resilient(and(accurate( autonomous(vehicle(navigation( via...

Post on 23-Aug-2019

213 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Resilient  and  Accurate  Autonomous  Vehicle  Navigation  

via  Signals  of  Opportunity

Zak  M.  Kassas

Autonomous  Systems  Perception,  Intelligence,  and  Navigation  (ASPIN)  LaboratoryUniversity  of  California,  Riverside

Stanford  University    |    Stanford,  CA    |      November  8,  20171

Future  Autonomous  Vehicles3

Future  Autonomous  Vehicles4

Navigation  with  Signals  of  Opportunity  (SOPs):  COpNav5

Kassas  (2013).  Collaborative  opportunistic  navigation.  IEEE  Aerospace  and  Electronic  Systems  Magazine,  (28)6,  38–41.

SOPs:  Opportunities  and  Challenges6

Opportunities

¤ Abundant

¤ Available  at  varying    geometries  &  frequencies

¤ Free  to  use

¤ Are  significantly  more  powerful  than  GPS

Challenges

¤ States  may  be  unknown  a  priori

¤ Observables  need  to  be  extracted

¤ Clocks  are  not  as  stable  and  not  synchronized

¤ Signal  models  and  error  budgets  are  unavailable

8

The  SOP  signal  landscape  state  space  is  NOT  stationary

SOP  Signal  Landscape

Software-­‐Defined  Radio  for  SOP-­‐Based  Navigation  (MATRIX)

9

Cellular  CDMA  Navigation  SDR  (LabVIEW)10

Experimental  Setup  – Ground  Vehicle11

MATRIX

Khalife,  Shamaei,  &  Kassas  (2016).  A  software-­‐defined  receiver  architecture  for  cellular  CDMA-­‐based  navigation.  IEEE/ION  Position,  Location,  &  Navigation  Symposium  (PLANS), 816–826,  (Best  student  paper).

12

SOP  Mapping

SOP  Mapping13

SOP  =  Fake  Tree!14

Experimental  Demo:  UAV  Navigation  with  Cellular  CDMA

https://www.youtube.com/watch?v=GkfUxie2wnA

15

Cellular  LTE  Navigation  SDR  (LabVIEW)16

Shamaei, Khalife, & Kassas (2016). Performance characterization of positioning in LTE systems. in Proceedingsof ION GNSS Conference (IONGNSS+), 2262-­‐2270, (Best paper presentation).

Cellular  LTE  Navigation  SDR  (LabVIEW)17

Shamaei,  Khalife,  &  Kassas  (2016).  Exploiting  LTE  signals  for  navigation:  Theory  to  implementation,  IEEE  Trans.  on  Wireless  Communications,  submitted.

LTE  Receiver  Structure18

ESPRIT:  estimation  of  signal  parameters  by  rotational  invariance  techniques

Shamaei, Khalife, Bhattacharya, & Kassas (2017). Computationally efficient receiver design for mitigatingmultipath for positioning with LTE signals. in Proceedings of IONGNSS Conference (IONGNSS+), 3751-­‐3760, (Bestpaper presentation).

Experimental  Demo:  Ground  Vehicle  Navigation  with  LTE

https://www.youtube.com/watch?v=fIDgNgrJuZQ

19

SOP-­‐Aided  Inertial  Navigation20

¤ Traditional  tightly-­‐coupled  GNSS-­‐aided  INS

¤ Objectives:1. Estimate  SOPs’  states  when  GNSS  pseudoranges are  

available  (mapping)2. When  GNSS  psuedoranges become  unavailable,  continue  to  

estimate  SOPs’  states  and  use                    to  correct  INS  errors  (SLAM)

SOP-­‐Aided  INS  Framework21

Inertial  Navigation  System

EKF  Prediction

EKF  Update

DetectorIMU PPS

data

GNSSReceiver

SOPReceiver

flag

Tightly-­coupled

Simulator  Overview

¤ Mission  Planning  &  Scripting¤ Accelerate/  Decelerate,  Climb/  Descend,  

Turn,  Loops,  Rolls,  Aerobatics…

¤ Kinematic  Models¤ 6DOF  Aircraft¤ 3DOF  &  6DOF  Automobile

¤ Sensor  Models¤ GPS  L1/L2  (constellation  &  sub-­‐frames)¤ IMU¤ Magnetometer¤ Air  Data:  Pitot  &  Static¤ (and  several  others…)

22

23

SOP-­‐Aided  INS:  Simulated  Environment

SOP

SOP

SOP

SOP

SOP-­‐Aided  INS:  Simulated  Environment24

SOP-­‐Aided  INS:  Simulated  Environment25

Error

EKF  Results:  Vehicle  Position  and  Velocity26

0 50 100 150 200 0 50 100 150 200

Error

SOP-­aided  INS*

Traditional  GPS-­aided  INS

GPS  Cut-­off

*With  consumer          grade  IMU

Morales,  Roysdon,  &  Kassas  (2016).  Signals  of  opportunity  aided  inertial  navigation.  ION  Global  Navigation  Satellite  System  (ION  GNSS+)  Conference, 1492-­‐1501,  (Best paper  presentation).

Navigating  with  Cellular  CDMA  &  LTE27

Kassas,  Morales,  Shamaei,  &  Khalife (2017). LTE  Steers  UAV.  GPS  World  Magazine,  (28)4,  18-­‐25  (Cover  Article).

Experimental  Results28

Kassas,  Morales,  Shamaei,  &  Khalife (2017). LTE  Steers  UAV.  GPS  World  Magazine,  (28)4,  18-­‐25  (Cover  Article).

Collaborative  Navigation29

Centralized  Collaborative  Framework30

¤ Modes  of  operation:1. Collaborative  Mapping2. Collaborative  SLAM  (C-­‐SLAM)

Central   fusion  center

o Single  point  of  failure

o Large  communication  bandwidth

Morales  &  Kassas  (2016).  Collaborative  autonomous  vehicles  with  signals  of  opportunity  aided  inertial  navigation  systems.  ION  International  Technical  Meeting  (ION  ITM),  805-­‐818.

Distributed  Collaborative  Framework31

AV  2

AV  3

AV  4

AV  1 AV  N

Morales  &  Kassas  (2017).  A  Low  communication  rate  distributed  inertial  navigation  architecture  with  cellular  signal  aiding.  IEEE  Vehicular  Technology  Conference  (VTC),  submitted.

) 289 elements

This  is  only  32  elements!

Replace:

32

Monte  Carlo  Analysis

Morales  &  Kassas  (2017).  Distributed  signals  of  opportunity  aided  inertial  navigation  with  intermittent  communication.  ION  Global  Navigation  Satellite  System  (ION  GNSS+)  Conference,2519-­‐2530.  (Best  paper  presentation).

Approximation  robustnessPerformance  robustness

Experimental  Demo:  Distributed  UAV  Navigation  with  SOP-­‐Aided  Inertial

https://www.youtube.com/watch?v=gljRk2OgspM

33

Precise  Carrier  Phase  Navigation34

Experimental  Demo:  UAV  Navigation  with  Carrier  Phase  Cellular  Signals

https://www.youtube.com/watch?v=WSqDUoLkTWo

35

Acknowledgment36

top related