEP WATER , 38 mW

Possibly HC

SL

OW

FA

ST

Heat F

low

[mW

m-2

]

Age [Ma]

Netherlands Antilles

Van Wees et al., 2008 – Marine and Petroleum Geology

• Basin Modeling: How to find heat flow in the past

Age (Ma)

Hea

t F

low

Typical start:

Flat heat flow through timeusing the same as PD heat flow

Present day (PD) heat flow

Added value of tectonic heat flow modeling

• Basin Modeling: How to find better heat flow in the past

Modified to fit Ro

Age (Ma)

Hea

t F

low

Added value of tectonic heat flow modeling

Seismic tomography

demonstrates mantle plumes acting as heat advection channels

in the deep lithosphere

Goes et al., 2000

Ritter et al., 2001

Extension models – melts and underplates can arise from hot mantle (plumes) which result in accentuated heat advection and heat flow, relative to default extension

http://www.mantleplumes.org/

Crust

Mantle

Norm

al geo

therm

dT/dz

stretched

geo

therm

dT/dz

Underplate

β=1.5

Lith

osp

heric th

ickness

No

rmal g

eoth

erm

dT/dz

stretched

geo

therm

dT/dz

Crust

Mantle

dT/dz

Ho

t m

antl

e p

lum

eH

ot

man

tle

plu

me

stretched

geo

therm

uniform two-layered

δ=1.5

β=3

Van Wees et al., 2000- – Marine and Petroleum Geology Ziegler et al., 1998 - Tectonophysics

Sirt Basin

Abadi et al., 2008 –

AAPG Bulletin

0

500

1000

1500

020406080100

Age [Ma]

Tecto

nic

subs [m

]data

model

synrift

synrift

EAST SIRT- Agedabia WEST SIRT- Hun

0

500

1000

1500

020406080100Age [Ma]

Te

cto

nic

su

bs

[m

]

data

model

synrift

underplating

65

45

55

65

45

55

1500

2000

2500

3000

3500

4000

4500

5000

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Ro [%]

Dep

th [

m]

Agedabia-obs

Agedabia-model

HUN-obs

HUN-model

HUN

Agedabia

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 50 100 150

Temperature [C]

De

pth

[m

]

BHT 22/km

BHT 25/km

Van Wees et al., 2008 – Marine and Petroleum Geology

0

200

400

600

800

1000

1200

1400

0100200300

Age [Ma]

Tecto

nic

su

bsid

en

ce [m

]

observed

modelled

45

47

49

51

53

55

57

59

61

63

65

Basem

ent h

eat fl

ow

[m

W/m

2]

default heat

flowelevated

West Netherlands

Basinβ=1.5

Lith

osp

heric th

ickn

ess

No

rmal g

eoth

erm

dT/dz

stretched

geo

therm

dT/dz

Crust

Mantle

dT/dz

Ho

t m

antl

e p

lum

eH

ot

man

tle

plu

me

stretched

geo

therm

uniform two-layered

δ=1.5

β=3

Model building:Boundary conditions

-1600

-1400

-1200

-1000

-800

-600

-400

-200

0

-320 -270 -220 -170 -120 -70 -20

Age [Ma]

Te

cto

nic

su

bs

ide

nc

e [

m]

Tectonic Sub Tectonic Model

55

58

61

64

67

70

Basem

en

t h

eat

flo

w [

mW

/m2]

Calibrated Heat Flow

0.981.011.060.951.0411.111.140.89

-1600

-1400

-1200

-1000

-800

-600

-400

-200

0

-320 -270 -220 -170 -120 -70 -20

Age [Ma]

Te

cto

nic

su

bs

ide

nc

e [

m]

Tectonic Sub Tectonic Model

55

58

61

64

67

70

Basem

en

t h

eat

flo

w [

mW

/m2]

Calibrated Heat Flow

0.981.011.060.951.0411.111.140.89

Basal heat flow historyreconstructed from tectonicmodelling (Petroprob) (Rader Abdul Fattah

et al 2008)

33 heat flow maps

Willingshofer and Cloetingh, Tectonics 22, 2003

Ziegler et al., 1998

Carboniferous –Netherlands (1)

Kombrink et al., 2008 (Basin Research)

Carboniferous –Netherlands (2)

Carboniferous –Netherlands (4)

Conclusions

• Tectonic heat flow models aid in predicting heat flow for basin

modelling beyond well control

• Mature basins - Heat flow through time

• Frontier basins – spatial variability

• Tectonic heat flow models should include effects of crustal heat

production and sediment infill/erosion

• The Netherlands

• Average heat flow values today

• Considerable variation through time:

• Elevated at mantle plume/underplating phase

• Depressed during foreland formation

top related