resonantelas+c(and(inelas+c((x ray(scaering(( ·...

Post on 31-May-2020

2 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Resonant  Elas+c  and  Inelas+c    X  ray  sca2ering    George  A  Sawatzky    

Physics  department  and  Max  Planck/UBC  center  for  Quantum  Materials      

UBC  

The  main  people  involved  •  Ilya  Elfimov  UBC  •  Maurits  Haverkort  MP/

UBC  •  Robert  Green  CLS/UBC  •  Steve  Johnston  UBC/MP  •  Shadi  Balendeh  UBC  •  Mona  Berciu  UBC  •  Jeroen  van  den  Brink  

(Dresden)  IFW  •  Subhra  sen  Gupta  (Riken)  

•  Vladimir  Hinkov    MP/UBC  •  Sesbas+an  Make  MP/UBC    •  Valen+na  Bisogni    PSI  •  Thorsten  Schmi2  PSI  •  Sara  Catalano    Geneva  •  Marta  Gibert  Geneva  •  Jean-­‐Marc  Triscone  

Geneva  •  Ronny  Sutarto  CLS  •  Feizou  He  CLS  

What  would  we  like  to  Study      

•  The  ordering  of    atoms    •  The  valence  electron  states    of  the    elements  •  The  ordering  of  the  magne+c  moments  (Spins)    •  The  ordering  of  the  quadrupole  moments  of  the  elements  

•  Phase  transi+ons  in  these  orderings  •  Elementary  excita+ons;  phonons,  magnons,  orbitons  

•  The  above  for  the  new  ar+ficial  super  laYces    

O

Cu

La,Sr

a

c

La2-­‐x-­‐yNdySrxCuO4  

The  cuprates  are  charge-­‐transfer  insulators    à  the  doped  holes  go  into  the  O  2p  orbitals  

Vojta,  Advances  is  Physics  (2009)  

,  Nd  

Cuprate  structure  

Cu  here  is  2+  and  has  9  3d  electrons  so  Spin  =1/2  

Ordering in strongly correlated systems Stripes in Nd-LSCO

ΔQC ~ 1 e ΔQO ~ 0

ΔQ < 0.5 e

Charge inhomogeneity in Bi2212

Pan, Nature, 413, 282 (2001); Hoffman, Science, 295, 466 (2002) ΔQ ~ 0.1 e

ΔQ/Qtotal~1/500 Quadrupole  moment  ordering    

Crystal  fields,  mul+plets,  and  Hunds  rule  for  cubic  (octahedral)  point  group  

d5;  Mn2+,  Fe3+      

Free  ion   Cubic  Oh  

t2g  

t2g  

eg  

eg  4J  

(4)J  is  the  energy  to  flip    One  of  spins  around    10DQ=  crystal  field    

S=5/2  No  degeneracy  

d4;  Mn3+,  Cr2+      

t2g  

t2g  

eg  3J  

S=2      two  fold  degenerate    

10DQ  

 

 

 

 

 

 

 

 

 

 

 

 

 

Mizokawa  et  al  PRB  63,  024403  2001  

Charge  ,spin,orbital,laYce  polaron  in  manganites  controling  orbital  ordering  using  interface  pinning.    

Can  we  get  LaNiO3  to  look  like  Cuprates    at  interfaces  (Khaliulin  Phys.  Rev.  Le5.  102,  017205  (2009)    )?  

POLAR  catastrophies  in  ar+ficial    superstructures  The  basic  physics  involved  in  the  new    discoveries  of  Spectacular  proper+es    of  some  oxide  interfaces  

LaAlO3/SrTiO3  Interface  of  two    insulators  =  superconductor    

We  need    to  probe  the    (electronic)Structure  Of  these  buried  interfaces    

Phonons,  Magnons  

Similar  picture    For  d-­‐d  excita+ons  CT  excitons  in  TM  compounds  

We  need    informa+on  on  all  the  Elementary  excita+ons  

Or  a  typical  TM  Oxide  

CT  Excitons      Orbitons    

In  solids  we  have  collec+ve  excita+ons  i.e.Phonons  ,  Magnons  ,  Excitons,-­‐-­‐-­‐    

Q  =  2π/λ  

Combine    x  ray  spectroscopy  with  sca2ering  (both  Elas+c  and  Inelas+c)  

Resonant  x  ray  sca2ering    

Mn  2p  –  3d  transiIons  (L23  edge)    At  about  650  eV      Fe  2p-­‐3d    is  at  about  730eV      ResoluIon  is  about  0.2  eV!!!      Element  selecIve!!!  

