solar airplane design - phd slides - ethz - a. noth (30.09.2008)

Post on 04-Apr-2018

220 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

7/30/2019 Solar Airplane Design - PhD Slides - ETHZ - A. Noth (30.09.2008)

http://slidepdf.com/reader/full/solar-airplane-design-phd-slides-ethz-a-noth-30092008 1/92

Autonomous Systems LabETH Zentrum

Tannenstrasse 3, CLA8092 Zürich, Switzerland

AUTONOMOUS SYSTEMS LABAUTONOMOUS SYSTEMS LAB

Design of Solar Powered Airplanes for

Continuous Flight

André NothDoctoral Exam – September 30, 2008

1/30

http://www.sky-sailor.ethz.ch/E-mail: andre.noth@a3.epfl.ch

7/30/2019 Solar Airplane Design - PhD Slides - ETHZ - A. Noth (30.09.2008)

http://slidepdf.com/reader/full/solar-airplane-design-phd-slides-ethz-a-noth-30092008 2/92

André NothPhd Defense

Autonomous Systems LabETH Zürich, 24.09.08

Outline

1/30

• Introduction

• Design Methodology• Sky-Sailor Design

• Sky-Sailor Prototype

• Scaling• Conclusion

7/30/2019 Solar Airplane Design - PhD Slides - ETHZ - A. Noth (30.09.2008)

http://slidepdf.com/reader/full/solar-airplane-design-phd-slides-ethz-a-noth-30092008 3/92

André NothPhd Defense

Autonomous Systems LabETH Zürich, 24.09.08

Motivations & Objective

2/30

• Project started with an ESA feasibility study

Introduction

y Motivationsy History of Solar Flight

y State of the Arty Contributions

Design Methodology

Sky-Sailor Design

Sky-Sailor Prototype

Scaling

Conclusion

Mars exploration

Satellites + extensive coverage, good resolution- place of interest not freely selectable

Rovers + excellent resolution, ground interaction- reduced range, limited by terrain

? Gap for systems with + high-resolution imagery+ extensive & selectable coverage

Î Study the feasibility of solar powered flight on Mars

Î Develop and realize a fully functional prototype on Earthand demonstrate continuous flight

7/30/2019 Solar Airplane Design - PhD Slides - ETHZ - A. Noth (30.09.2008)

http://slidepdf.com/reader/full/solar-airplane-design-phd-slides-ethz-a-noth-30092008 4/92

André NothPhd Defense

Autonomous Systems LabETH Zürich, 24.09.08

History of Solar Flight

3/30

70’s 80’s 90’s 2000’s

Introduction

y Motivationsy History of Solar Flight

y State of the Arty Contributions

Design Methodology

Sky-Sailor Design

Sky-Sailor Prototype

Scaling

Conclusion

• Started in 1974

• 90 solar powered airplanes listed from 1974 to 2008

Sunrise (1974)1st solar powered flight

Solar Riser (1979)manned, battery solar

charged for short flights

Gossamer Penguin (1980)1st manned solarpowered flight

Sunseeker (1990)manned, crossedthe USA in 21 flight

Solar Challenger (1981)manned, channel

crossing

Helios (1999)umanned, flew at

> 29’000 m

Zephyr (2005)umanned, flew 83h

Solong (2005)1st continuous flight,used thermals

7/30/2019 Solar Airplane Design - PhD Slides - ETHZ - A. Noth (30.09.2008)

http://slidepdf.com/reader/full/solar-airplane-design-phd-slides-ethz-a-noth-30092008 5/92

André NothPhd Defense

Autonomous Systems LabETH Zürich, 24.09.08

State of the art

4/30

Many solar airplanes in HistoryÎ … but no clear design methodologies explained

Î anyway useful practical papers on case studies

[BOUCHER79, MACCREADY83, COLELLA94]

Many design methodologies…

Î … but rarely validated with a prototype [REHMET97, WEIDER06]

Î very often nice design methods[IRVING74, YOUNGBLOOD82, BAILEY92]

but based on weak models for:

• Weight prediction

• Efficiencies

Î ends with irrealistic designs

[RIZZO08, ROMEO04]

Introduction

y Motivationsy History of Solar Flight

y State of the Arty Contributions

Design Methodology

Sky-Sailor Design

Sky-Sailor Prototype

Scaling

Conclusion

design

method

math.models

[ULM96,BRUSS91]

7/30/2019 Solar Airplane Design - PhD Slides - ETHZ - A. Noth (30.09.2008)

http://slidepdf.com/reader/full/solar-airplane-design-phd-slides-ethz-a-noth-30092008 6/92

André NothPhd Defense

Autonomous Systems LabETH Zürich, 24.09.08

Contributions

5/30

• Design methodology

– Simplicity

– Large design space

– Concrete and experienced based

– Flexible and versatile

• Theory validation with a prototype– Achieve > 24h flight

– Autonomous control

• Draw up a state of the art on solar aviation

– History

– Publications

Introduction

y Motivationsy History of Solar Flight

y State of the Arty Contributions

Design Methodology

Sky-Sailor Design

Sky-Sailor Prototype

Scaling

Conclusion

7/30/2019 Solar Airplane Design - PhD Slides - ETHZ - A. Noth (30.09.2008)

http://slidepdf.com/reader/full/solar-airplane-design-phd-slides-ethz-a-noth-30092008 7/92

André NothPhd Defense

Autonomous Systems LabETH Zürich, 24.09.08

Design Methodology

6/30

Introduction

Design Methodology

y Required Energyy Solar Energyy Weight Modelsy Resolution

Sky-Sailor Design

Sky-Sailor Prototype

Scaling

Conclusion

7/30/2019 Solar Airplane Design - PhD Slides - ETHZ - A. Noth (30.09.2008)

http://slidepdf.com/reader/full/solar-airplane-design-phd-slides-ethz-a-noth-30092008 8/92

7/30/2019 Solar Airplane Design - PhD Slides - ETHZ - A. Noth (30.09.2008)

http://slidepdf.com/reader/full/solar-airplane-design-phd-slides-ethz-a-noth-30092008 9/92

André NothPhd Defense

Autonomous Systems LabETH Zürich, 24.09.08

Methodology

7/30

• Sizing the airplane : hen & egg problem

?

