slender structures load carrying principlesicozct.tudelft.nl/tud_ct/cm5/collegestof/files/... ·...

Post on 12-Jul-2020

12 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Hans Welleman 1

Slender Structures

Load carrying principles

Continuously Elastic Supported (basic) Cases:

• Extension, shear

• Euler-Bernoulli beam (Winkler 1867)

v2019-4

Content (preliminary schedule)

Basic cases

– Extension, shear, torsion, cable

– Bending (Euler-Bernoulli)

Combined systems

- Parallel systems

- Special system – Bending (Timoshenko)

Continuously Elastic Supported (basic) Cases

Cable revisit and Arches

Matrix Method

Hans Welleman 2

Learning objectives

Extend the technique for basic cases

Find the ODE for a specific case and the boundary

conditions for the specific application

Solve the more advanced ODE’s (by hand and

MAPLE)

Investigate consequences/limitations of the model

and check results with limit cases

Hans Welleman 3

Basic Cases

Second order DE

Extension

Shear

Torsion

Cable

Hans Welleman 4

Fourth order DE

Bending

2

2

2

2

2

2

2

2

d

d

d

d

d

d

d

d

xt

uEA q

x

wk q

x

GI mx

zH q

x

ϕ

− =

− =

− =

− =

4

4

d

d

wEI q

x=

Model

(ordinary) Differential Equation – (O)DE

– Boundary conditions

– Matching conditions

Hans Welleman 5

Extension(prismatic)

Hans Welleman 6

“axial stiffness” EA

external load no

internal generalised stress, normal force N …. BC

axial deformation or strain ε

displacement field (longtitudinal) u …. BC

ODE

Fundamental relations

Kinematic relation

Constitutive relation (Hooke)

Equilibrium

Hans Welleman 7

d

d

u

xε =

N EAε=

d d 0

d

d

N p x N N

Np ku

x

− − + + = ⇔

= =

2

2

d d d

d d d

u N uN EA EA ku

x x x= → = =�

Hans Welleman 8

Example: pull out test

Solve the ODE using parameters

Write down the boundary conditions

concrete

rebar

l not known yet

I found as an answer

u(x) = ………………………………………

Boundary Conditions:

……………………………………………..

……………………………………………..

……………………………………………..

……………………………………………..

Hans Welleman 9

Some values

Hans Welleman 10

2 5 2

3 2 12

10 mm;

400 N/mm ; 2.1 10 N/mm ;

concrete:

30 10 N/mm ;

y s

c c

steel rebar

f E

E k E

φ =

= = ×

= × =

Find some results

for 25 kN load …

Interpretation of results

Slope of u(0) and N(0) intersect x-axis at distance 1/αfrom origin.

1/α is length of the “influence zone”

Find α by experiment: impose F and measure u(0)

Hans Welleman 11

2

(0)e e

e

FF k u k kEA

F

kEA

kk

EA

= = =

=

Shear(prismatic)

Hans Welleman 12

“shear stiffness” GAeff

external load q

internal generalised stress, shear force V …. BC

shear deformation γ

displacement field w …. BC

ODE

2

2

d d d

d d deff eff

w V wN GA GA kw q

x x x= → = = −�

Fundamental relations

Kinematic relation

Constitutive relation (Hooke)

Equilibrium

Hans Welleman 13

d

d

w

xγ =

effV GA γ=

( )d d 0

d

d

V q kw x V V

Vkw q

x

− + − + + =

= −

Veerse Gat 1961

Hans Welleman 14

Photo : Aart Klein, 24 april 1961

Why this shear type of caisson?

Gates are closed after positioning

of all caissons. The walls must

remain parallel in order to operate

the gates.

Result so far

Hans Welleman 15

2 22 2

2 2

2 22 2

2 2

extention (homogeneous):

d d0 0 with:

d d

shear (inhomogeneous):

d dwith:

d deff

eff eff

u u kEA ku u

EAx x

w w q kGA kw q w

GA GAx x

α α

α α

− + = → − = =

− + = → − = − =

1 2

homogeneous solution:

( ) x xhu x C e C e

α α−= +

2

2

1 2

homogeneous solution:

( )

particular solution:

( ) ( )

( ) ( )

( ) sin ( ) sin

x xh

oo p

oo p

ox xo pl l

effl

w x C e C e

qq x q w x

k

qq x q x w x x

k

qq x q w x

GA k

α α

π ππ

−= +

= → =

= → =

= → =+

Assignment : Find improved model for shear beam on elastic foundation

Hint : Adjust for rotation in shear beam

Hans Welleman 16

Beam(prismatic, only bending deformation)