Note  the  mul+plet  structure    Due  to  the  2p53d6  coulomb  and    exchange  interac+ons.  This    Structure  depends  on  the  details  Of  the  star+ng  ground  state!!  

States I have a core hole on atom i and a valence electron This depends on the local electronic structure Enhancement by 3-4 orders of magnitude at resonance.

At resonance we have contrast for:

– Elements

– Valence electron density

– Bond orientation; orbital ordering quadrupole moment orientation [linear pol. light]

– Spin density

• 4-­‐circle  diffractometer    (9  in-­‐vacuum  mo+ons)  

• ultra-­‐high  vacuum  (P  =  2  x  10-­‐10  Torr)  

• Photodiode,  channeltron  and  2D  channelplate  detectors  with  variable  slits  and  filters  • cooling  to  18  K  with  closed-­‐cycle  cryostat  

• Full  polariza+on  control  of  incident  light  (EPU)  with  unique  dual  EPU  rapid  switching  of  polariza+on  mode  • 80  –  2500  eV  photon  energy  range  • High  energy  resolu+on  (E/ΔE  >  15000  at  Nitrogen  K  edge)  

• A2ached  chambers  for  in-­‐situ  sample  growth  (MBE)  and  characteriza+on    (XPS,  AFM/STM,  EELS,  scanning  Auger  spectroscopy,  SEM,  UV  photoemission)  

Resonant  sor  x-­‐ray  sca2ering  at  the  Canadian  Light  Source  

University of British Columbia funded  by  Canada  Founda+on  for  Innova+on,    Bri+sh  Columbia  Knowledge  

Development  Fund  and  Western  Economic  Diversifica+on  

David  Hawthorn  (Waterloo)  Feizhou  He  (CLS)  Luc  Venema  (Groningen)  Harold  Davis  (UBC)  Ronny  Sutarto  (UBC)  Hiroki  Wada+  (Tokyo)  Jochen  Geck  (IFW  Dresden)  Kyle  Shen  (Cornell)  Andrew  Achkar  (Waterloo)  George  Sawatzky  

The  Canadian  Light  Source  

h2p://www.lightsource.ca/experimental/reixs.php  

channeltron

support structure

heat shield

photodiode

MCP

sample recepticle

sample heater

closed-cyclecryostat

z stage

x stage

y stage

!

"

#

2# in-vacuum stepper motor

slit wheel

Hawthorn  et  al.  Rev.  Sci.  Instrum.    2011  

Reminder λ E

= 1Å 12000 eV

3d Transition Metal Compounds

L2,3 edge 2p à 3d

500 eV à 900 eV

20 Å à 12 Å

Rare Earth’s (4f compounds)

M4,5 edge 3d à 4f

800 eV à 1800 eV

12 Å à 8 Å

C1s - 280 eV à 40 Å

N1s - 390 eV à 35 Å

O1s - 530 eV à 25 Å

S1s - 3000 eV à 4 Å

Analyzing  RSXS  energy  dependence  

Kramers-­‐Kronig  Transform  • Determine  f ʹ′ (ω) from  f ʹ′ʹ′ (ω)  

relate  x-­‐ray  absorp+on,  σ(ω)  to  sca2ering  form  factor,  f ʹ′ʹ′ (ω)

 Scheme:    We  can  use  the  x-­‐ray  absorp+on  to  determine  the  real  and  imaginary  parts  of  the  

atomic  sca2ering  form  factor  

1.  

2.  

• Fink  et  al.  PRB  (2009).  • Abbamonte  et  al.  Nature  Physics  (2005).  

• Schüβler-­‐Langeheine  et  al.,  PRL  (2005)  • …  

950940930920Incident photon energy (eV)

TEY

(a. u

.)

