state space approach to signal extraction problems in seismology genshiro kitagawa the institute of...

Post on 20-Jan-2016

221 Views

Category:

Documents

1 Downloads

Preview:

Click to see full reader

TRANSCRIPT

State Space Approach to Signal Extraction Problems

in Seismology

Genshiro Kitagawa The Institute of Statistical Mathematics

IMA, Minneapolis

Nov. 15, 2001

Collaborators: Will Gersch (Univ. Hawaii) Tetsuo Takanami (Univ. Hokkaido) Norio Matsumoto (Geological Survey of Japan)

Roles of Statistical Models

Data InformationModel as a “tool”

for extracting information

Modeling based on the characteristics of the object and the objective of the analysis.

Unify information supplied by data and prior knowledge.

Bayes models, state space models etc.

Outline• Method

– Flexible Statistical Modeling– State Space Modeling

• Applications– Extraction of Signal from Noisy Data– Automatic Data Cleaning – Detection of Coseismic Effect in Groundwater Level– Analysis of OBS (Ocean Bottom Seismograph) Data

JASA(1996) + ISR(2001) + some new

Change of Statistical Problems

• Flexible ModelingSmoothness priors

• Automatic Procedures

Huge Observations, Complex Systems

Small Experimental, Survey Data

Parametric Models + AIC

Smoothness Prior Simple Smoothing Problem

N

nn

kN

nnn

fffy

1

22

1

2min

Nnfy nnn ,,1,

ObservationUnknown ParameterNoise n

n

n

fy

Penalized Least Squares

Whittaker (1923), Shiller (1973), Akaike(1980), Kitagawa-Gersch(1996)

Infidelityto the data

Infidelity to smoothness

Automatic Parameter Determination via Bayesian Interpretation

Bayesian Interpretation

N

nn

kN

nnn ffy

1

22

1

2

N

nn

kN

nnn ffy

1

2

2

2

1

2

2 2exp

2

1exp

)|(),|(),|( ffypyf

Multiply by and exponentiate )2/(1 2

),( 22

Determination of by ABIC (Akaike 1980)

Crucial parameter

Smoothness Prior

Time Series Interpretation and State Space Modeling

x Fx Gvy Hx w

n n n

n n n

1

State Space Model

21

2

22

1

)()(

nn

N

nnn

N

n

ttty

nnn

nnn

wty

vtt

1

),0(~

),0(~2

2

Nw

Nv

n

n

2

22

Equivalent Model

Applications of State Space Model

• Modeling Nonstationarity • in mean

Trend Estimation, Seasonal Adjustment

• in variance Time-Varying Variance Models, Volatility

• in covariance Time-Varying Coefficient Models, TVAR model

• Signal Extraction, Decomposition

State Space Models

Nonlinear Non-Gaussian

nnn

nnn

wHxy

GvFxx

1

General

x f x v

y h x wn n n

n n n

( , )

( , )1

)| (~

)| (~ 1

nn

nn

xHy

xFx

Linear Gaussian

NonlinearNon-Gaussian

Discrete stateDiscrete obs.

Kalman FilterPrediction

Filter

x F x

V F V F G Q Gn n n n n

n n n n n nT

n n nT

| |

| |

1 1 1

1 1 1

K V H H V H R

x x K y H x

V I K H V

n n n nT

n n n nT

n

n n n n n n n n n

n n n n n n

| |

| | |

| |

( )

( )

( )

1 11

1 1

1

SmoothingA V F V

x x A x x

V V A V V A

n n n nT

n n

n N n n n n N n n

n N n n n n N n n nT

| |

| | | |

| | | |

( )

( )

11

1 1

1 1

Initial

Prediction

Filter

yn

n n 1

n 1

Non-Gaussian Filter/Smoother

Prediction

Filter

Smoother

p x Y p x Yp x x p x Y

p x Ydxn N n n

n n n N

n nn( | ) ( | )

( | ) ( | )

( | )

1 1

11

p x Yp y x p x Y

p y Yn nn n n n

n n

( | )( | ) ( | )

( | )

1

1

p x Y p x x p x Y dxn n n n n n n( | ) ( | ) ( | )

1 1 1 1 1

Recursive Filter/Smootherfor State Estimation

0. Gaussian ApproximationKalman filter/smoother

1. Piecewise-linear or Step Approx. Non-Gaussian filter/smoother

2. Gaussian Mixture Approx.Gaussian-sum filter/smoother

3. Monte Carlo Based MethodSequential Monte Carlo filter/smoot

her

True

Normal approx.

