prof. fred remer university of north dakota phase changes and latent heat where’s the heat? solid...

Post on 12-Jan-2016

219 Views

Category:

Documents

3 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Prof. Fred RemerUniversity of North Dakota

Phase ChangesPhase Changesand Latent Heatand Latent Heat

Where’s the heat?Where’s the heat?

SolidSolidLiquidLiquid

GasGas

Prof. Fred RemerUniversity of North Dakota

ReadingReading Hess

– Phase Diagram pp 49 – 51

– Dew Point, Wet Bulb Temperature and Wet Bulb Potential Temperature

pp 60 – 63

Bohren & Albrecht– pp 218-223

Wallace & Hobbs– p. 84

Prof. Fred RemerUniversity of North Dakota

ObjectivesObjectives

Be able to describe the changes in temperature, equilibrium pressure, volume and heat during various phase changes

Prof. Fred RemerUniversity of North Dakota

ObjectivesObjectives

Be able to recall from memory the definition of critical point

Be able to recall from memory the definition of triple point

Prof. Fred RemerUniversity of North Dakota

ObjectivesObjectives

Be able recall from memory the values of temperature and pressure for the triple point of water

Be able to recall from memory the values of temperature and pressure at the critical point of water

Prof. Fred RemerUniversity of North Dakota

ObjectivesObjectives

Be able to show isobaric, isochoric and isothermal changes on phase diagrams

Be able to determine changes of boiling and melting temperatures with changes in atmospheric pressure

Prof. Fred RemerUniversity of North Dakota

ObjectivesObjectives

Be able to recall from memory the definition of latent heat

Be able to determine whether latent heat is released or absorbed during a phase change

Be able to provide the name given to each type of phase change

Prof. Fred RemerUniversity of North Dakota

ObjectivesObjectives

Be able to describe how enthalpy and latent heat are related

Be able to perform calculations to determine the amount of latent heat released during a phase change

Be able to perform calculations to determine the change in latent heat with temperature

Prof. Fred RemerUniversity of North Dakota

ObjectiveObjective

Be able to recall from memory the definition of wet bulb temperature

Be able to compare the differences between wet bulb temperature and dew point temperature

Prof. Fred RemerUniversity of North Dakota

SolidSolidLiquidLiquidGasGas

Phase ChangesPhase Changes

Phase change results in a transformation of the molecular structure

Prof. Fred RemerUniversity of North Dakota

TT

Phase ChangePhase Change

Temperature of substance does not change during transformation

Prof. Fred RemerUniversity of North Dakota

Phase ChangePhase Change

Equilibrium (or saturation) pressure does not change during phase change

Prof. Fred RemerUniversity of North Dakota

Phase ChangePhase Change

Can Occur at Various Temperatures and Equilibrium Pressures

VaporVapor

WaterWater

Water &Water &VaporVapor

Volume (V)Volume (V)

Pre

ssu

re (

e)P

ress

ure

(e)

Ice & VaporIce & Vapor TT11

IceIce

TT22

TT33

TT44

TT55

Prof. Fred RemerUniversity of North Dakota

Phase ChangePhase Change

Volume changes significantly during phase change

CondensationCondensation

Prof. Fred RemerUniversity of North Dakota

Phase ChangePhase Change

Entropy also changes

SolidSolid LiquidLiquid GasGas

Increasing EntropyIncreasing Entropy

Prof. Fred RemerUniversity of North Dakota

Phase ChangePhase Change

– Vapor to Ice– Water to Ice– Triple Line

The thermodynamic state at which three phases of a substance exist in equilibrium.

VaporVapor

WaterWater

Water Water &&

VaporVapor

Volume (V)Volume (V)

Pre

ssu

re (

e)P

ress

ure

(e)

Ice & VaporIce & Vapor00ooCC

TT

IceIce

Ice & WaterIce & Water

Phase Change (P-V Diagram)

Triple LineTriple Line

Prof. Fred RemerUniversity of North Dakota

Phase ChangePhase Change

– Triple Line T = 273.16K es = 6.107 mb

VaporVapor

WaterWater

Water Water &&

VaporVapor

Volume (V)Volume (V)

Pre

ssu

re (

e)P

ress

ure

(e)

Ice & VaporIce & Vapor00ooCC

TT

IceIce

Ice & WaterIce & Water

Phase Change (P-V Diagram)

Triple LineTriple Line

Prof. Fred RemerUniversity of North Dakota

Phase ChangePhase Change

– Vapor to Water Critical Point (Pc)

– The thermodynamic state in which liquid and gas phases of a substance coexist in equilibrium at the highest possible temperature.

Phase Change (P-V Diagram)

VaporVapor

WaterWater

Water Water &&

VaporVapor

Volume (V)Volume (V)

Pre

ssu

re (

e)P

ress

ure

(e)

Ice & VaporIce & Vapor00ooCC

TT

IceIce

Ice & WaterIce & WaterCritical Critical PointPoint

Prof. Fred RemerUniversity of North Dakota

Phase ChangePhase Change

– Vapor to Water Critical Point (Pc)

– No liquid phase can exist at temperatures higher than the critical temperature

– Tc = 647 K

– Pc = 222,000 mb

Phase Change (P-V Diagram)

VaporVapor

WaterWater

Water Water &&

VaporVapor

Volume (V)Volume (V)

Pre

ssu

re (

e)P

ress

ure

(e)

Ice & VaporIce & Vapor00ooCC

TT

IceIce

Ice & WaterIce & WaterCritical Critical PointPoint

Prof. Fred RemerUniversity of North Dakota

Phase ChangePhase Change

Phase Change (P-T Diagram)

