soliton pair dynamics in patterned ferromagnetic ellipses

Post on 12-Jan-2016

49 Views

Category:

Documents

3 Downloads

Preview:

Click to see full reader

DESCRIPTION

Soliton pair dynamics in patterned ferromagnetic ellipses. Kristen Buchanan , Pierre Roy,* Frank Fradin, Konstantin Guslienko, Marcos Grimsditch, Sam Bader, and Val Novosad. *Uppsala University, Sweden. Acknowledgements L. Ocola, R. Divan, J. Pearson - PowerPoint PPT Presentation

TRANSCRIPT

A U.S. Department of EnergyOffice of Science LaboratoryOperated by The University of Chicago

Argonne National Laboratory

Office of ScienceU.S. Department of Energy

Soliton pair dynamics in patterned

ferromagnetic ellipsesKristen Buchanan, Pierre Roy,* Frank Fradin,

Konstantin Guslienko, Marcos Grimsditch, Sam Bader, and Val Novosad

Magnetic Films GroupMaterials Science Division

AcknowledgementsL. Ocola, R. Divan, J. PearsonNSERC of Canada for a postdoctoral fellowshipArgonne - U.S. DOE Contract No. W-31-109-ENG-38Swedish Research Council (P. R.)

*Uppsala University, Sweden

2

Pioneering Science andTechnology

Office of Science U.S. Department

of Energy

Magnetic Vortex State

Magnetic state Magnetic state ((magnetically-soft nanodots) depends on: ) depends on:

• Geometry: L and RGeometry: L and R

• Material: A and MsMaterial: A and Ms

Guslienko and Novosad, J. Appl. Phys. 96, 4451, 2004.

00

10

20

30

40

50

60

Do

t th

ickn

ess

L, (

nm

)

10 20 30 40 50 60

Dot Diameter 2R, (nm)

(Permalloy)

Polarization p = ± 1

Chirality c = ± 1

Vorticity (topological charge)

Vortex in a nanomagnet

• Flux closure state with central core

• Topological soliton

3

Pioneering Science andTechnology

Office of Science U.S. Department

of Energy

Spin Excitations of a Magnetic Vortex

** Magnetostatic interactions dominate in sub-micron and micron-size dots **

High-frequency spin-waves, GHz range• Radial modes

• Azimuthal modes

Low-frequency eigenmodes,sub-GHz range• Translation (gyrotropic)

modes

Single vortex dynamics:

• Cylindrical

• Square/rectangular

• Elliptical

Vortex Pair Dynamics

in elliptic dots

Dynamic vortex interactions in:

• Tri-layer F/N/F dots

• Dense 2D dot arrays(theory/simulation)

4

Pioneering Science andTechnology

Office of Science U.S. Department

of Energy

Vortex Dynamics: Translational Mode

Vortex core trajectory- Polarization dictates direction

Theory/simulations:Guslienko et al., J. Appl. Phys. 91, 8037,

2002

Experiment: Park et al., Phys. Rev. B 67, 020403 (R), 2003.Choe et al., Science 304, 420, 2004.Novosad et al., Phys Rev. B 72, 024455, 2005.

Shifted vortex core position

Energ

y

0.1 0.2 0.30.0

0.5

1.0

1.5

R 100 nm 150 nm 200 nm 250 nmEi

genf

requ

ency

(GH

z)

Dot aspect ratio =L/R

2 2 2 4 2 6 2 8 3 0 3 2

-0.05

0.00

0.05

0.10

M/M

s

Time (ns)0 108642

0 Oe100 Oe

Simulations of the vortex translational mode

5

Pioneering Science andTechnology

Office of Science U.S. Department

of Energy

Elliptical Dots: Remanent State

• Magnetic force microscopy/micromagnetic simulations 2

m

1 m

40 nm Py

H

H

Static reversal of ellipses: Vavassori et al., Phys. Rev. B 69, 214404 (2004)

Mz

6

Pioneering Science andTechnology

Office of Science U.S. Department

of Energy

Vortex Dynamics Experiment

Goal: Explore dynamic vortex interactions of vortex pairs confined in elliptical magnetic dots

Method: Microwave Reflection

7

Pioneering Science andTechnology

Office of Science U.S. Department

of Energy

Single Vortex Dynamics for an Ellipse

100 200 300

0

20

R

eal I

mpe

danc

e D

eriv

ativ

e(a

rb. u

nits

)

(MHz)

0.05 0.10

100

200

300

(M

Hz)

Vertical Aspect Ratio, = 2L/(a+b)

experiment simulations theory

2b = 1 m

2a = 2 m

Thickness L= 40 nm

is Frequency

100 200 300

0

20

single pair

R

eal I

mpe

danc

e D

eriv

ativ

e(a

rb. u

nits

)

(MHz)

a/b ~ 2

8

Pioneering Science andTechnology

Office of Science U.S. Department

of Energy

Experimental Mode Map: Vortex Pair

3 x 1.5 m2 ellipse, L = 40 nm

-50 0 50 1000

50

100

150

200

p1p

2 = +1

p1p

2 = -1

HH

(M

Hz)

H (Oe)

H // hrf

H // hrf

H hrf

H hrf

9

Pioneering Science andTechnology

Office of Science U.S. Department

of Energy

Vortex Pair Modes

• Same frequency

• “Splitting”!Notation:

i = in-phaseo = out-of-phase

<Mx> = 0<My> = 0

<Mx> cos(t+)<My> sin(t+)

<Mx> = 0<My> sin(t+)

