sram - basicsvlsi/courses/ee695kr/s... · 2008. 2. 28. · read failure write failure hold failure...

Post on 17-Aug-2020

6 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

1

SRAM - Basics

Jaydeep P. Kulkarni

jaydeep@ecn.purdue.edu

Slides are adopted from Prof. Kaushik Roy, Prof. Chris Kim , Prof. SaibalMukhopadhyay, and Prof. Jan Rabaey’s slides

2

Semiconductor Memory Trends

From [Itoh01]

3

4

5

6

7

8

9Variation in Process Parameters

Inter and Intra-die Variations

10

100

1000

10000

1000 500 250 130 65 32

Technology Node (nm)

# d

op

ant

ato

ms Source: Intel

Random Dopant Fluctuation (RDF)

• SRAM Transistors – Minimum geometry

• Inter-die and Intra-die variations

• LER, RDF induced device mismatch

Line Edge Roughness (LER)

10Parametric Failures: Read Failure

Read failure => Flipping of Cell Data while Reading

BL BR

WL

VL=‘1’

VR=‘0’VREAD

+∆∆∆∆

-∆∆∆∆

+∆∆∆∆

-∆∆∆∆NR

PR

NL

PLAXRAXL

VTRIPRDVR=VREAD

VL

WL

Vo

ltag

e

Time ->

WL

VR

VL

Vo

ltag

e

Time ->( )TRIPRDREADRF VVPP >=

11Mechanisms of Parametric Failures

WLVR

VL

Vo

ltag

e

Time ->

WL

VR

VL

Vo

ltag

e

Time -> Time ->

VR VL

Vo

ltag

eVDDH

Read Failure

Write Failure Hold Failure

Time ->

∆∆∆∆MIN

WL

BL

BR

Access Failure

Vo

ltag

e

12

13

14

15

16

17

18

19

20

21SRAM Bitcell Layouts

M. Ishida, IEDM 98

Tall-cell

Thin-cell

22

Tall Cell Layout

23

Thin Cell Layout

• 2 Poly-pitch, N-well continuous, Shared Contacts

• WL (Horizontal), BL(Vertical), Lower bitline capacitance

24

Upsizing Thin-cell size

Increasing cell area by 2X increase device widths by 4X !

25

Trends in Memory Cell Area

From [Itoh01]

26

Row

Dec

oder

Bit line2L 2 K

Word line

AK

AK1 1

AL 2 1

A0

M.2K

AK2 1

Sense amplifiers / Drivers

Column decoder

Input-Output(M bits)

Storage cell

Array-Structured Memory ArchitectureProblem: ASPECT RATIO or HEIGHT >> WIDTH

Amplify swing torail-to-rail amplitude

Selects appropriateword

27

Hierarchical Memory Architecture

Advantages:Advantages:1. Shorter wires within blocks1. Shorter wires within blocks2. Block address activates only 1 block => power savings2. Block address activates only 1 block => power savings

Globalamplifier/driver

Controlcircuitry

Global data bus

Block selector

Block 0

Rowaddress

Columnaddress

Blockaddress

Block i Block P 2 1

I/O

28

Memory Architecture: Decoders

Word 0

Word 1

Word 2

Word N2 2

Word N2 1

Storagecell

M bits M bits

N

w o r d s

S0

S1

S2

SN2 2

A 0

A 1

A K2 1

K 5 log2N

SN2 1

Word 0

Word 1

Word 2

Word N2 2

Word N2 1

Storagecell

S0

Input-Output(M bits)

Intuitive architecture for N x M memoryToo many select signals:

N words == N select signals K = log2NDecoder reduces the number of select signals

Input-Output(M bits)

D e c o d e r

29Hierarchical Decoders

• • •

• • •

A2A2

A2A3

WL 0

A2A3A2A3A2A3

A3 A3A 0A0

A0A1A0A1A0A1A0A1

A1 A1

WL 1

Multi-stage implementation improves performance

NAND decoder usingNAND decoder using22--input preinput pre--decodersdecoders

30

Dynamic Decoders

Precharge devices

VDD φφφφ

GND

WL3

WL2

WL1

WL0

A0A0

GND

A1A1φφφφ

WL3

A0A0 A1A1

WL 2

WL 1

WL 0

VDD

VDD

VDD

VDD

2-input NOR decoder 2-input NAND decoder

31

Column Decoder

Advantages: speed (tpd does not add to overall memory access time)Only one extra transistor in signal path

Disadvantage: Large transistor count

2 - i n p u t N O R d e c o d e r

A0S0

BL 0 BL 1 BL 2 BL 3

A1

S1

S2

S3

D

32Tree based column decoder

Number of devices drastically reducedDelay increases quadratically with # of sections; prohibitive for large decoders

buffersprogressive sizingcombination of tree and pass transistor approaches

Solutions:

BL 0 BL 1 BL 2 BL 3

D

A 0

A 0

A1

A 1

33

Sense Amplifiers

tpC ∆V×

Iav----------------=

make ∆V as smallas possible

smalllarge

Idea: Use Sense Amplifer

outputinput

s.a.smalltransition

34

Differential Sense Amplifier

M 4

M 1

M 5

M 3

M 2

V DD

bitbit

SE

Outy

35Differential Sensing ― SRAMVDD

VDD

VDD

VDD

BL

EQ

Diff.SenseAmp

(a) SRAM sensing scheme (b) two stage differential amplifier

SRAM cell i

WL i

2xx

VDD

Output

BL

PC

M3

M1

M5

M2

M4

x

SE

SE

SE

Output

SE

x2x 2x

y

y

2y

36Latch-Based Sense Amplifier

Initialized in its meta-stable point with EQ

Once adequate voltage gap created, sense amp enabled with SEPositive feedback quickly forces output to a stable operating point.

EQ

VDD

BL BL

SE

SE

37Decoupled Sense Amplifier

Y. Wang, Intel, ISSCC’07

38

39

40

41

42

43

44

45

46

47

48Bitline Leakage Compensation - II

M. Khellah, Intel, VLSI’05

• Less transistor count

• Easy to implement in within column pitch

• No complicated timing

• Calibration after every write

49

50

51

top related