PiecewiseLinear

Step function

Normal mixture

Monte Carlo approx.

Sequential Monte Carlo Filter

System Noisev p v j mn

j( ) ~ ( ) , ,1

Importance Weight (Bayes factor)

p F f vnj

nj

nj( ) ( ) ( )( , ) 1

Predictive Distribution

nj

n njp y p( ) ( )( | )

Filter Distribution Resampling pn

j( ) fnj( )

Gordon et al. (1993), Kitagawa (1996)Doucet, de Freitas and Gordon (2001)

“Sequential Monte Carlo Methods in Practice”

Self-Tuned State Space ModelAugmented State Vector

Non-Gaussian or Monte Carlo Smoother

Simultaneous Estimation of State and Parameter

nnn v 1

nnn xz and

,

n

nn

xz

n Time-varying parameter

Tools for Time Series Modeling

• Model Representaion– Generic: State Space Models– Specific: Smoothness Priors

• Estimation – State: Sequential Filters– Parameter: MLE, Bayes, SO

SS• Evaluation

– AIC

Examples

1. Detection of Micro Earthquakes

2. Extraction of Coseismic Effects

3. Analysis of OBS (Ocean Bottom Seismograph) Data

Extraction of Signal From Noisy Data

Basic Model

nnnn wsry r

s

w

n

n

n

Background Noise

Seismic Signal

Observation Noise ),0(~

),0(~

),0(~

2

22

21

1

1

Nw

Nv

Nu

vsbs

urar

n

n

n

njn

l

jjn

njn

m

jjn

Component ModelsObserved  

State Space Modelx Fx Gw

y Hxn n n

n n n

1

x Fx Gw

y Hxn n n

n n n

1

2

22

21

21

21

1

1

1

1

,0

0,]001001[

00

00

10

00

00

01

,

01

10

0

01

1

,

nn

l

m

ln

n

n

mn

n

n

n

RQH

Gbbb

aaa

F

s

s

s

r

r

r

x

Extraction of Micro Earthquake

Observed

Seismic Signal

Background Noise

0 400 800 1200 1600 2000 2400 2800

15

0

-15

15

0

-15

15

0

-15

420

-2-4-6

Time-varying Variance(in log10)

Extraction of Micro Earthquake

Background Noise  

Earthquake Signal

Observed  

Extraction of Earthquake SignalObserved  

S-wave

P-wave

Background Noise  

3D-Modeling

zn

yn

xn

n

n

n

n

n

n

w

w

w

r

q

p

z

y

x

333

2122

111

P-wave S-wave

E-W

N-SU-D

P-wave

E-W

N-SU-D

S-wave

2

1

1 2221

1211

n

n

jn

jn

j jj

jj

n

n

v

v

r

q

bb

bb

r

q

n

m

jjnjn upap

1

jjj ,,PCA

Detection of Coseismic Effects

Observation WellGeological Survey of Japan

Precipitation

Groundwater Level

Air Pressure

Earth Tide

dT = 2min., 20years

Japan

Tokai Area

5M observations

Detection of Coseismic Effect in Groundwater Level

Difficulties • Presence of many missing and outlying observations

Outlier

Missing

• Strongly affected by barometric air pressure, earth tide and rain

Automatic Data Cleaning

State Space Model

),(),0()1(~)( Mixture)(

)(Cauchy

),0(~)( Gauss

22

22

2

NNwrw

wr

Nwr

Observation Noise Model

t t v

y t wn n n

n n n

1

Noisen Observatio :

Noise System :