Airplane Parts• Solar cells

• Battery• Airframe• Payload•…

Î Total weightAerodynamics & flight conditions

Î Level Flight Power

Weight balance

Energy balance

• This loop can be solved:

Iteratively (trying existing components, refining the design)

Analytically (using mathematic models of the components)

ÎAllows to establish some general design principles

AABB

Introduction

Design Methodology

y Required Energyy Solar Energyy Weight Modelsy Resolution

Sky-Sailor Design

Sky-Sailor Prototype

Scaling

Conclusion

7/30/2019 Solar Airplane Design - PhD Slides - ETHZ - A. Noth (30.09.2008)

http://slidepdf.com/reader/full/solar-airplane-design-phd-slides-ethz-a-noth-30092008 10/92

André NothPhd Defense

Autonomous Systems LabETH Zürich, 24.09.08

Required Energy

• Equilibrium at steady level flight

8/30

2

2

2

2

 L

 D

 L mg C Sv

 D T C Sv

 ρ 

 ρ 

= =

= =

• Power required

3

3/ 2

( ) 2 Dlevel

 L

C mgP D v

C S  ρ = =

• Daily energy required

night 

elec tot elec tot day

chrg dchrg

T  E P T 

η η 

⎛ ⎞= +⎜ ⎟⎜ ⎟

⎝ ⎠

1

1( )

electot level

ctrl mot grb plr  

av pld  

bec

P P

P P

η η η η  

η 

=

+ +

Introduction

Design Methodology

y Required Energyy Solar Energyy Weight Modelsy Resolution

Sky-Sailor Design

Sky-Sailor Prototype

Scaling

Conclusion levelP

electot P

grbη 

ctrlη 

mot η 

 plr η 

becη 

av pld  P P+

7/30/2019 Solar Airplane Design - PhD Slides - ETHZ - A. Noth (30.09.2008)

http://slidepdf.com/reader/full/solar-airplane-design-phd-slides-ethz-a-noth-30092008 11/92

André NothPhd Defense

Autonomous Systems LabETH Zürich, 24.09.08

Required Energy

8/30

Introduction

Design Methodology

y Required Energyy Solar Energyy Weight Modelsy Resolution

Sky-Sailor Design

Sky-Sailor Prototype

Scaling

Conclusion

7/30/2019 Solar Airplane Design - PhD Slides - ETHZ - A. Noth (30.09.2008)

http://slidepdf.com/reader/full/solar-airplane-design-phd-slides-ethz-a-noth-30092008 12/92

André NothPhd Defense

Autonomous Systems LabETH Zürich, 24.09.08

Solar Energy

• Daily average solar irradiance– Irradiance ~ cosine

– I max T day = f(date, location, weather)

9/30

• Daily energy obtained

• Daily energy required = Daily energy obtained

ÎWe compute

 / 2

max day

day density wthr  

 I T  E  η 

π =

elec tot day density sc sc cbr mppt  

 E E A η η η =

Introduction

Design Methodology

y Required Energyy Solar Energyy Weight Modelsy Resolution

Sky-Sailor Design

Sky-Sailor Prototype

Scaling

Conclusion

sc cbr  η η 

mppt η 

day density E  sc A electot  E 

sc A

7/30/2019 Solar Airplane Design - PhD Slides - ETHZ - A. Noth (30.09.2008)

http://slidepdf.com/reader/full/solar-airplane-design-phd-slides-ethz-a-noth-30092008 13/92

André NothPhd Defense

Autonomous Systems LabETH Zürich, 24.09.08

Required Energy

9/30

Introduction

Design Methodology

y Required Energyy Solar Energyy Weight Modelsy Resolution

Sky-Sailor Design

Sky-Sailor Prototype

Scaling

Conclusion

7/30/2019 Solar Airplane Design - PhD Slides - ETHZ - A. Noth (30.09.2008)

http://slidepdf.com/reader/full/solar-airplane-design-phd-slides-ethz-a-noth-30092008 14/92

André NothPhd Defense

Autonomous Systems LabETH Zürich, 24.09.08

Weight Prediction Models

• Fixed Masses

10/30

• Airplane Structure

– In the literature

• [BRANDT95, GUGLIERI96,…] consider

Î valid locally

• [HALL68] calculated all airframe elements separately

Î complex, only valid for 1000-3000 lbs airplanes

• [STENDER69] proposedÎ very widely adopted

Î adapted by [RIZZO04] to UAV

af W k S = ⋅

• Payload

• Avionic System (Autopilot)

 pld m

avm

Introduction

Design Methodology

y Required Energy

y Solar Energyy Weight Modelsy Resolution

Sky-Sailor Design

Sky-Sailor Prototype

Scaling

Conclusion

0.311 0.778 0.467

8.763af W n S AR=

0.656 0.65115.19af 

W S AR=

7/30/2019 Solar Airplane Design - PhD Slides - ETHZ - A. Noth (30.09.2008)

http://slidepdf.com/reader/full/solar-airplane-design-phd-slides-ethz-a-noth-30092008 15/92

André NothPhd Defense

Autonomous Systems LabETH Zürich, 24.09.08

Weight Prediction Models

• Verification of these models– Database of 415 sailplane

– Structure Weight vs Area

ÎModels don’t fit well

11/30

Introduction

Design Methodology

y Required Energy

y Solar Energyy Weight Modelsy Resolution

Sky-Sailor Design

Sky-Sailor Prototype

Scaling

Conclusion pessimistic

optimistic

3.10 0.250.44af 

W b AR−= ⋅

• New model proposed

– Same equation, new coef.

– Least square method fit

– Data set divided in two

– 5 iterations = 5 qualities– Best 5% model:

Keywords: Wing weight to area , wing area as a functionof structural weight, great flight diagram, Tennekes, wingmass to area, mass to surface, area to mass, surface tomass.

7/30/2019 Solar Airplane Design - PhD Slides - ETHZ - A. Noth (30.09.2008)

http://slidepdf.com/reader/full/solar-airplane-design-phd-slides-ethz-a-noth-30092008 16/92

André NothPhd Defense

Autonomous Systems LabETH Zürich, 24.09.08

Weight Prediction Models

OverviewBiologists already studied flyingin nature to extract tendencies

[TENNEKES92] presented the« Great Flight Diagram »

Clear cubic tendancy

Introduction

Design Methodology

y Required Energy

y Solar Energyy Weight Modelsy Resolution

Sky-Sailor Design

Sky-Sailor Prototype

Scaling

Conclusion

Our model is // to Tennekes curve

[STENDER69,RIZZO04] seem

incoherent

Keywords: Wing weight to area , wing area as a function

of structural weight, great flight diagram, Tennekes, wingmass to area, mass to surface, area to mass, surface tomass.

