round beam collisions at vepp-2000

Post on 01-Jan-2016

13 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

DESCRIPTION

Round Beam Collisions at VEPP-2000. Dmitry Berkaev, Alexander Kirpotin, Ivan Koop, Alexander Lysenko, Igor Nesterenko, Alexey Otboyev, Evgeny Perevedentsev, Yuri Rogovsky, Alexander Romanov, Petr Shatunov, Yuri Shatunov , Dmitry Shwartz, Alexander Skrinsky, Ilya Zemlyansky. Novosibirsk - PowerPoint PPT Presentation

TRANSCRIPT

Round Beam Collisions at

VEPP-2000

Dmitry Berkaev, Alexander Kirpotin, Ivan Koop, Alexander Lysenko, Igor Nesterenko,Alexey Otboyev, Evgeny Perevedentsev, Yuri Rogovsky, Alexander Romanov,

Petr Shatunov, Yuri Shatunov, Dmitry Shwartz, Alexander Skrinsky, Ilya Zemlyansky

                         

Novosibirsk21.09.2011

Layout of VEPP-2000 complex

ILU2.5 MeVLinac

B-3M250 MeVsynchro-betatron

BEP

booster825 MeV

SND

CMD-3

e–e+

convertor

2 m2 m

e–, e+

VEPP-2000

RF

ILU2.5 MeVLinac

B-3M250 MeVsynchro-betatron

BEP

booster825 MeV

SND

CMD-3

e–e+

convertor

2 m2 m

e–, e+

VEPP-2000

RF

Collider overview

L = 24.39 mfacc= 172 MHzVacc= 120 kV

E=0.2 – 1 GeVBbend = 2.4 TBsol = 13 T

β*=2 – 10 cmσs = 3 cm

ε=1.4•10-7mradνx,z= 2.1; 4.1

α= 0.036ξ = 0.15N± = 1011

L=1•1032cm-2s-1

The Concept of Round Colliding Beams

Small and equal β-functions at IP:

Equal beam emittances:

Equal betatron tunes:

Angular momentum conservation yM x z xz

x z

x z

x z

z

y

x

VEPP-2000 lattice

Round beam options

“Flat”

“NormalRound”

“Single möbius”

“Double möbius”

“Flat”

“NormalRound”

“Single möbius”

“Double möbius”

z

x

Positron beam lifetime (I+ = 20 mA)

Machine tuning

Closed orbit corrections Pick-ups Orbit Response Matrix to focusing offsets (4⊗32) SVD analysis steering coil corrections 2-3 iterations + minimizing of ƩIcor correctors setting

Δx; Δz ≃ ± 0.2 mm

Lattice corrections BPMs ORM to steering coils modulations (20⊗36)

SVD analysis focusing corrections (quads +solenoids) 3–4 iterations lattice setting β*; zero dispersion outside achromats;

Coupling compensation 1.5 Tm field of CMD detector + solenoids compensating coils

3 families of skew quads ν1 – ν2 < 0.003

Lattice corrections

after

3 iterations

after

4 iterationsDispersion

βx, βz (cm)

βx, βz (cm)

βx, βz (cm)

Dx (cm)

1 2.15; 4.152

10

Lattice and beam sizes (I± <1mA)

”Week-strong” beam-beam(“dynamic beta and emittance”)

I+=3 mA; I-=48 mA

11

“Strong-strong” beam-beam(“dynamic beta and emittance”)

I+=61.8 mA; I-=53.2 mA

Threshold current vs.tune(“week-strong”)

-eξ N r= =0.14πγε

Luminosity measurements

Bhabha scattering in the SND and СMD detectorsΘscatt ≥ 0.5

Main disadvantage ⇛ low counting rate ≃ 10 Hz at L=1•1031 cm-2s-1n

Basic formulae of the luminosity:

Beam profile measurements at 16 points ⇛with dynamic β-functions and beam emittance, but under assumption: no other lattice distortions besides counter beam. Time of measurement 1 s at any energy.≃

0 NN4f

L

2 2( ) ( )x z

Luminosity measurements

t (sec)

L⁎10-30 (cm-2s-1)

(E = 837 MeV; Run 2011)

Luminosity at run 2011 (CMD data)

120 ( )Ldt pb

16

ramping ⇛

Luminosity vs.ξ

eξN r= 4πγε

Positron beam size vs ξ

eξN r= 4πγε

+

+ -

-

Radiative polarization

0.4 0.6 0.8 1.0

GeV0

0.2

0.4

0.6

0.8

1.0

0.4 0.6 0.8 1.0

GeV0

0.2

0.4

0.6

0.8

1.0

0.4 0.6 0.8 1.0

GeV

ζ ζ ζ310s sB B 210s sB B

+ -

τpτp

1

sec

104

102

10-2

τp

1

sec

104

102

10-2

τp

19

Beam energy calibration

E = 750.67 ± 0.03 MeV10( sec)df Hz

10( sec)df Hz

1( sec)df Hz

d 0

(MeV)Ef = -1 f

440.6484 20

fd (kHz)

BEP upgrade (1GeV)

26.0 кГс

9,5 кА

Conclusion

Round beams give a serious luminosity enhancement.

The beam-beam parameter achieves a value ξ= 0.15 .

VEPP-2000 started up for data taking with 2 detectors.

Precise beam energy calibration is in progress.

To reach the target luminosity, more positrons are needed.

Booster BEP upgrade for beam transfer at 1GeV is being prepared.

Thanks for your attention!

                         

Novosibirsk21.09.2011

top related