Signal :

nObservatio :

n

n

n

n

w

v

t

y

Model for Outliers

0

0.2

0.4

0.6

0.8

1 41 81 121 161 201 241 281 321 361 401

GaussCauchy

-5 -4 -3 -2 -1 0 1 2 3 4 50

0.2

0.4

0.6

0.8

1 41 81 121 161 201 241 281 321 361 401

Mixture

-5 -4 -3 -2 -1 0 1 2 3 4 5

Missing and Outlying Observations

Gaussian

Mixture

Original Cleaned

Model AICGauss -8741Cauchy -8655Mixture -8936

Detection of Coseismic Effects1981 1982

1983 1984

1985 1986

1987 1988

1989 1990

Strongly affected thecovariates such asbarometric airpressure, earth tideand rain

Difficult to find out Coseismic Effect

Pressure Effect0t

min110

min180

in

m

iin paP

0

n

n

P

p Air PressurePressure Effect

Extraction of Coseismic Effect

Component Models

nnnnn EPty

n

n

n

P

t

y

n

nE

ObservationTrendAir Pressure Effect

Earth Tide EffectObservation Noise

,

,

0

0

in

l

iin

in

m

iinnn

k

etbE

paPwt

State Space Representation

nnn

nnn

wHxyGvFxx

1

,1

0

0

0

0

1

,

1

1

1

1

1

,

11

0

0

nnmnn

m

n

n

etetppH

GF

b

b

a

a

t

x

AIC Values

5955459566593795783227

5956359575593865783626

5956959580593935783025

5952659536593745781524

5948859498593685781923

3210

m

Precipitation Effect

nin

k

iiin

k

iin vrdRcR

11

Original

Pressure, Earth-Tide removed

Extraction of Coseismic Effect

Component Models

y t P E Rn n n n n n

n

n

n

P

t

y

n

n

n

R

E

ObservationTrendAir Pressure Effect

Earth Tide EffectPrecipitation EffectObservation Noise

nin

k

iiin

k

iinin

l

iin

in

m

iinnn

k

vrdRcRetbE

paPwt

110

0

,

,

State Space Model

nnn

nnn

wHxyGvFxx

1

,0011

00

0000

000

00

01

,

1

11

11

1

1

,

2

121

0

0

1

1

nnmnn

k

k

m

kn

n

n

n

n

etetppH

d

dd

G

ccc

F

b

ba

aR

RRt

x

Groundwater Level Air Pressure Effect

Earth Tide Effect

Precipitation Effect

min AIC modelm=25, l=2, k=5

M=4.8, D=48km

618096

618105

618004

618033

617342

616751

AIC

k

Extraction of Coseismic Effects

Corrected Water Level

Detected Coseismic Effect

Original

T+P+ET+RM=4.8

D=48km

M=6.8 D=128km

M=7.0 D=375km M=5.7

D=66km

M=7.7 D=622km

M=6.0 D=113km

M=6.2 D=150km

M=5.0 D=57km

M=7.9 D=742km

T+P+ET

Signal

Min AIC modelm=25, l=2, k=5

Original

Air PressureEffect

Earth TideEffect

P & ET Removed

PrecipitationEffect

P , ET & RRemoved

Coseismic Effect1981 1982

1983 1984

1985 1986

1987 1988

1989 1990

M=7.0 D=375kmM=4.8

D=48km

M=5.7 D=66km

M=7.7 D=622km

M=6.0 D=113km

M=6.2 D=150km

M=5.0 D=57km

M=7.9 D=742km

M=6.8 D=128km

M=6.0 D=126km

M=6.7 D=226km

M=5.7 D=122km

M=6.5 D=96km

1981 1982

1983 1984

1985 1986

1987 1988

1989 1990

Effect of Earthquake

Earthquake Water level

Rain Water level

Distance

Mag

nitu

de

DM log45.2

Cos

eism

ic E

ffec

t

> 16cm> 4cm

> 1cm

1log45.2 DM

0log45.2 DM

Findings

• Drop of level Detected for earthquakes with M > 2.62 log D + 0.2

• Amount of drop ~ f( M 2.62 log D )

• Without coseismic effect water level increases 6cm/year increase of stress in this area?