X-ray absorptionL3

L2

XAS  and  RSXS  Cu  L  edge  XAS  

fCu  Kramers-­‐  Kronig  

-80

-40

0

40

f (ele

ctr

ons/a

tom

)

960940920

Photon energy (eV)

Re{f} Im{f}

LCu 3,2

LNSCO

Doped holes in cuprate

C. T. Chen et al. PRL 66, 104 (1991)

Cu2+  d9  S=1/2  

O  2-­‐  full  shell  

La2-­‐xSrxCuO4    Sr  -­‐-­‐-­‐doped  holes  

Huge  contrast  for  Cu2+  3d9  as  in  CuO    and  Cu1+  3d10  as  in  Cu2O  

YBCO  oxygen  ordering    

2p 3d transition

Experimental Geometry

θ

θ

φ

Cu2+  3d9   Cu1+  3d10  

Huge  contrast  for  Cu2+  3d9  as  in  CuO    and  Cu1+  3d10  as  in  Cu2O  

Zooming-in on different Cu’s: Tuning Polarization

E//ab E//ac

Photon energy (eV)

At L3 edge, 1.3 I(E//ab) / I(E//ac) =

Spin  and  charge  stripes  

Cuprate  phase  diagram  

CDW  in  1/8  doped  Cuprates  from  Resonant  SoZ  x  ray  sca5ering  

La1.8-­‐xEu0.2SrxCuO4  

Cu  L3  

La1.875Ba0.125CuO4  

Fink  et  al,  PRB  (2009)  

model  

model  

meas  

meas  

TFY  

TFY  

meas  

model  

TFY  

Abbamonte  et  al,  Nature  Physics  (2005)  

O  K  O  K  [0.25  0  0.72]  CDW  

YBa2Cu3O6+x        RIXS  G.  Ghiringhelli  et  al  Science  2012    

Note  the  peak  in  the    zero  Loss  line  at    q=0.30  indicaIve  Of  a  super  structure!!  

G.  Ghiringhelli  et  al  Science  2012    

Temperature  dependence  of  the    CDW  instensity  and  correlaIon    length  (width)  indicate  that  CDW  Competes  with  superconducIvity    

A.  J.  Achkar  et  al  PRLin  press   YBCO  ORTHO  3    demonstrates  CDW  is  in  plane  and  should  Not  be  confused  with  the  Chain  ordering  superstructure  At  q=0.33  

An  RXS  study  of  Pr.5Ca.5MnO3  Films  on  LSAT  

Hiroki  Wada+  et  al        

Hiroki  Wada+  et  al    

Note  XAS  has  li5le  Structure  and    is  independent  of  Temp.  IT  IS  ACTUALLY  RATHER  BORING  

Thin  film  50nm  of  PCMO    on  LSAT  

Hiroki  Wada+  et  al    

Although  XAS  shows  li5le  change  at  various  phase  transiIons  The  energy  dependent  superstructure  Bragg  peaks  exhibit  strong  changes  On  going  thoug  the  phase  transiIons  

Theory  of  resonant  elas+c  and  inelas+c  sca2ering    

•   Haverkort;  PRL  105,  167404  (2010)  •  This  extends  the  Hannon  type  work  based  on  spherical  symmetry  for  the  intermediate  state  (impulse  approxima+on)  to  include  lower  symmetry  and  changes  sum  rules.  

•  We  then  need  a  sca2ering  tensor  who’s  elements  can  to  a  large  degree  be  determined  by  a  generalized  X  ray  absorp+on  Greens  func+on  matrix  involving  two  polariza+ons  and  a  strong  dependence  on  the  spin  direc+on  in  magne+cally  ordered  materials  

•  Resonant  elas+c  sca2ering  requires  informa+on  about  the  generalized  X  ray  absorp+on  Greens  func+on  (not  only  the  diagonal  elements)  for  each  atom  in  the  unit  cell    

 

On  trying  to  fit  the  Mn  data  as  well  as  Co,  Ni  in  Nickelates  we  note  that  we  have  a  very  bad  understanding  of  the  spectral  shapes  in  resonant  sca2ering.  