7/30/2019 Solar Airplane Design - PhD Slides - ETHZ - A. Noth (30.09.2008)

http://slidepdf.com/reader/full/solar-airplane-design-phd-slides-ethz-a-noth-30092008 17/92

André NothPhd Defense

Autonomous Systems LabETH Zürich, 24.09.08

Required Energy

12/30

Introduction

Design Methodology

y Required Energy

y Solar Energyy Weight Modelsy Resolution

Sky-Sailor Design

Sky-Sailor Prototype

Scaling

Conclusion

7/30/2019 Solar Airplane Design - PhD Slides - ETHZ - A. Noth (30.09.2008)

http://slidepdf.com/reader/full/solar-airplane-design-phd-slides-ethz-a-noth-30092008 18/92

André NothPhd Defense

Autonomous Systems LabETH Zürich, 24.09.08

Weight Prediction Models

• Solar Cells– Surface = f(cells properties, required energy)

– Weight proportionnal to the surface

• Maximum Power Point Tracker

– Study of high efficiency MPPT

ÎWeight linear with Pmax

13/30

• Batterie

– Weight proportionnal to capacity

( )sc sc sc encm A k k  = +

mI

mppt mppt sol max

mppt ax sc cbr mppt sc

m k P

k Aη η η 

=

=

night 

bat elec tot  

dchrg bat 

T m P

k η 

=

Introduction

Design Methodology

y Required Energy

y Solar Energyy Weight Modelsy Resolution

Sky-Sailor Design

Sky-Sailor Prototype

Scaling

Conclusion

7/30/2019 Solar Airplane Design - PhD Slides - ETHZ - A. Noth (30.09.2008)

http://slidepdf.com/reader/full/solar-airplane-design-phd-slides-ethz-a-noth-30092008 19/92

André NothPhd Defense

Autonomous Systems LabETH Zürich, 24.09.08

Required Energy

13/30

Introduction

Design Methodology

y Required Energy

y Solar Energyy Weight Modelsy Resolution

Sky-Sailor Design

Sky-Sailor Prototype

Scaling

Conclusion

7/30/2019 Solar Airplane Design - PhD Slides - ETHZ - A. Noth (30.09.2008)

http://slidepdf.com/reader/full/solar-airplane-design-phd-slides-ethz-a-noth-30092008 20/92

André NothPhd Defense

Autonomous Systems LabETH Zürich, 24.09.08

Weight Prediction Models

• Propulsion group– Existing models but none is proven on a large range

– Very large databases created

2264 motors

170 electronics controllers

997 gearboxes

673 propellers

14/30

Introduction

Design Methodology

y Required Energy

y Solar Energyy Weight Modelsy Resolution

Sky-Sailor Design

Sky-Sailor Prototype

Scaling

Conclusion

Interpolated Models

Keywords: Mass to power ratio of motors / Power to mass ratio of electrical motors, piezoelectric motors, Motor mass to power ratio / Motor power tomass ratio of electromagnetic motors, brushed and brushless motors energy density, power density, density of energy, density of power.

7/30/2019 Solar Airplane Design - PhD Slides - ETHZ - A. Noth (30.09.2008)

http://slidepdf.com/reader/full/solar-airplane-design-phd-slides-ethz-a-noth-30092008 21/92

André NothPhd Defense

Autonomous Systems LabETH Zürich, 24.09.08

Summary and Resolution

15/30

Mission parameters

Others: Technological parameters

Airplane’s shape variables

Î Search b and AR for which the loop has a solution

Introduction

Design Methodology

y Required Energy

y Solar Energyy Weight Modelsy Resolution

Sky-Sailor Design

Sky-Sailor Prototype

Scaling

Conclusion

7/30/2019 Solar Airplane Design - PhD Slides - ETHZ - A. Noth (30.09.2008)

http://slidepdf.com/reader/full/solar-airplane-design-phd-slides-ethz-a-noth-30092008 22/92

André NothPhd Defense

Autonomous Systems LabETH Zürich, 24.09.08

Sky-Sailor Design

16/30

Introduction

Design Methodology

Sky-Sailor Design

y Math. Applicationy Real-Time Simulation

Sky-Sailor Prototype

Scaling

Conclusion

7/30/2019 Solar Airplane Design - PhD Slides - ETHZ - A. Noth (30.09.2008)

http://slidepdf.com/reader/full/solar-airplane-design-phd-slides-ethz-a-noth-30092008 23/92

André NothPhd Defense

Autonomous Systems LabETH Zürich, 24.09.08

Methodology application

• Mission parameters– Solar flight possible 3 months in summer (Tday=13.2h)

– 50g payload consuming 0.5W

– Flight location CH, at 500m above sea level

16/30

Introduction

Design Methodology

Sky-Sailor Design

y Meth. Applicationy Real-Time Simulation

Sky-Sailor Prototype

Scaling

Conclusion

7/30/2019 Solar Airplane Design - PhD Slides - ETHZ - A. Noth (30.09.2008)

http://slidepdf.com/reader/full/solar-airplane-design-phd-slides-ethz-a-noth-30092008 24/92

André NothPhd Defense

Autonomous Systems LabETH Zürich, 24.09.08

Methodology application

• Sky-Sailor Layout– 3.2m wingspan

– 0.78m2 wing area (0.525m2 covered by cells)

– 14.2W for level flight (electrical)

16/30

Introduction

Design Methodology

Sky-Sailor Design

y Meth. Applicationy Real-Time Simulation

Sky-Sailor Prototype

Scaling

Conclusion

7/30/2019 Solar Airplane Design - PhD Slides - ETHZ - A. Noth (30.09.2008)

http://slidepdf.com/reader/full/solar-airplane-design-phd-slides-ethz-a-noth-30092008 25/92

André NothPhd DefenseAutonomous Systems LabETH Zürich, 24.09.08

Real-Time Simulation

Objectives

– Validate the design

– Analyze energy flows on the airplane each second

– Rapidly see influence of parameters change

17/30

Introduction

Design Methodology

Sky-Sailor Design

y Meth. Applicationy Real-Time Simulation

Sky-Sailor Prototype

Scaling

Conclusion

7/30/2019 Solar Airplane Design - PhD Slides - ETHZ - A. Noth (30.09.2008)

http://slidepdf.com/reader/full/solar-airplane-design-phd-slides-ethz-a-noth-30092008 26/92

André NothPhd DefenseAutonomous Systems LabETH Zürich, 24.09.08

Real-Time Simulation

Simulation of a 48 h flight– On the 21st of June

– On the 4th of August (+1.5 month)