Hans Welleman 17

external load q

internal generalised stress, shear and moment V, M …. BC

bending deformation, curvature κ

rotation and displacement ϕ, w …. BC

k = foundationmodulus [N/m2]

c = modulus of subgrade [N/m3]

(beddingsconstante),

gravel c = 108 N/m3

sand c = 107 N/m3

ODE

4

4

d d d

d d d

V wM EI EI kw q

x x x

ϕ= → = − = −�

Fundamental relations

Kinematic relation

Constitutive relation (Hooke)

Equilibrium

Hans Welleman 18

d d;

d d

w

x x

ϕϕ κ= − =

M EIκ=

( )d d 0

d d;

d d

V q kw x V V

V Mkw q V

x x

− + − + + =

= − =

Solving the ODE

Hans Welleman 19

4

4

44 4

4

d

d

rewrite as:

d4 : 4

d

wEI k w q

x

w q kw with

x EI EIβ β

+ × =

+ = =

move to slide 24 …

or if fan of math continue …

Find homogeneous solution:4

4

4

4 4 4 4

d4 0

d

:

4 0 4

x

ww

x

subst w eλ

β

λ β λ β

+ =

=

+ = = −

… some math …

Hans Welleman 20

( )

( )

14

14

4 4

4 4 4 4

4 2 24 4

4

4

4 ( 1) 4 1

2 1 2 1

2 1 2 1

λ β

λ β λ β

λ λ β β

λ β β

= −

= × − = × −

= = × − = × −

= × − = × −

Complex …

… some background …

Hans Welleman 21

( ) ( )1144

( 2 )

( 2 ) ( / 4 / 2)

1 cos sin

note: plus or min 2 is the same, so:

1 cos( 2 ) sin( 2 )

1 cos( ) sin( )4 2 4 2

four roots for 0,1, 2 en 3

1 1- -1 1-, , ,

2 2 2 2

i

i m

i m i m

i e

m i m e

m me e i

m

i i i i

π

π π

π π π π

π π

π

π π π π

π π π π

+

+ +

− = + =

− = + + + =

− = = = + + +

=

+ + −

… apply this …

Hans Welleman 22

( )14

1,2,3,4

1,2,3,4

1 2

3 4

2 1

12

2

(1 ) (1 )

( 1 ) ( 1 )

i

i i

i i

λ β

λ β

λ β λ β

λ β λ β

= × −

± ± = ×

= × + = × −

= × − + = × − −

Homogeneous solution:

31 2 4( )xx x x

hw x Ae Be Ce Deλλ λ λ= + + +

.. a few more last steps …

Hans Welleman 23

31 2 4( )xx x x

hw x Ae Be Ce Deλλ λ λ= + + +

(1 ) (1 ) (1 ) (1 )( ) i x i x i x i x

hw x Ae Be Ce Deβ β β β+ − − − − += + + +

( ) ( )( ) x ix ix x ix ix

hw x e Ae Be e Ce Deβ β β β β β− − −= + + +

:

cos sin and cos sinix ix

Euler

e x i x e x i xβ ββ β β β−= + = −

what is this complex stuff??

.. almost there …

Hans Welleman 24

{ } { }( )

{ } { }( )

( ) cos sin cos sin

cos sin cos sin

x

h

x

w x e A x i x B x i x

e C x i x D x i x

β

β

β β β β

β β β β−

= + + − +

+ + −

( )

( )

( ) ( ) cos ( )sin

( ) cos ( ) sin

x

h

x

w x e A B x i A B x

e C D x i C D x

β

β

β β

β β−

= + + − +

+ + −

A-B and C-D complex

1 2

3 4

use new constants:

; ( )

; ( )

C A B C i A B real

C C D C i C D real

= + = −

= + = −

complex conjugate - assume:

; ;

2 ; 2

A a ib B a ib

A B a A B ib

= − = +

+ = − = −

.. Okay we are there …

Hans Welleman 25

( ) ( )1 2 3 4( ) cos sin cos sinx x

hw x e C x C x e C x C xβ ββ β β β−= + + +

damping term for x < 0 damping term for x > 0

sinoidal shape (wave)sinoidal shape (wave)

damping or decreased amplitude is governed by β :

4

1 1characteristic length [m]

4

k

EI

β=

Example

Hans Welleman 26

( ) ( )1 2 3 4( ) cos sin cos sinx x

hw x e C x C x e C x C xβ ββ β β β−= + + +

Symmetry

Hans Welleman 27

( )3 4( ) cos sinxw x e C x C xβ β β−= +

only two BC:

(0) 0; (0) ;V Fϕ = = −

Assignment

Solve the example in MAPLE

Use

Find the distributions for

– Displacement

– Rotation

– Moment

– Shear

Hans Welleman 28

414

; 1000 4 ; 10EI Fβ π β= = × =

… one last trick …

Hans Welleman 29

( )3 4( ) cos sinxw x e C x C xβ β β−= +

( )( ) sin cos cos sinxw x A e x xβ ω β ω β−= +

ω

A

4 cosC A ω=

3 sinC A ω=

( )( ) sin cos cos sinxw x e A x A x

β ω β ω β−= +

( )( ) sinxw x Ae xβ β ω−= +( )

math:

sin sin cos cos sina b a b a b+ = +

new integration constants

Why??