Exploring Underground Structure by OBS (Ocean Bottom Seismogram) Data

Bottom

OBS

Sea Surface

Observations by an Experiment

• Off Norway ( Depth 1500-2000m )• 39 OBS, (Distance: about 10km )• Air-gun Signal from a Ship

( 982 times: Interval 70sec., 200m )• Observation ( dT=1/256sec., T =60sec., 4-C

h )4 Channel Time Series

N=15360, 982   39 series

Hokkaido University + University of Bergen

Time-Adjusted (Shifted) Time Series

An Example of the Observations

OBS-4 N=7500 M=1560

OBS-31 N=15360 M=982

-10000

0

10000

20000

30000

40000

50000

1 501 1001 1501 2001 2501 3001 3501 4001 4501 5001 5501

High S/N Low S/N

Direct wave, Reflection, Refraction

Direct Wave Refraction Wave

Reflection Wave

Objectives

Estimation of Underground Structure

Detection of Reflection & Refraction Waves  

Estimation of parameters ( hj , vj )

Intermediate objectives

-30000

0

30000

1 501 1001 1501 2001 2501

Time series at hypocenter (D=0)

221100

1100

00

/2/2/1221)Wave(0

/2/11)Wave(0

/)Wave(0

Time Arrivalpath

vhvhvkh

vhvkh

vkh

k

k

k

,5,3,1k

Wave(0) Wave(000) Wave(00000)

Wave(011) Wave(00011)

Model for Decomposition

nnnn wsry Noisen Observatio

WaveReflection

eDirect Wav

n

n

n

w

s

r

n

m

jjnjn

nj

jnjn

vsbs

urar

1

1

),0(~),0(~),0(~

2

22

21

NwNvNu

n

n

n

, of Estimation 22

22

21

21 nn Self-Organizing Model

Decomposition of Ch-701 (D=4km)

Observed

- 15000

- 10000

- 5000

0

5000

10000

1 201 401 601 801 1001 1201 1401 1601 1801 2001 2201 2401

R eflection W ave

D irect W ave- 1 0000

- 5000

0

5000

1 0000

1 201 401 6 01 801 10 01 1201 1401 1 601 180 1 2001 2 201 24 01

- 1 0 0 0 0

- 5 0 0 0

0

5 0 0 0

1 0 0 0 0

1 2 0 1 4 0 1 6 0 1 8 0 1 1 0 0 1 1 2 0 1 1 4 0 1 1 6 0 1 1 8 0 1 2 0 0 1 2 2 0 1 2 4 0 1

R eflection W ave

D irect W ave- 1 0000

- 5000

0

5000

1 0000

1 201 401 6 01 801 10 01 1201 1401 1 601 180 1 2001 2 201 24 01

- 1 0 0 0 0

- 5 0 0 0

0

5 0 0 0

1 0 0 0 0

1 2 0 1 4 0 1 6 0 1 8 0 1 1 0 0 1 1 2 0 1 1 4 0 1 1 6 0 1 1 8 0 1 2 0 0 1 2 2 0 1 2 4 0 1

- 1 0000

- 5000

0

5000

1 0000

1 201 401 6 01 801 10 01 1201 1401 1 601 180 1 2001 2 201 24 01

- 1 0 0 0 0

- 5 0 0 0

0

5 0 0 0

1 0 0 0 0

1 2 0 1 4 0 1 6 0 1 8 0 1 1 0 0 1 1 2 0 1 1 4 0 1 1 6 0 1 1 8 0 1 2 0 0 1 2 2 0 1 2 4 0 1

0

2

4

6

8

1 2 0 1 4 0 1 6 0 1 8 0 1 1 0 0 1 1 2 0 1 1 4 0 1 1 6 0 1 1 8 0 1 2 0 0 1 2 2 0 1 2 4 0 1

- 4

- 2

0

2

4

6

8

1 2 01 40 1 601 801 10 01 120 1 1401 1601 1 801 20 01 22 01 240 1

T au 1

T au 2

0

2

4

6

8

1 2 0 1 4 0 1 6 0 1 8 0 1 1 0 0 1 1 2 0 1 1 4 0 1 1 6 0 1 1 8 0 1 2 0 0 1 2 2 0 1 2 4 0 1

- 4

- 2

0

2

4

6

8

1 2 01 40 1 601 801 10 01 120 1 1401 1601 1 801 20 01 22 01 240 1

0

2

4

6

8

1 2 0 1 4 0 1 6 0 1 8 0 1 1 0 0 1 1 2 0 1 1 4 0 1 1 6 0 1 1 8 0 1 2 0 0 1 2 2 0 1 2 4 0 1