18/30

Introduction

Design Methodology

Sky-Sailor Design

y Meth. Applicationy Real-Time Simulation

Sky-Sailor Prototype

Scaling

Conclusion

7/30/2019 Solar Airplane Design - PhD Slides - ETHZ - A. Noth (30.09.2008)

http://slidepdf.com/reader/full/solar-airplane-design-phd-slides-ethz-a-noth-30092008 27/92

7/30/2019 Solar Airplane Design - PhD Slides - ETHZ - A. Noth (30.09.2008)

http://slidepdf.com/reader/full/solar-airplane-design-phd-slides-ethz-a-noth-30092008 28/92

André NothPhd DefenseAutonomous Systems LabETH Zürich, 24.09.08

Sky-Sailor Prototype

19/30

Configuration3 axis glider, V-tail, constant chord

Adapted from « Avance » record airplane of W. Engel

Naturally stable

Structure

Composite materials (Carbon, Aramide, Balsa)Spar-Ribs construction method

Wingspan 3.2 m

Surface 0.776 m2

Empty Weight 0.725 kg

Introduction

Design Methodology

Sky-Sailor Design

Sky-Sailor Prototype

y Config & Structurey Aerodynamicsy Solar Generatory Propulsiony Autopiloty Modeling & Controly

Experiments

Scaling

Conclusion

7/30/2019 Solar Airplane Design - PhD Slides - ETHZ - A. Noth (30.09.2008)

http://slidepdf.com/reader/full/solar-airplane-design-phd-slides-ethz-a-noth-30092008 29/92

André NothPhd DefenseAutonomous Systems LabETH Zürich, 24.09.08

Aerodynamics

20/30

Dedicated Airfoil we3.55-9.3Nominal flight speed 8.4 m/s

Nominal flight power (2.55 kg) 9 W

Glide ratio 23.5

Vertical glide speed 0.35 m/s

Introduction

Design Methodology

Sky-Sailor Design

Sky-Sailor Prototype

y Config & Structurey Aerodynamicsy Solar Generatory Propulsiony Autopiloty Modeling & Controly

Experiments

Scaling

Conclusion

7/30/2019 Solar Airplane Design - PhD Slides - ETHZ - A. Noth (30.09.2008)

http://slidepdf.com/reader/full/solar-airplane-design-phd-slides-ethz-a-noth-30092008 30/92

André NothPhd DefenseAutonomous Systems LabETH Zürich, 24.09.08

Solar Generator

21/30

216 RWE solar cells (17% eff, ~90 W max)– encapsulated into 3 solar panels

– non reflective encapsulation

Maximum Power Point tracker– 97 % efficiency for 25 g and 90 W

Lithium-Ion battery– 250 Wh, 1.056 kgÎ 240 Wh/kg

– cycle efficiency 94.8 %

Introduction

Design Methodology

Sky-Sailor Design

Sky-Sailor Prototype

y Config & Structurey Aerodynamicsy Solar Generatory Propulsiony Autopiloty Modeling & Controly

Experiments

Scaling

Conclusion

7/30/2019 Solar Airplane Design - PhD Slides - ETHZ - A. Noth (30.09.2008)

http://slidepdf.com/reader/full/solar-airplane-design-phd-slides-ethz-a-noth-30092008 31/92

André NothPhd DefenseAutonomous Systems LabETH Zürich, 24.09.08

Propulsion group

22/30

High efficiency Propeller from E. Schöberl– 60 cm diameter– Carbon– 85.6 % efficiency

Program created to select the best motor & gearbox combination

out of 2600 motors

Gearbox– Spur gearhead, own development

Brushless Motor (LRK Strecker)– 86.8% efficiency– Excellent cooling– Low weight

Jeti Advance 45 Opto Plus brushless controller

Introduction

Design Methodology

Sky-Sailor Design

Sky-Sailor Prototype

y Config & Structurey Aerodynamicsy Solar Generatory Propulsiony Autopiloty Modeling & Controly Experiments

Scaling

Conclusion

l

7/30/2019 Solar Airplane Design - PhD Slides - ETHZ - A. Noth (30.09.2008)

http://slidepdf.com/reader/full/solar-airplane-design-phd-slides-ethz-a-noth-30092008 32/92

André NothPhd DefenseAutonomous Systems LabETH Zürich, 24.09.08

Autopilot

23/30

Introduction

Design Methodology

Sky-Sailor Design

Sky-Sailor Prototypey Config & Structurey Aerodynamicsy Solar Generatory Propulsiony Autopiloty Modeling & Controly Experiments

Scaling

Conclusion

• Special needs (solar panels monitoring,…)

• Extreme weight & power constraints

Î Own Control & Navigation SystemLink to videos:

http://www.sky-sailor.ethz.ch/videos.htm

M d li & C t l

7/30/2019 Solar Airplane Design - PhD Slides - ETHZ - A. Noth (30.09.2008)

http://slidepdf.com/reader/full/solar-airplane-design-phd-slides-ethz-a-noth-30092008 33/92

André NothPhd DefenseAutonomous Systems LabETH Zürich, 24.09.08

Modeling & Control

GoalsTune controller parametersTest Navigation algorithmsEvaluate airplane capabilities

24/30

7

17

1

=

=

= + +

= + × + ×∑

tot prop Li dii

tot i Li i di i

i

F F F F  

 M M F r F r 

1

2

2

2

( , )

2

2

2

 ρ 

 ρ 

 ρ 

=

=

=

= ⋅

 prop

li li i

di di i

i mi i i

F f x U  

F C S v

F C S v

 M C S v chord 

[ ][ ][ ][ ]

[ ]

1 1 1 2

5 5 5 3

6 6 6 4

7 7 7 5

( , )

( ) for i=2,3,4

( , )

( , )

( , )

=

=

=

=

=

l d m i

li di mi i

l d m i

l d m i

l d m i

C C C f Aoa U  

C C C f Aoa

C C C f Aoa U  

C C C f Aoa U  

C C C f Aoa U  

Introduction

Design Methodology

Sky-Sailor Design

Sky-Sailor Prototypey Config & Structurey Aerodynamicsy Solar Generatory Propulsiony Autopiloty Modeling & Controly Experiments

Scaling

Conclusion

E i t

7/30/2019 Solar Airplane Design - PhD Slides - ETHZ - A. Noth (30.09.2008)

http://slidepdf.com/reader/full/solar-airplane-design-phd-slides-ethz-a-noth-30092008 34/92

André NothPhd DefenseAutonomous Systems LabETH Zürich, 24.09.08

25/30

Experiments

• Several tests with subgroups– Efficiencies increase– Weight reduction– Adding functionnalities– Safety increase