<Mx> cos(t+)<My> = 0

x

y

equilibrium

HH

10

Pioneering Science andTechnology

Office of Science U.S. Department

of Energy

Micromagnetic Simulations – Single Vortex

0 5 10

-0.02

0.00

0.02

0.04

My/M

s

Time (ns)

simulation sine fit

-50 0 50

-50

0

50

y (n

m)

x (nm)

Py dotL= 40 nm2a = 1 m, 2b = 2 m

Ms = 700 emu/cm3

A = 1.3 erg/cmno anisotropyDamping = 0.008Gyromagnetic ratio: = 2.94 MHz/Oe

LLG, ScheinfeinOOMMF, NIST

134 MHz

Single translational mode frequency

11

Pioneering Science andTechnology

Office of Science U.S. Department

of Energy

Dynamics of Interacting Solitons

red/blue represent My100 200 300

0

20

Rea

l Im

pede

nce

Der

ivat

ive

(arb

. uni

ts)

(MHz)

single pair

(o,o)

(o,i)

hr.f.

12

Pioneering Science andTechnology

Office of Science U.S. Department

of Energy

Micromagnetic Simulations: Mode Map

-50 0 50 1000

100

200

300

x x

x x

x x

x x

x x

x x

H H

Freq

uenc

y, M

Hz

H, Oe

p1p

2 = +1

p1p

2 = -1

1.5 x 0.75 m2 ellipse, L = 40 nm

13

Pioneering Science andTechnology

Office of Science U.S. Department

of Energy

Vortex Dynamics: Theory

Vortex coretrajectory

Shifted vortex core

Energ

y

Dampingt eff

HMM

1

M

rMH

W

eff

1) Landau-Lifshitz Gilbert equation

M(r): magnetization distributionW : energy Heff : effective magnetic field

0

X

XXG

W

dt

d

Applied to circular dots: Guslienko et al., J. Appl. Phys. 91, 8037, 2002

2) Representation in terms of core position X

Thiele et al., Phys. Rev. Lett, 30, 230, 1973

G : gyrovector

G : gyroconstant G=2MsL/L : dot thicknessMs : saturation magnetization

: gyromagnetic ratio

zG ˆGp))((),( tt XrMrM

14

Pioneering Science andTechnology

Office of Science U.S. Department

of Energy

X1, p1

X2, p2

Vortex Pair Dynamics: Theory

0

,

1

2111

X

XXXG

W

dt

d 0

,

2

2122

X

XXXG

W

dt

d

21int21121 ,, XXXXXX WWWW

Equations of motion of the vortex cores: Gyrovectors: zG ˆjj Gp

21212

22

122

2121 2

1

2

1, YYXXYYXXW yxyx XX

Assume energy form:

yyxxG 1

2,1 yyxxG

12,1

Eigenfrequencies:

Prediction: 2121 True for simulations!

15

Pioneering Science andTechnology

Office of Science U.S. Department

of Energy

Vortex Core Motion: Eigenvectors

Motion patterns match simulations!

1

1

1

1

xx

xx

i

i

2

2

1

1

xx

xx

i

i

1

1

1

1

xx

xx

i

i

2

2

1

1

xx

xx

i

i

1

2 1

2

2

2

1

1

Y

X

Y

X

iii YX ,X

16

Pioneering Science andTechnology

Office of Science U.S. Department

of Energy

Conclusions

• First experimental data on magnetic vortex pair dynamics

• Core Polarizations:- Negligible static effect- Very important for dynamics

- Excitation direction- Mode map

- Theory/simulations agree on- Frequency product invariance- Core motion patterns

- Buchanan et al., Nature Physics (in press)

17

Pioneering Science andTechnology

Office of Science U.S. Department

of Energy

Competing Energies

Exchange

Magnetostatic

Zeeman

Nanomagnetism

Competition between different energies at the

nanoscale will determine the fundamental properties of

nanomagnetsMagnetocrystalline

18

Pioneering Science andTechnology

Office of Science U.S. Department

of Energy

Fabrication• Top Down: Lithography

1 m

Spin Coat Expose

Metallization Lift-off

http://chem.ch.huji.ac.il/~porath/NST2/Lecture%204/Lecture%204%20-%20e-Beam%20Lithography%202003.pdf

Develop

19

Pioneering Science andTechnology

Office of Science U.S. Department

of Energy

Phase Diagram for Nanodots

Magnetic phase diagram for magnetically-soft nanodots

LL

2R2R

Magnetic state depends on: Magnetic state depends on: • Geometry: L and RGeometry: L and R• Material: A and MMaterial: A and Mss

Guslienko and Novosad, J. Appl. Phys. 96, 4451, 2004.

00

10

20

30

40

50

60

Do

t th

ickn

ess

L, (

nm

)

10 20 30 40 50 60

Dot Diameter 2R, (nm)

(Permalloy)

20

Pioneering Science andTechnology

Office of Science U.S. Department

of Energy

Magnetic Vortex State

Vortex in a nanomagnet - nonlocalized solitonFlux closure state with central core

Polarization p = ± 1

Chirality c = ± 1

Vorticity q = 1

Outline• Vortex state – unique dynamic

excitations

• Vortex pair dynamics in elliptical dots

21

Pioneering Science andTechnology

Office of Science U.S. Department

of Energy

X1, p1

X2, p2

Vortex Pair Dynamics: Theory

Dot energy for shifted vortices at positions Xj

0

,

1

2111

X

XXXG

W

dt

d 0

,

2

2122

X

XXXG

W

dt

d

21int21121 ,, XXXXXX WWWW

21212

22

122

2121 2

1

2

1, YYXXYYXXW yxyx XX

Equations of motion of the vortex cores

Gyrovectors: zG ˆjj Gp

Assume energy form:

top related