This  is  especially  the  case  in  high  oxida+on  state  systems  i.e.  involving  Mn4+,  Co4+,  Ni3+  etc.  (See  the  talk  on  

Monday  about  whats  special)  Perhaps  the  local  cluster  models  used  are  breaking  down  or  perhaps  the  

holes  are  largely  on  O    

Resonant “x-ray cartography”

X-ray reflectivity maps for the non-destructive determination of the chemical and valence state

depth profiles with atomic resolution

Vlaimir Hinkov and Sebastian Macke main players at the MP/UBC center for Quantum Materials at UBC

Resonant  x  ray  reflectometry  

•  Structure    and  elementary  excita+ons  in  solids  determining  the  proper+es  of  solids  

•  The  special  role  of  resonant  x  ray  sca2ering  •  Examples  of  resonant  elas+c  x  ray  sca2ering    for    charge  ,  spin  and  atomic  structure  

•  Examples  of  resonant  inelas+c  x  ray  sca2ering  for  the  elementary  excita+ons  in  solids  

     

• Non-­‐destrucIve  element  specific  depth  profiling  of  the  electronic  

structure  – Element,  Thickness,  Roughness,    

–   Magne+c-­‐,  Orbital-­‐,  Valence-­‐state  

 

Resonant x-ray reflectivity (RXR)

LaNiO3

LaAlO3

LaNiO3

LaAlO3

•  Each material has an E-dependent, complex dielectric function ε (more general: matrix) •  ε strongly increases at the absorption edge (e.g. 2p → 3d transition) → element specific and sensitive to the valance electrons

•  Refraction and reflection if ε (or equiva-lently the refractive index n) changes at an interface •  Polarisation analysis of the outgoing beam would provide even more information at the expense of intensity

500 600 700 800 900 1000

0.0

0.2

0.4

0.6

0.8

1.0

1.2

abso

rptio

n (T

EY

)

Energy (eV)

Pr  

Ni  O  Ti  

Using RXE, one can measure the complete chemical, valence state, magnetic and orbital profile

Model  

                                                   26/06/2013   41   MPG/UBC  Workshop    

Solving  of  Maxwells-­‐equa+on  for  op+cally  isotropic  material  and  thin  films  leads  to  |𝑅|↑2 ≅ |𝑟↓01 + 𝑟↓12 𝑒↑2𝑖𝑘↓𝑧1 𝑑 +O(𝑟↑3 )|↑2 

with  𝑟↓𝑎𝑏 = 𝑘↓𝑧,𝑎 − 𝑘↓𝑧,𝑏 /𝑘↓𝑧,𝑎 + 𝑘↓𝑧,𝑏  ∙ 𝑒↑−2𝑘↓𝑧,𝑎 𝑘↓𝑧,𝑏 𝜎   Fresnel  coefficient    

(+roughness)  

Wave  vector   𝑘↓𝑧 = 𝑘↓0 √𝑁↑2 − 𝑐𝑜𝑠↑2 𝜃   

Op+cal  constant  defined  as  

𝑁=1−𝛿+𝑖𝛽  

film  

substrate  

0  

1  

2  

d  

θ θ

Energy  dependent  and  Kramers-­‐Kronig  consistent  

𝛿=𝛿(𝐸) 𝛽=𝛽(𝐸)  

Reflec+vity  highly  nonlinear  in  terms  of  N  

In  reality:    dielectric  tensor  𝜀(𝐸),  Transfer  matrix  method  

Element  specific  depth  profiling  

NdGaO3  

LaCoO3  

NdGaO3  

LaCoO3  

LaAlO3  

XAS  

Reflec+vity  fits  of  LCO//NGO  

43  

                                                   26/06

/201

3  

Theta  2  Theta  or  constant  energy  Q  scans.    

Energy  dependence  at  constant  Q    At  the  points  on  the  ler  plot  

Note  the  Fresnel  interferences  on  the  ler  .  At  the  minima  there  is  destruc+ve  interference    From  sca2ering  from  upper  and  lower  interfaces  and  at  the  maxima  this  is  construc+ve  .    This  is  indica+ve  of  changes  in  the  composi+on  and  electronic  structure  as  seen  in  the    Spectroscopy  shown  in  the  right  panel.    