- 4

- 2

0

2

4

6

8

1 2 01 40 1 601 801 10 01 120 1 1401 1601 1 801 20 01 22 01 240 1

T au 1

T au 2

- 4000

- 2000

0

2000

4000

1 201 401 601 801 1001 1201 1401 1601 1801 2001 2201 2401

Decomposition of Ch-721 (D=8km)Observed

R e f l e c t i o n W a v e

D i r e c t W a v e

- 4 0 0 0

- 2 0 0 0

0

2 0 0 0

4 0 0 0

1 2 0 1 4 0 1 6 0 1 8 0 1 1 0 0 1 1 2 0 1 1 4 0 1 1 6 0 1 1 8 0 1 2 0 0 1 2 2 0 1 2 4 0 1

- 4 0 0 0

- 2 0 0 0

0

2 0 0 0

4 0 0 0

1 2 0 1 4 0 1 6 0 1 8 0 1 1 0 0 1 1 2 0 1 1 4 0 1 1 6 0 1 1 8 0 1 2 0 0 1 2 2 0 1 2 4 0 1

R e f l e c t i o n W a v e

D i r e c t W a v e

- 4 0 0 0

- 2 0 0 0

0

2 0 0 0

4 0 0 0

1 2 0 1 4 0 1 6 0 1 8 0 1 1 0 0 1 1 2 0 1 1 4 0 1 1 6 0 1 1 8 0 1 2 0 0 1 2 2 0 1 2 4 0 1

- 4 0 0 0

- 2 0 0 0

0

2 0 0 0

4 0 0 0

1 2 0 1 4 0 1 6 0 1 8 0 1 1 0 0 1 1 2 0 1 1 4 0 1 1 6 0 1 1 8 0 1 2 0 0 1 2 2 0 1 2 4 0 1

- 4 0 0 0

- 2 0 0 0

0

2 0 0 0

4 0 0 0

1 2 0 1 4 0 1 6 0 1 8 0 1 1 0 0 1 1 2 0 1 1 4 0 1 1 6 0 1 1 8 0 1 2 0 0 1 2 2 0 1 2 4 0 1

- 4 0 0 0

- 2 0 0 0

0

2 0 0 0

4 0 0 0

1 2 0 1 4 0 1 6 0 1 8 0 1 1 0 0 1 1 2 0 1 1 4 0 1 1 6 0 1 1 8 0 1 2 0 0 1 2 2 0 1 2 4 0 1

0

40000

80000

120000

160000

200000

1 501 1001 1501 2001 2501

A Small Portion of Data

“Spatial” Filter/Smoother

njsnj time, channel :

1, jkns

, jns

2,2 jkns

,1 jns

1,1 jkns

2,12 jkns 2,12 jkns

1,1 jkns

,1 jns

k:   Time-lag

Spatial Model (Ignoring time series structure)

njnjnj

njjknjknnj

wsy

vsss

2 2,21,

jnjnjn

jnjknjn

wHxy

GvFxx

,,,

,1,,

Series j-1 Series j : Time-lag=k

1,

,,

jkn

jnjn s

sx

Local Cross-Correlation Function

Time

Loc

atio

n

0 8

730

630

1,1,11,1,11,

,,1,,1,

1,1,11,1,11,

jknjnjnjnjkn

jknjnjnjnjkn

jknjnjnjnjkn

sssss

sssss

sssss

Spatial-Temporal Model

njsnj time, channel :

Model of Propagation Path

0h

0d1h

2h

D

1d

Parallel Structure

Width km,,, 3210 hhhh

Velocity km/sec,,, 3210 vvvv

Water

Examples of Wave PathWave(0) Wave(000) Wave(01)

Wave(011) Wave(0121) Wave(000121)

Wave(01221) Wave(012321) Wave(00012321)

Path Models and Arrival Times

31

3223

22

12

213

21

11

203

20

10

12021

22

122

11

1202

20

10

12021

22

122

11

1202

20

10

011

1201

20

10

011

1201

20

10

220

10

220

10

220

10

221)Wave(01232

)23(231)Wave(00012

)2(2Wave(0121)

)3(3Wave(0001)

)(Wave(01)

25)Wave(00000

9Wave(000)

Wave(0)

dvdhvdhvdhv

ddDvdhvdhv

ddDvdhvdhv

dDvdhv

dDvdhv

Dhv

Dhv

Dhv

231303322 22,/ dddDdvvhvd ijiiij

Path models and arrival times(OBS4)

Distance (km)

Arr

ival

Tim

e (s

ec.)