Introduction

Design Methodology

Sky-Sailor Design

Sky-Sailor Prototypey Config & Structurey Aerodynamicsy Solar Generatory Propulsiony Autopiloty Modeling & Controly Experiments

Scaling

Conclusion

• Flight tests with anon-solar proto

– Aerodynamics validation– Power consumption verification– Autopilot electronic tests– Control & Navigation tuning

• Flight tests with the Sky-Sailor– Solar charge– Long flights (>3h)– 24 hours flight

Flight videos:

http://www.sky-sailor.ethz.ch/videos.htm

h fli ht st f J 8

7/30/2019 Solar Airplane Design - PhD Slides - ETHZ - A. Noth (30.09.2008)

http://slidepdf.com/reader/full/solar-airplane-design-phd-slides-ethz-a-noth-30092008 35/92

André NothPhd DefenseAutonomous Systems Lab

ETH Zürich, 24.09.08

27 hours flight, 21st of June 2008

Conditions– Excellent irradiance

– Bad wind conditionsÎmore power needed during the day

Achievements– Duration: 27h05

– Distance: 874 km

– Av. speed: 8.4 m/s

– Mean power: 23+1.9W

– Eused: 675 Wh

– Eobtained: 768 Wh

25/30

Introduction

Design Methodology

Sky-Sailor Design

Sky-Sailor Prototypey Config & Structurey Aerodynamicsy Solar Generatory Propulsiony Autopiloty Modeling & Controly Experiments

Scaling

Conclusion

Continuous flight proved to be feasible without

thermic or altitude gain

Scaling & Other considerations

7/30/2019 Solar Airplane Design - PhD Slides - ETHZ - A. Noth (30.09.2008)

http://slidepdf.com/reader/full/solar-airplane-design-phd-slides-ethz-a-noth-30092008 36/92

André NothPhd DefenseAutonomous Systems Lab

ETH Zürich, 24.09.08

Scaling & Other considerations

26/30

Introduction

Design Methodology

Sky-Sailor Design

Sky-Sailor PrototypeScaling

y Down: MAVy Up: Manned & Haley Epot & Thermal

Conclusion

Down Scaling

7/30/2019 Solar Airplane Design - PhD Slides - ETHZ - A. Noth (30.09.2008)

http://slidepdf.com/reader/full/solar-airplane-design-phd-slides-ethz-a-noth-30092008 37/92

André NothPhd DefenseAutonomous Systems Lab

ETH Zürich, 24.09.08

Down Scaling

26/30

Introduction

Design Methodology

Sky-Sailor Design

Sky-Sailor PrototypeScaling

y Down: MAVy Up: Manned & Haley Epot & Thermal

Conclusion

Drawbacks

– Efficiency of propulsion group

– At low power, DC motor but no BLDC

– Efficiency of aerodynamic (low Re)

– Servos below 5 grams poor quality

– High Edensity batt not easily scalable

– Autopilot sensors limited (due to

weight, ex: no tiny GPS or IMU– Silicon solar cells scale in 2D (not 3D)

• Not flexible for low radius

• Weight percentage

– MPPT efficiency (Vdiode loss/VMPPT )

Î No 24h solar flight at MAV size, but day flight possible

7/30/2019 Solar Airplane Design - PhD Slides - ETHZ - A. Noth (30.09.2008)

http://slidepdf.com/reader/full/solar-airplane-design-phd-slides-ethz-a-noth-30092008 38/92

Potential Energy & Thermal soaring

7/30/2019 Solar Airplane Design - PhD Slides - ETHZ - A. Noth (30.09.2008)

http://slidepdf.com/reader/full/solar-airplane-design-phd-slides-ethz-a-noth-30092008 39/92

André NothPhd DefenseAutonomous Systems Lab

ETH Zürich, 24.09.08

Potential Energy & Thermal soaring

Two possibilities to increase flight endurance are:

– Use of altitude to store energy

+ less battery needed

- altitude variesÎ aerodynamics not optimized for a

fixed density

– Thermal soaring

+ free climbing, save energy

- require a method to detect & soar thermal

Introduction

Design Methodology

Sky-Sailor Design

Sky-Sailor PrototypeScaling

y Down: MAVy Up: Manned & Haley Epot & Thermal

Conclusion

28/30

Conclusion

7/30/2019 Solar Airplane Design - PhD Slides - ETHZ - A. Noth (30.09.2008)

http://slidepdf.com/reader/full/solar-airplane-design-phd-slides-ethz-a-noth-30092008 40/92

André NothPhd DefenseAutonomous Systems Lab

ETH Zürich, 24.09.08

Conclusion

• Methodology developed– Simple and versatile– Valid on a large range– Solid weight & efficiency models– Allows fast feasibility studies– Allows to identify bottle necks

• Prototype built

– Validation of the design– Continuous flight proven– Very good know-how acquired

29/30

Introduction

Design Methodology

Sky-Sailor Design

Sky-Sailor PrototypeScaling

Conclusion

Conclusion

7/30/2019 Solar Airplane Design - PhD Slides - ETHZ - A. Noth (30.09.2008)

http://slidepdf.com/reader/full/solar-airplane-design-phd-slides-ethz-a-noth-30092008 41/92

André NothPhd DefenseAutonomous Systems Lab

ETH Zürich, 24.09.08

Conclusion

• Scaling problems– Down: efficiencies and aerodynamics– Up: large wing structure

• Outlook

– Increase # parameters (efficiency = f(power))– Flight algorithm learning energy saving– Thermal soaring– Building: improve costs, time & robustness

29/30

Introduction

Design Methodology

Sky-Sailor Design

Sky-Sailor PrototypeScaling

Conclusion

7/30/2019 Solar Airplane Design - PhD Slides - ETHZ - A. Noth (30.09.2008)

http://slidepdf.com/reader/full/solar-airplane-design-phd-slides-ethz-a-noth-30092008 42/92

7/30/2019 Solar Airplane Design - PhD Slides - ETHZ - A. Noth (30.09.2008)

http://slidepdf.com/reader/full/solar-airplane-design-phd-slides-ethz-a-noth-30092008 43/92

André NothPhd DefenseAutonomous Systems Lab

ETH Zürich, 24.09.08

Thank you for your attention

29/30

Questions ?Introduction

Design Methodology

Sky-Sailor Design

Sky-Sailor PrototypeScaling

Conclusion

Special Thanks to:– Prof. Siegwart and the entire ASL

– Walter Engel & all the people who worked on the project

– Doctoral comity

Appendices

7/30/2019 Solar Airplane Design - PhD Slides - ETHZ - A. Noth (30.09.2008)

http://slidepdf.com/reader/full/solar-airplane-design-phd-slides-ethz-a-noth-30092008 44/92

