takashi nakatsukasa theoretical nuclear physics laboratory riken nishina center

Post on 12-Jan-2016

31 Views

Category:

Documents

1 Downloads

Preview:

Click to see full reader

DESCRIPTION

E1 strength distribution in even-even nuclei studied with the time-dependent density functional calculations. Takashi NAKATSUKASA Theoretical Nuclear Physics Laboratory RIKEN Nishina Center. Mass, Size, Shapes → DFT (Hohenberg-Kohn) Dynamics, response → TDDFT (Runge-Gross). - PowerPoint PPT Presentation

TRANSCRIPT

E1 strength distribution in even-even nuclei studied with the time-dependent density

functional calculations

Takashi NAKATSUKASA

Theoretical Nuclear Physics Laboratory

RIKEN Nishina Center

2008.9.25-26 Workshop “New Era of Nuclear Physics in the Cosmos”

•Mass, Size, Shapes → DFT (Hohenberg-Kohn)

•Dynamics, response → TDDFT (Runge-Gross)

Basic equations• Time-dep. Schroedinger eq.• Time-dep. Kohn-Sham eq.

• dx/dt = Ax

Energy resolution ΔE 〜 ћ/T All energies

Boundary Condition• Approximate boundary conditi

on• Easy for complex systems

Basic equations• Time-indep. Schroedinger eq. • Static Kohn-Sham eq.

• Ax=ax (Eigenvalue problem)• Ax=b (Linear equation)

Energy resolution ΔE 〜 0 A single energy point

Boundary condition• Exact scattering boundary co

ndition is possible• Difficult for complex systems

Time Domain Energy Domain

How to incorporate scattering boundary conditions ?

• It is automatic in real time !

• Absorbing boundary condition

γ

n

A neutron in the continuum

2

)(

)()(22

2

fd

dr

efer

rErrVm

ikrikz

r

For spherically symmetric potential

lr

ll

ll

ll

l

lkrruu

rEururVmr

ll

dr

d

m

Pr

rur

2sin,00

2

)1(

2

cos

2

2

2

22

)(

Phase shift l

Potential scattering problem

r

eferV

HiEr

ikr

r

ikz

1Scattering wave

ikzerV

Time-dependent picture

ikziHttiEiikz erVeedti

erVHiE

r

//)(

0

11

trHtrt

i

erVtr ikz

,,

0,

tredti

r iEt ,1 /

0

(Initial wave packet)

(Propagation)

ikzikz

ikz

erVHiE

e

rrVTiE

er

1

1 )()(

Time-dependent scattering wave

Projection on E :

T iEt trei

r0

/ ,1

rrVerdm

f rki

)(

22

)()'(2)( VEEiS k'kk'kk'

Boundary Condition

ikzerV

ri~

Finite time period up to T

Absorbing boundary condition (ABC)

Absorb all outgoing waves outside the interacting region

trriHtrt

i ,~,

How is this justified?

Time evolution can stop when all the outgoing waves are absorbed.

s-wave

absorbing potentialnuclear potential

krrjrVtrv ll 0,

ikzerVtr

trHtrt

i

0,

,,

Re u(r)

100806040200

r ( f m)

di ff erent i al eq. l i near eq. t i me-dep. Fouri er transf .

ri~

tredti

r iEt ,1 /

0

0Re r

0,Re tr

3D lattice space calculationSkyrme-TDDFT

Mostly the functional is local in density →Appropriate for coordinate-space representation

Kinetic energy, current densities, etc. are estimated with the finite difference method

Skyrme TDDFT in real space

X [ fm ]

y [

fm ]

3D space is discretized in lattice

Single-particle orbital:

N: Number of particles

Mr: Number of mesh points

Mt: Number of time slices

Nitt MtnMrknkii ,,1,)},({),( ,1

,1

rr

),()()](,,,,[),( exHF ttVthtt

i iti rJsjr �

Time-dependent Kohn-Sham equation

Spatial mesh size is about 1 fm.

Time step is about 0.2 fm/c

Nakatsukasa, Yabana, Phys. Rev. C71 (2005) 024301

ri~

Real-time calculation of response functions

1. Weak instantaneous external perturbation

2. Calculate time evolution of

3. Fourier transform to energy domain

dtetFtd

FdB ti

)(ˆ)(Im1)ˆ;(

)(ˆ)( tFt

)(ˆ)(ext tFtV

)(ˆ)( tFt

ω [ MeV ]

d

FdB )ˆ;(

Nuclear photo-absorption

cross section(IV-GDR)

4He

Ex [ MeV ]

0 50 100

Skyrme functional with the SGII parameter set

Γ=1 MeV

Cro

ss s

ectio

n [

Mb

]

Ex [ MeV ]10 4020 30

Ex [ MeV ]10 4020 30

14C12C

Ex [ MeV ]

10 4020 30

18O16OProlate

Ex [ MeV ]10 4020 30

Ex [ MeV ]10 4020 30

24Mg 26MgProlate Triaxial

Ex [ MeV ]10 4020 30

Ex [ MeV ]10 4020 30

28Si 30SiOblateOblate

Ex [ MeV ]10 4020 30 Ex [ MeV ]

10 4020 30

32S 34SProlate Oblate

Ex [ MeV ]

104020 30

40ArOblate

40Ca

44Ca

48Ca

Ex [ MeV ]10 4020 30 Ex [ MeV ]

10 4020 30

Ex [ MeV ]10 20 30

Prolate

Cal. vs. Exp.

Electric dipole strengths

SkM*Rbox= 15 fm = 1 MeV

Numerical calculations by T.Inakura (Univ. of Tsukuba)

Z

N

Peak splitting by deformation 3D H.O. model

Bohr-Mottelson, text book.

He

O

SiBe NeSi

CMg

Centroid energy of IVGDR

Ar

Fe

Ti

Cr

Ca

)(),( AgZNfEGDR

Low-energy strength

Low-lying strengths

Be CHe

ONe Mg Si S Ar Ca

Ti

CrFe

Low-energy strengths quickly rise up beyond N=14, 28

Summary

Small-amplitude TDDFT with the continuum Fully self-consistent Skyrme continuum RPA for deformed nuclei

Theoretical Nuclear Data Tables including nuclei far away from the stability line → Nuclear structure information, and a variety of applications; astrophysics, nuclear power, etc.

Photoabsorption cross section for light nuclei Qualitatively OK, but peak is slightly low, high energy tail is too low For heavy nuclei, the agreement is better.

top related