0

1

2

3

4

5

6

7

8

9

10

11

12

13

1 11 21 31 41 51 61 71 81 91 101

W0W000W00000W0000000W01W011W0121W000121W01221W012321W00012321W0123321W0111221W0122221W01111W0001W00011W0001221

Local Time Lag

1 5 9 13 17 21 25 29 33 37S1

S5

S9

S13

S17

S21

S25

S29

30-4020-3010-200-10-10-0

-10 -8 -6 -4 -2 0 2 4 6 8 10

D: Distance (km)

8

7

6

5

4

3

2

1

0

Arr

ival

Tim

e (s

ec.)

Path Models and the Differences of the Arrival Times Between Adjacent Channels

3.73.73.71)Wave(01232

6.146.146.146.14 Wave(0121)

5.205.205.205.20 Wave(01)

4.332.305.237.142.0 )Wave(00000

9.336.329.282.214.0 Wave(000)

1.349.334.335.312.1 Wave(0)

50201050 ModelPath

(km)

Epicentral Distance

Model for Decomposition

jnjnjnjn wsry ,,,,

sjnjhnjn

rjnjknjn

uss

urr

j

j

,1,,

,1,,

X

00

X0

Wof timeArrival:)W(

Wof timeArrival:)W(

)W(),W(

Xj

j

jjjj

T

T

ThTk

snmnmnn

rnnnn

vsbsbs

vrarar

,11

,11

waveReflection

eDirect wav

,

,

jn

jn

s

r

Spatial-Temporal Model

)|(

),|( )|( ),|(

,11,

,11,,11,,1

jnjkn

jnnjjknjnnjjknjnnj ssp

ssspsspsssp

)|( ),|( ,1,,1,1, jnjknjnjnjkn sspsssp

)|(

)|( )|( ),|(

,11,

1,,11,,1

jnjkn

njjknjnnjjknjnnj ssp

sspsspsssp

Time-lag (Channel j-1 Channel j ) = k

Spatial-Temporal Filtering

filtering recursive similar to n"observatio" an as Consider 1, njjkn ys

)|(

)|( )|( ),|(

,11,

1,,11,,1

jnjkn

njjknjnnjjknjnnj ssp

sspsspsssp

Spatial-Temporal Decomposition

Reflection wave Direct wave

Mt. Usu Eruption Data Hokkaido, Japan March 31, 2000 13:07-

Volatility and component models

Hokkaido, Japan March 31, 2000 13:07-

Decomposition

- 50000

0

50000

1 1501 3001 4501 6001 7501 9001 10501 12001 13501 15001 16501 18001 19501 21001 22501 24001 25501 27001 28501

1系列

- 50000

0

50000

1 1501 3001 4501 6001 7501 9001 10501 12001 13501 15001 16501 18001 19501 21001 22501 24001 25501 27001 28501

1系列

- 50000

0

50000

1 1501 3001 4501 6001 7501 9001 10501 12001 13501 15001 16501 18001 19501 21001 22501 24001 25501 27001 28501