André NothPhd DefenseAutonomous Systems Lab

ETH Zürich, 24.09.08

Appendices

• Solar Generator– Spectrum, Albedo, Sun angle– Tday & Imax

– Best research cell efficiencies– I-V curve

– MPPT– Integration in the wing

• Energy Storage– All solutions– Energy density of fuel– Lithium-Ion battery evolution

• Propulsion Group– Motors– Propeller– Weight prediction models

• Autopilot– Schematic– Telemetry

– Power consumption– Placement– GUI (thermals)– Simulation & modeling

29/30

Introduction

Design Methodology

Sky-Sailor Design

Sky-Sailor PrototypeScaling

Conclusion

• Overall– Energy Chain– Solar Airplane: light and slow– Weight-Power-Autonomy– Methodology Resolution

– 30 Parameters– Weight distribution

• Applications– Potential applications– Sky-Sailor– MAV– Manned

– HALE– Mars

• Other– Using thermals– Sun Surfer– Design phases

– Airframe model– 27 hours flight

Solar Generator

7/30/2019 Solar Airplane Design - PhD Slides - ETHZ - A. Noth (30.09.2008)

http://slidepdf.com/reader/full/solar-airplane-design-phd-slides-ethz-a-noth-30092008 45/92

André NothPhd DefenseAutonomous Systems Lab

ETH Zürich, 24.09.08

Solar Generator

Solar Energy

7/30/2019 Solar Airplane Design - PhD Slides - ETHZ - A. Noth (30.09.2008)

http://slidepdf.com/reader/full/solar-airplane-design-phd-slides-ethz-a-noth-30092008 46/92

André NothPhd DefenseAutonomous Systems Lab

ETH Zürich, 24.09.08

gy

Solar Spectrum

Direct, diffusedand reflected light

Angle of incidence

variation

7/30/2019 Solar Airplane Design - PhD Slides - ETHZ - A. Noth (30.09.2008)

http://slidepdf.com/reader/full/solar-airplane-design-phd-slides-ethz-a-noth-30092008 47/92

Solar Cells Research

7/30/2019 Solar Airplane Design - PhD Slides - ETHZ - A. Noth (30.09.2008)

http://slidepdf.com/reader/full/solar-airplane-design-phd-slides-ethz-a-noth-30092008 48/92

André NothPhd DefenseAutonomous Systems Lab

ETH Zürich, 24.09.08

Solar Cell

7/30/2019 Solar Airplane Design - PhD Slides - ETHZ - A. Noth (30.09.2008)

http://slidepdf.com/reader/full/solar-airplane-design-phd-slides-ethz-a-noth-30092008 49/92

André NothPhd DefenseAutonomous Systems Lab

ETH Zürich, 24.09.08

MPPT

7/30/2019 Solar Airplane Design - PhD Slides - ETHZ - A. Noth (30.09.2008)

http://slidepdf.com/reader/full/solar-airplane-design-phd-slides-ethz-a-noth-30092008 50/92

André NothPhd DefenseAutonomous Systems Lab

ETH Zürich, 24.09.08

Solar cells integration

7/30/2019 Solar Airplane Design - PhD Slides - ETHZ - A. Noth (30.09.2008)

http://slidepdf.com/reader/full/solar-airplane-design-phd-slides-ethz-a-noth-30092008 51/92

André NothPhd DefenseAutonomous Systems Lab

ETH Zürich, 24.09.08

Structure

Energy storage

7/30/2019 Solar Airplane Design - PhD Slides - ETHZ - A. Noth (30.09.2008)

http://slidepdf.com/reader/full/solar-airplane-design-phd-slides-ethz-a-noth-30092008 52/92

André NothPhd DefenseAutonomous Systems Lab

ETH Zürich, 24.09.08

Energy Storage

Energy storage solutions

7/30/2019 Solar Airplane Design - PhD Slides - ETHZ - A. Noth (30.09.2008)

http://slidepdf.com/reader/full/solar-airplane-design-phd-slides-ethz-a-noth-30092008 53/92

André NothPhd DefenseAutonomous Systems Lab

ETH Zürich, 24.09.08

Energy Storage

7/30/2019 Solar Airplane Design - PhD Slides - ETHZ - A. Noth (30.09.2008)

http://slidepdf.com/reader/full/solar-airplane-design-phd-slides-ethz-a-noth-30092008 54/92

André NothPhd DefenseAutonomous Systems Lab

ETH Zürich, 24.09.08

Energy density of some reactants [kWh/kg](LHV Lower heating value)

Hydrogen 33.3

Methane 13.9

Propane 12.9

Gasoline 12.2

Diesel 11.7

Ethanol 7.5

Methanol 5.6

Best 2008 LiIon Battery 0.2

Sugar 4.4

Oil (Colza,…) 10.4

10 20 300

ÎImportant to keep in mind Availability / Efficiency of converters

Lithium-Ion battery evolution

7/30/2019 Solar Airplane Design - PhD Slides - ETHZ - A. Noth (30.09.2008)

http://slidepdf.com/reader/full/solar-airplane-design-phd-slides-ethz-a-noth-30092008 55/92

André NothPhd DefenseAutonomous Systems Lab

ETH Zürich, 24.09.08

Energy density + 6.6%/yearPrice - 17%/year

Propulsion Group

7/30/2019 Solar Airplane Design - PhD Slides - ETHZ - A. Noth (30.09.2008)

http://slidepdf.com/reader/full/solar-airplane-design-phd-slides-ethz-a-noth-30092008 56/92

André NothPhd DefenseAutonomous Systems Lab

ETH Zürich, 24.09.08

Propulsion Group

Motors

7/30/2019 Solar Airplane Design - PhD Slides - ETHZ - A. Noth (30.09.2008)

http://slidepdf.com/reader/full/solar-airplane-design-phd-slides-ethz-a-noth-30092008 57/92

André NothPhd DefenseAutonomous Systems Lab

ETH Zürich, 24.09.08

Propeller

7/30/2019 Solar Airplane Design - PhD Slides - ETHZ - A. Noth (30.09.2008)

http://slidepdf.com/reader/full/solar-airplane-design-phd-slides-ethz-a-noth-30092008 58/92