Reflec+vity  of  LAO/LCO//NGO  

44  

                                                   26/06

/201

3  

Density  profiling  of  LCO/NGO   Density  profiling  LAO/LCO/NGO  

                                                   26/06/2013   45  

Note  the  Co2+  at  the  surface  Note  the  Water/CO2  on  surface    

Note  the  absence  of  Co2+  

Example  of  depth  profiling  /burried  layer  

SrTiO3  Substrate  

SrTiO3  Buffer  Layer  

1.  u.c.  La0.005Sr0.995TiO3  

SrTiO3  

Can  we  see  the  single  layer  containing  La  burried  deep  in  the    material  and  determine    where  it  exactly  is?    YES:    For  La  concentraIon  larger  than  about  0.01  

Buried  layers  

SrTiO3  Substrate  

SrTiO3  Buffer  Layer  

1.  u.c.  La0.2Sr0.8TiO3  

SrTiO3  

La  M5  

La  M5  

La  M5  

La  M4  

La  M4  

Sebas+an  Macke  Vladimir  Hinkov  

Sample  from  Stemmer  At  UCSB  

Buried  layers  

La  M5  

La  M5  

La  M5  

La  M4  

La  M4  

48  

                                                   26/06

/201

3  

Addi+onal  examples  of  theore+cal  studies  

(c):  all  kinds  of  electronic  structure  change  (d):  different  profiles  for  different  entries  in  the  tensor.    E.  g.  exchange  bias  

49  

                                                   26/06

/201

3  

Analysis  tool  •  Frequency-­‐domain  Maxwell-­‐equa+on  simulator  with    Full-­‐Matrix  approach  

•  Fit  measurements  •  Graphical  user  interface  

                                                   26/06/2013   50  

remagx.org  

Grou

p  mee+n

g  

SebasIan  Macke  

t2g  

t2g  

eg  

eg  3J  

S=2,    3  fold    degenerate  d6;  Fe2+,  Co3+  

Energy  Loss  is  t2g-­‐eg  spliYng  These  form  d-­‐d  excitons  or  also    called  orbitons    

t2g  

t2g  

eg  

eg  

Resonant  inelas+c  x  ray  sca2ering    

PRL  105,  157006  (2010)    SLS  Ghiringhelli  et  al  RIXS  on  Sr2CuO2Cl2  

d-­‐d  excitons    Due  to  crystal    fields  

Magnon  dispersion  

Resonant  inelas+c  x  ray  sca2ering  

New  Journal  of  Physics  13  (2011)  043026  M  Morel  et  al  

For  the  Cuprates  the  Theory  works  very  well  indeed  as  it  does  for  NiO  i.e.  Ni2+  

Phonon  excita+ons  via  core  to  valence  excited  state  local  bonding    change  resul+ng    In  excited  O-­‐TM  vibra+onal  modes.    INFORMATION  ABOUT  THE  D  ELECTRON  PHONON  COUPLING  

w.a.Lee  et  al  con  mat  301.4267    accepted  in  PRL.     Ca2+5xY2−5xCu5O10  a  1D  chain  cuprate.  

igure 2: Experimental data.

Detailed  Magnon  (or  are  they  magnons?)    dispersion  in  cuprates  Keimers  Group  

Doped holes in cuprate

C. T. Chen et al. PRL 66, 104 (1991) As  we  hole  dope  the  system  the  O1s  to  2p  first  peak  rises  very  strongly  indica+ng  That  the  doped  holes  are  mainly  on  O  2p.    

Kuiper  et  al  PRL  62  221  (1989)    LixNi1-­‐x  O  A  CHARGE  TRANSFER  GAP  SYSTEM  HOLES  IN  O  

Note  the  high  “pre-­‐  Edge  feature  and  the  Spectral  weight    Transfer    from  high    To  low  energy  scales    Just  as  in  the  cuprates  The  holes  are  mainly  on  O  and  not  on  Ni.!!  

LNO  thin  film  on  LSAT        Sutarto,  Wada+,  Stemmer  UCSB  

Note  the  huge  O  1s  -­‐2p  prepeak  just  as  in  the  cuprates  HOLES  ON  O  

Torrance  et  al    PRB  42,  8209    

Recent  RIXS  results  demonstrate  that  the  cluster  interpreta+on  of  the  XAS  used  by  everyone  is  not  valid  for  the  

Nickelate’s    

results  obtained  by      Valen+na  Bisogni    and  Thorsten  Schmi2  from  PSI  

Sara  Catalano,  Marta  Gibert  ,  Raoul  Scherwitzl  Jean-­‐Marc  Triscone,  and  Pavlo  Zubko    From  Geneva  

PSI,  V.  Bisogni  –  T.  Schmi5  

RIXS  spectra  of  NdNiO3  –  15  K  

α=50°  

[110]  

LH  

PSI,  V.  Bisogni  –  T.  Schmi5  

RIXS  map  of  NdNiO3  –  15  K  insulaIng  phase  

Ni 2p XAS energy region : Up to now the peaks A and B were considered to be ,multiplet structure in the final 2p5 3d8 local states

RIXS demonstrates that a local d-d like description is OK for peak A with photon energy independent peak positions in RIXS

Near linear dependence of the “Loss” energy With photon energy show that this is not RIXS but simple x ray flourescence.