1系列

Summary

Signal extraction and knowledge discovery by statistical modeling

• Use of information from data and Prior knowledge

• State Space Modeling•Filtering/smoothing & SOSS

New findings, Automatic procedure

Time-varying Spectrum

AR model Autocovariance Spectrum

Time-varying Nonstationary

),0(~, 2

1

Nwwyay nnjn

m

jjnn

2

1

2

2

1)(

m

j

ijfjn

nn

eafp

Time-varying AR model

Time-varying spectrum

Estimation of Nonstationary AR Model

njn

m

jjnn wyay

1

),0(~, 2Nvva jnjnjnk

Tknmknmnnn

mnnk

mk

mk

aaaax

yyHH

IGGIFF

),,,,,,(

),,(

,

1,1,11

1)(

)()(

State Space RepresentationState Space Representation

Model for Time-changes of Coefficients

Kronecker product

State Space Representation

1)1()1()1( HGF

For k = 1

For k = 2

01 ,0

1 ,

01

12 )1()1()2(

HGF

Kronecker Product

BaBa

BaBa

bb

bb

aa

aa

BA

mmpqp

q

mm

1

111

1

111

1

111

State Space Representation

Case: k = 1

n

mn

n

mnnn

nm

n

nm

n

mn

n

wa

ayyy

v

v

a

a

a

a

1

1

,

,1

1,

1,11

,,

1

1

1

1

Time-varying Coefficients

Gauss model Cauchy model

Time-varying Spectrum

Precipitation Effect

nin

k

iiin

k

iin vrdRcR

11

Estimation of Arrival TimeP S

Estimation of Arrival Times

Estimation of Hypocenter Locally Stationary AR Model

Automatic Modeling by Information Criterion AIC

Automatic & Fast Algorithmsec. 01.0T

Prediction of Tsunami

Estimation of Arrival TimeLocally Stationary AR Model

y a y v v Nn ii

m

n i n n

1

20, ~ ( , )

y b y w w Nn ii

l

n i n n

1

20, ~ ( , )

Seismic Signal Model

Background Noise Seismic Signal

Background Noise Model

Estimation of Arrival Time

AIC of the Total Models

L

L1-

L2

L1

L0

AICAIC

AICAICAIC

R

R1-

R2

R1

R0

AICAIC

AICAICAIC

LjAIC R

jAIC

Rj

Ljj AICAICAIC

Min AIC Estimate

of Arrival Time

Model & Implementations

LSAR model: Ozaki and Tong (1976)

Householder implementation: Kitagawa and Akaike (1979)

Kalman filter implementation:

State Space Representation of AR Model

njn

m

jjn wyay

1

mn

n

n

a

a

x 1

n

mn

n

mnnn

mn

n

mn

n

w

a

a

yyy

a

a

a

a

1

1

1

111

],,[,

New data yn

nnm

nn

nn

a

a

x

|,

|,1

| )(

11

11

221

2

mnmnnn

nnn

yayay

nn

n

)1(2logAIC 2 mn nn

Lower Order Models

njn

m

j

mjn wyay

1

12221

21

)(1

)(1

mmmm

mm

jjm

mm

mjm

j

a

a

aaaa

Levinson recursion

Arrival Times of P-waves

- 40

- 20

0

20

40

1 51 101 151 201 251 301 351 401

9800

10300

10800

1 51 101 151 201 251 301 351 401

AIC

- 30

0

30

1 51 101 151 201 251 301 351 401

4000

5000

6000

7000

8000

9000

1 51 101 151 201 251 301 351 401

AIC

- 20

0

20

1 51 101 151 201 251 301 351 401

8000

9000

10000

1 51 101 151 201 251 301 351 401

AIC

2000

Arrival Times of S-waves

-30

-15

0

15

30

1 51 101 151 201 251 301 351 401

1940

1950

1960

1970

1980

1 51 101 151 201 251 301 351 401

AIC

- 60

- 30

0

30

60

1 51 101 151 201 251 301 351 401

2090

2110

2130

2150

2170

1 51 101 151 201 251 301 351 401

AIC

- 80

- 40

0

40

80

1 51 101 151 201 251 301 351 401

2350

2450

2550

1 51 101 151 201 251 301 351 401

AIC

100

Posterior Probabilities of Arrival TimesAIC: -2(Bias corrected log-likelihood)

Likelihood of the arrival time

Posterior probability of the arrival time

kAIC

2

1exp

kkkp AIC

2

1exp)()(

1940

1950

1960

1970

1980

1 51 101 151 201 251 301 351 401

0

0.05

0.1

1 51 101 151 201 251 301 351 401

4000

5000

6000

7000

8000

9000

1 51 101 151 201 251 301 351 401

0

0.25

0.5

1 51 101 151 201 251 301 351 401

4800

4850

4900

4950

5000

1 6 11 16 21

0

0.25

0.5

1 6 11 16 21

top related