André NothPhd DefenseAutonomous Systems Lab

ETH Zürich, 24.09.08

       E       f       f       i     c       i     e

     n     c     y

       [   -       ]

Designed by E. Schöberl• « Master of Prop »• Also worked on Icaré and other solarairplanes

Weight prediction modelsB hl t llP ll

7/30/2019 Solar Airplane Design - PhD Slides - ETHZ - A. Noth (30.09.2008)

http://slidepdf.com/reader/full/solar-airplane-design-phd-slides-ethz-a-noth-30092008 59/92

André NothPhd DefenseAutonomous Systems Lab

ETH Zürich, 24.09.08

Brushless controllers

Gearboxes

Propellers

7/30/2019 Solar Airplane Design - PhD Slides - ETHZ - A. Noth (30.09.2008)

http://slidepdf.com/reader/full/solar-airplane-design-phd-slides-ethz-a-noth-30092008 60/92

Autopilot overview

7/30/2019 Solar Airplane Design - PhD Slides - ETHZ - A. Noth (30.09.2008)

http://slidepdf.com/reader/full/solar-airplane-design-phd-slides-ethz-a-noth-30092008 61/92

André NothPhd DefenseAutonomous Systems Lab

ETH Zürich, 24.09.08

Telemetry

7/30/2019 Solar Airplane Design - PhD Slides - ETHZ - A. Noth (30.09.2008)

http://slidepdf.com/reader/full/solar-airplane-design-phd-slides-ethz-a-noth-30092008 62/92

André NothPhd DefenseAutonomous Systems Lab

ETH Zürich, 24.09.08

Autopilot power consumption

7/30/2019 Solar Airplane Design - PhD Slides - ETHZ - A. Noth (30.09.2008)

http://slidepdf.com/reader/full/solar-airplane-design-phd-slides-ethz-a-noth-30092008 63/92

André NothPhd DefenseAutonomous Systems Lab

ETH Zürich, 24.09.08

Element placement in fuselage

7/30/2019 Solar Airplane Design - PhD Slides - ETHZ - A. Noth (30.09.2008)

http://slidepdf.com/reader/full/solar-airplane-design-phd-slides-ethz-a-noth-30092008 64/92

André NothPhd DefenseAutonomous Systems Lab

ETH Zürich, 24.09.08

7/30/2019 Solar Airplane Design - PhD Slides - ETHZ - A. Noth (30.09.2008)

http://slidepdf.com/reader/full/solar-airplane-design-phd-slides-ethz-a-noth-30092008 65/92

Modeling & Simulation

7/30/2019 Solar Airplane Design - PhD Slides - ETHZ - A. Noth (30.09.2008)

http://slidepdf.com/reader/full/solar-airplane-design-phd-slides-ethz-a-noth-30092008 66/92

André NothPhd DefenseAutonomous Systems Lab

ETH Zürich, 24.09.08

Overall

7/30/2019 Solar Airplane Design - PhD Slides - ETHZ - A. Noth (30.09.2008)

http://slidepdf.com/reader/full/solar-airplane-design-phd-slides-ethz-a-noth-30092008 67/92

André NothPhd DefenseAutonomous Systems Lab

ETH Zürich, 24.09.08

Overall

7/30/2019 Solar Airplane Design - PhD Slides - ETHZ - A. Noth (30.09.2008)

http://slidepdf.com/reader/full/solar-airplane-design-phd-slides-ethz-a-noth-30092008 68/92

Why are solar airplanes large and slow ?

21L C S

7/30/2019 Solar Airplane Design - PhD Slides - ETHZ - A. Noth (30.09.2008)

http://slidepdf.com/reader/full/solar-airplane-design-phd-slides-ethz-a-noth-30092008 69/92

André NothPhd DefenseAutonomous Systems LabETH Zürich, 24.09.08

21

2L L C S v ρ =

Thrust T 

Weight mg

21

2D D C S v ρ =

Speed v

2. Ratio between L and D is equal to CL/CD

x D

 L

C C 

1. Equilibrium of forces

Î the same ratio occurs between thrust and weightÎ

independent of v , it only requires Sv 

constant

x D

 L

3. Power for level flight is thus requiredP = T v = (mg / ) v D LC C ⋅ ⋅ ⋅4. A way to reduce the power is to lower the speed v Î in order to keep the lift (Sv 2  constant), S needs to be increased

Solar airplanes generally have large wings and a low speed

Weight – Power - Autonomy

7/30/2019 Solar Airplane Design - PhD Slides - ETHZ - A. Noth (30.09.2008)

http://slidepdf.com/reader/full/solar-airplane-design-phd-slides-ethz-a-noth-30092008 70/92

André NothPhd DefenseAutonomous Systems LabETH Zürich, 24.09.08

Methodology Resolution

7/30/2019 Solar Airplane Design - PhD Slides - ETHZ - A. Noth (30.09.2008)

http://slidepdf.com/reader/full/solar-airplane-design-phd-slides-ethz-a-noth-30092008 71/92

André NothPhd DefenseAutonomous Systems LabETH Zürich, 24.09.08

ctrl payload struct solar batt mppt prop  m m m m m m m m  = + + + + + +

( )( ) ( )( ) 1

10 11

3

21 x 

0 1 7 8 9 5 6 2 7 9 5 6 3 4  

a a 

m a a a a a a a m a a a a a a a b  b 

− + + + = + + + +

The equation of the total mass is

It can be shown that it has a solution if:

N

1

1312

3

210 11 4

1 x 

a a 

m a m a a b  b 

− = +

2

12 13

4

27a a  ≤

30 Parameters

7/30/2019 Solar Airplane Design - PhD Slides - ETHZ - A. Noth (30.09.2008)

http://slidepdf.com/reader/full/solar-airplane-design-phd-slides-ethz-a-noth-30092008 72/92

André NothPhd DefenseAutonomous Systems LabETH Zürich, 24.09.08

Sky-Sailor weight distributions

7/30/2019 Solar Airplane Design - PhD Slides - ETHZ - A. Noth (30.09.2008)

http://slidepdf.com/reader/full/solar-airplane-design-phd-slides-ethz-a-noth-30092008 73/92

André NothPhd DefenseAutonomous Systems LabETH Zürich, 24.09.08

Applications

7/30/2019 Solar Airplane Design - PhD Slides - ETHZ - A. Noth (30.09.2008)

http://slidepdf.com/reader/full/solar-airplane-design-phd-slides-ethz-a-noth-30092008 74/92

André NothPhd DefenseAutonomous Systems LabETH Zürich, 24.09.08

Applications

Potential Applications

7/30/2019 Solar Airplane Design - PhD Slides - ETHZ - A. Noth (30.09.2008)

http://slidepdf.com/reader/full/solar-airplane-design-phd-slides-ethz-a-noth-30092008 75/92

André NothPhd DefenseAutonomous Systems LabETH Zürich, 24.09.08

• high altitude communication platform

• law enforcement

• border surveillance

• forest fire fighting

• power line inspection

• …

Sky-Sailor

What is the influence of battery technology on the

7/30/2019 Solar Airplane Design - PhD Slides - ETHZ - A. Noth (30.09.2008)

http://slidepdf.com/reader/full/solar-airplane-design-phd-slides-ethz-a-noth-30092008 76/92

André NothPhd DefenseAutonomous Systems LabETH Zürich, 24.09.08

What is the influence of battery technology on themaximal flying altitude ?