Hans Welleman 30

( ) ( )

( ) ( )( )

( ) ( )( )1 14 4

dsin cos

d

sin cos

2 sin cos cos sin

x x

x

x

wAe x Ae x

x

Ae x x

Ae x x

β β

β

β

β β ω β β ω

β β ω β ω

β β ω π β ω π

− −

= − + + + =

= − + − +

= − + − +

( )

math:

sin sin cos cos sina b a b a b− = −

( )14

d2 sin

d

xwAe x

x

ββ β ω π−= − + −

( )( ) sinxw x Ae xβ β ω−= +

Differentiating becomes

Change sign

Multiply with

Reduce phase with

Hans Welleman 31

2β14

π

( )

( )

( )

( )

14

22 1

22

33 3

43

sin

d2 sin

d

d2 sin

d

d2 2 sin

d

x

x

x

x

w Ae x

wAe x

x

wAe x

x

wAe x

x

β

β

β

β

β ω

β β ω π

β β ω π

β β ω π

= +

= − + −

= + −

= − + −“old school”

Study the graphs

…and the notes …

Hans Welleman 32

Classification of beams according

to stiffness ... loadcase 1

Hans Welleman 33

( ) ?w x =

Classification

Wave length of the load

Wave length λ of the beam (no load)

Hans Welleman 34

2l

( )

( )

1 2

3 4

( ) cos sin

cos sin

x

x

w x e C x C x

e C x C x

α

α

β β

β β

−= + +

+

22

πβλ π λ

β= → =

Simplified model

Hans Welleman 35

, 0 , 0

( ) ? ( )

( ) ?bending k bending k

w x w xfind

w x w= =

=

=

, 0 , 0

( ) ? ( )

( ) ?cont reaction EI cont reaction EI

w x w xfind

w x w− = − =

=

=

Influence of k , EI and l

Hans Welleman 36

Find the meaning of this result by studying the extreme values of the

parameters … (also see the assignments in de notes)

Influence of k , EI and l

Hans Welleman 37

Find the meaning of this result by studying the extreme values of the

parameters … (also see the assignments in de notes)

Classification of beams according

to stiffness ... loadcase 2

Also known as Hetényi problemDr. Miklos Hetényi, University of Technical Sciences, Budapest, Hungary, 1924-30; Diploma in Civil Engineering, 1931; Graduate work with H.M. Westerguard, Univ. of Illinois, 1934-35 and with S.P. Timoshenko, Univ. of Michigan, 1935-36; PhD in Eng. Mechanics, 1936

Hans Welleman 38

Model based

on symmetry

Hans Welleman 39

( ) ( )

4

4

1 2 3 4

12

d0

d

( ) cos sin cos sin

0; ; 0;

; 0; 0;

x x

wEI kw

x

w x e C x C x e C x C x

x V F

x l V M

β ββ β β β

ϕ

+ =

= + + +

= = − =

= = =

Ok, just solve this ……

Stiffness of slabs

Hans Welleman 40

12

( )

(0)

w l

w

4

π π

short beams, can be regarded as rigid, neglect bending4

need accurate computations, load on one side has effect on the other end4

long beams, acting force at one end has negligible effect

l

l

l

πβ

πβ π

β π

≤ ≤

≥ on other end

Assignment

Find min and max stress in the continuous support

Find the maximum normal stress in the beam

Hans Welleman 41

rail (beam)

Assignment

Building phases

– A original situation

– B add supports A and B with full load prior to excavation

– C excavate AB under full load

Derive a model and find the moment at B in the beam

Find the moment and shear distribution in terms of qo and l

Find the support reactions at A and B

Hans Welleman 42

4

:

324

assume

kl

EI=

Advanced models:Winkler - Pasternak model

Add shear deformation in the elastic support to create horizontallinkage between the vertical Winkler springs. Stiffnessparameters ks and k will model the elastic support (so-called 2-

parameter model)

Hans Welleman 43

4 2

4 2

d d

d d

!

s

w wEI k k w q

x x

proof this

− + × =

top related