So peak A in XAS involves the excited d Electron intimately while peak B must involve an excitation into a delocalized continuum band state in the intermediate state. The continuum starts at most 1 eV above the bound state. This has implications for the ground state and low energy excitations and the properties.

PSI,  V.  Bisogni  –  T.  Schmi5  

RIXS  map  of  NdNiO3  –  300  K  Metallic  Phase    

Here  the  con+nuum  states  merge    With  the  “bound  states  or  resonances”    

Strong  T  dependence  of  the  XAS  

NNO    On  LSAT    300K    metallic  phase  

NNO  on  LAST    15K  Insula+ng  phase  

Conven+onally  RENiO3  would  involve  Ni3+  which  is  expected  to  be  low  spin  

i.e.  S=1/2  with  6  electrons  in  t2g  orbitals  and  1  in  an  eg  orbital  

 STRONG  JT  WHICH  IS  NOT  OBSERVED!  

RIXS  and  XAS  indicate  The  lowest  energy  states  in  Nickelates  before  Ni  d  

–O2p  hybridiza+on  could  well  be  par+ally  filled  O  band  with  the  Ni  in  d8  

S=1  states  

How  to  get  rid  of  JT  ?    

Charge  dispropor+ona+on  into  d6  and  d8  would  solve  this  problem.  But  experiments  show  only  very  low  amplitude  in  the  insula+ng  phase  

High  oxida+on  states  

•  In  general  we  expect  the  charge  transfer  energy  to  strongly  decrease  for  higher  oxida+on  states    

•  This  could  mean  a  different  star+ng  point  i.e.  •   Cu3+                Cu2+L    Ni3+                Ni3+L      Co4+              Co3+L      •   Fe4+                  Fe3+L      Mn4+???        The  charge  degrees  of  freedom  are  on  Oxygen  

Charge  dispropor+ona+on  without  moving  charge  

Consider  ReNiO3    Ni3+  on  average    but  label  it  as  Ni2+L  Then  each  Ni  is  surrounded  by  2  L  holes  in  ReNiO3  (  1  hole  per  3  O)        2Ni3++      

Ni2+      +    Ni4+  

Two  holes  in  O2p  Orbital  in  octahedron  With  central  eg  symmetry  

Ni2+    no  JT  Each  second  Ni2+  has  an  octahedron  of  O  with  two  holes  of  Eg  symmetry  in  bonding  orbital's    I.e.  d8  L2  

No  Jahn  Teller  problem  anymore  

The  nickaltes  i.e.  RENiO3  

Lets  associate  the  two  holes  (with  S=1)    with  one  Ni  which  will  then  be  a  S=0    cluster  Because  of  Jpd.  The  octahedron    will  contract  leaving  the  other  Ni    neighbors  in  a  d8  S=1  state.  This  gives  the    correct  structure  at  low  T  and  in  fact  also    gives  the  correct  spin  structure  .    Effec+ve  dispropor+ona+on  without    moving  charge.    THIS  STATE  SEEMS  TO  BE  NEARLY    DEGNERATE  WITH  A  METALLIC  ITINERANT    O  HOLE  STATE  

The  theory  of  systems  with  nega+ve  charge  transfer  gap  energies    

•  This  is  really  complicated  since  we  now  cannot  use  our  simple  non  metallic  ansatz.  We  then  have  a  problem  of  a  laYce  of  local  spins  in  d  states  with  strong  hybridiza+on  and  exchange  with  the  holes  on  O.    

•  The  case  I  alluded  to  of  LaNiO3  is  perhaps  such  an  example.    

•  Perhaps  viewed  as  a  Kondo  laYce  model  but  with  a  charge  density  wave  instability  driven  by  an  exhaus+on  principle  since  only  ½  of  the  Ni  spins  can  be  compensated  by  O  2p  holes  

top related