MAV

7/30/2019 Solar Airplane Design - PhD Slides - ETHZ - A. Noth (30.09.2008)

http://slidepdf.com/reader/full/solar-airplane-design-phd-slides-ethz-a-noth-30092008 77/92

André NothPhd DefenseAutonomous Systems LabETH Zürich, 24.09.08

MAV

7/30/2019 Solar Airplane Design - PhD Slides - ETHZ - A. Noth (30.09.2008)

http://slidepdf.com/reader/full/solar-airplane-design-phd-slides-ethz-a-noth-30092008 78/92

André NothPhd DefenseAutonomous Systems LabETH Zürich, 24.09.08

Manned

7/30/2019 Solar Airplane Design - PhD Slides - ETHZ - A. Noth (30.09.2008)

http://slidepdf.com/reader/full/solar-airplane-design-phd-slides-ethz-a-noth-30092008 79/92

André NothPhd DefenseAutonomous Systems LabETH Zürich, 24.09.08

Manned

7/30/2019 Solar Airplane Design - PhD Slides - ETHZ - A. Noth (30.09.2008)

http://slidepdf.com/reader/full/solar-airplane-design-phd-slides-ethz-a-noth-30092008 80/92

André NothPhd DefenseAutonomous Systems LabETH Zürich, 24.09.08

HALE Platform

7/30/2019 Solar Airplane Design - PhD Slides - ETHZ - A. Noth (30.09.2008)

http://slidepdf.com/reader/full/solar-airplane-design-phd-slides-ethz-a-noth-30092008 81/92

André NothPhd DefenseAutonomous Systems LabETH Zürich, 24.09.08

Payload: 300 Kg

Altitude: 21’000 m

Mission time: 3 months in summer

HALE Platform

7/30/2019 Solar Airplane Design - PhD Slides - ETHZ - A. Noth (30.09.2008)

http://slidepdf.com/reader/full/solar-airplane-design-phd-slides-ethz-a-noth-30092008 82/92

André NothPhd DefenseAutonomous Systems LabETH Zürich, 24.09.08

HALE Platform

7/30/2019 Solar Airplane Design - PhD Slides - ETHZ - A. Noth (30.09.2008)

http://slidepdf.com/reader/full/solar-airplane-design-phd-slides-ethz-a-noth-30092008 83/92

André NothPhd DefenseAutonomous Systems LabETH Zürich, 24.09.08

7/30/2019 Solar Airplane Design - PhD Slides - ETHZ - A. Noth (30.09.2008)

http://slidepdf.com/reader/full/solar-airplane-design-phd-slides-ethz-a-noth-30092008 84/92

Mars design

7/30/2019 Solar Airplane Design - PhD Slides - ETHZ - A. Noth (30.09.2008)

http://slidepdf.com/reader/full/solar-airplane-design-phd-slides-ethz-a-noth-30092008 85/92

André NothPhd DefenseAutonomous Systems LabETH Zürich, 24.09.08

Storing Potential Energy

7/30/2019 Solar Airplane Design - PhD Slides - ETHZ - A. Noth (30.09.2008)

http://slidepdf.com/reader/full/solar-airplane-design-phd-slides-ethz-a-noth-30092008 86/92

André NothPhd DefenseAutonomous Systems LabETH Zürich, 24.09.08

Using Thermals

7/30/2019 Solar Airplane Design - PhD Slides - ETHZ - A. Noth (30.09.2008)

http://slidepdf.com/reader/full/solar-airplane-design-phd-slides-ethz-a-noth-30092008 87/92

André NothPhd DefenseAutonomous Systems LabETH Zürich, 24.09.08 Link to videos:

http://www.sky-sailor.ethz.ch/videos.htm

Sun-Surfer

Obj ti

7/30/2019 Solar Airplane Design - PhD Slides - ETHZ - A. Noth (30.09.2008)

http://slidepdf.com/reader/full/solar-airplane-design-phd-slides-ethz-a-noth-30092008 88/92

André NothPhd DefenseAutonomous Systems LabETH Zürich, 24.09.08

Sun-Surfer I 

Wingspan: 0.77 meters

Weight: 115 g

P level flight: 1 W

P solar : 3 W

Sun-Surfer II 

Wingspan: 0.78 meters

Weight: 190 gP level flight: 2.4 W

P solar : 8 W

Objective:reduce the scale and costdevelop low-cost solar MAVs with payload capacity of ~40 gr

Design Phases

7/30/2019 Solar Airplane Design - PhD Slides - ETHZ - A. Noth (30.09.2008)

http://slidepdf.com/reader/full/solar-airplane-design-phd-slides-ethz-a-noth-30092008 89/92

André NothPhd DefenseAutonomous Systems LabETH Zürich, 24.09.08

Airframe model

7/30/2019 Solar Airplane Design - PhD Slides - ETHZ - A. Noth (30.09.2008)

http://slidepdf.com/reader/full/solar-airplane-design-phd-slides-ethz-a-noth-30092008 90/92

André NothPhd DefenseAutonomous Systems LabETH Zürich, 24.09.08

27 hours flight

7/30/2019 Solar Airplane Design - PhD Slides - ETHZ - A. Noth (30.09.2008)

http://slidepdf.com/reader/full/solar-airplane-design-phd-slides-ethz-a-noth-30092008 91/92

André NothPhd DefenseAutonomous Systems LabETH Zürich, 24.09.08

27 hours flight

7/30/2019 Solar Airplane Design - PhD Slides - ETHZ - A. Noth (30.09.2008)

http://slidepdf.com/reader/full/solar-airplane-design-phd-slides-ethz-a-noth-30092008 92/92

André NothPhd DefenseAutonomous Systems LabETH Zürich, 24.09.08

top related