TemperatureTemperature

Pre

ssu

reP

ress

ure

LiquidLiquid

eessww

GasGaseessii

SolidSolid

Prof. Fred RemerUniversity of North Dakota

Phase ChangePhase Change

Isothermal Compression

TemperatureTemperature

Pre

ssu

reP

ress

ure

LiquidLiquid

eessww

GasGaseessii

SolidSolid

Prof. Fred RemerUniversity of North Dakota

Phase ChangePhase Change

Isobaric Cooling

TemperatureTemperature

Pre

ssu

reP

ress

ure

LiquidLiquid

eessww

GasGas

eessii

SolidSolid

Prof. Fred RemerUniversity of North Dakota

Phase ChangePhase Change

Changes in Atmospheric Pressure

TemperatureTemperature

Pre

ssu

reP

ress

ure LiquidLiquid

GasGas

SolidSolid

-.-.007007ooC C atmatm-1-1

– Change in Freezing Point

Prof. Fred RemerUniversity of North Dakota

Phase ChangePhase Change

Changes in Atmospheric Pressure

TemperatureTemperature

Pre

ssu

reP

ress

ure

LiquidLiquid

GasGas

SolidSolid

– Change in Boiling Point

Prof. Fred RemerUniversity of North Dakota

Phase ChangePhase Change

Critical Point

TemperatureTemperature

Pre

ssu

reP

ress

ure

LiquidLiquid

Critical Critical PointPoint

GasGaseessii

SolidSolid

Prof. Fred RemerUniversity of North Dakota

Phase ChangePhase Change

Triple Point

TemperatureTemperature

Pre

ssu

reP

ress

ure

LiquidLiquid

Critical Critical PointPoint

GasGas

0.010.01ooCC

eessii

6.11 mb6.11 mb Triple Triple PointPoint

SolidSolid

Prof. Fred RemerUniversity of North Dakota

Three Dimensional Phase Three Dimensional Phase DiagramDiagram

Ice & waterIce & water

WaterWater&&

VaporVapor

Vapor

Vapor

WaterWater

Ice & WaterIce & Water

(hidden)(hidden)

Triple StateTriple StateIc

e

Temperature

TemperatureSpecific VolumeSpecific Volume

Vap

or P

ress

ure

Vap

or P

ress

ure

Critical PointCritical Point

Prof. Fred RemerUniversity of North Dakota

Three Dimensional Phase Three Dimensional Phase DiagramDiagram

Prof. Fred RemerUniversity of North Dakota

Phase ChangePhase Change

Liquid Water Molecule– Hydrogen Bonds– Shearing Energy too great

Prof. Fred RemerUniversity of North Dakota

Phase ChangePhase Change

Ice– Volume Increases

Prof. Fred RemerUniversity of North Dakota

SolidSolidLiquidLiquid

GasGas

Phase ChangePhase Change

Heat is absorbed or released during the phase changes

Prof. Fred RemerUniversity of North Dakota

SolidSolidLiquidLiquid

GasGas

MeltingMelting

SublimationSublimationEvaporationEvaporation

Phase ChangePhase Change

Heat Absorbed

Prof. Fred RemerUniversity of North Dakota

Phase ChangePhase Change

Heat Released

SolidSolidLiquidLiquid

GasGas

FreezingFreezing

DepositionDepositionCondensationCondensation

Prof. Fred RemerUniversity of North Dakota

Phase ChangePhase Change

Latent Heat– The heat required to change the

molecular configuration of a substance

SolidSolidLiquidLiquidGasGas

Prof. Fred RemerUniversity of North Dakota

Phase ChangePhase Change

Latent Heat

SolidSolidLiquidLiquid

GasGas

FusionFusion(l(lff))

SublimationSublimation(l(lss))

Vaporization Vaporization (l(lvv))

Prof. Fred RemerUniversity of North Dakota

Phase ChangePhase Change

Latent Heat– Increase in internal energy results from

the change in molecular configuration

SolidSolidLiquidLiquidGasGas

Prof. Fred RemerUniversity of North Dakota

Latent HeatLatent Heat

First Law of Thermodynamics– Internal Energy changes– Temperature is constant!– Pressure is constant– Volume changes

Work is done

pddudq

Prof. Fred RemerUniversity of North Dakota

Latent HeatLatent Heat

Rearrange

pddudq

pddqdu

vv = specific volume of vapor = specific volume of vapor

ww = specific volume of liquid = specific volume of liquid

)(ppd wv

For a phase change from liquid to vapor

Prof. Fred RemerUniversity of North Dakota

pddqdu

uuvv = internal energy of vapor = internal energy of vapor

uuww = internal energy of liquid = internal energy of liquid

)(ppd wv

Define the change in Internal Energy

Latent HeatLatent Heat

Substitute

Into )(pdqdu wv

)(pdquu wvwv

Prof. Fred RemerUniversity of North Dakota

)(pdquu wvwv

Latent HeatLatent Heat

Latent Heat (lv) = Change in Heat (dq)

)(pluu wvvwv

Rearrange

)pu()pu(l wwvvv

Prof. Fred RemerUniversity of North Dakota

Latent HeatLatent Heat

Enthalpy is defined as

Substitute

)pu()pu(l wwvvv

puh

wvv hhl dhlv oror

Latent Heat is a change in Enthalpy!

Prof. Fred RemerUniversity of North Dakota

Latent HeatLatent Heat

Latent Heat of Transformation (l)– ratio of the heat absorbed (Q) to the

mass undergoing a phase change

m

dQdhl

dqdhl

Prof. Fred RemerUniversity of North Dakota

Latent HeatLatent Heat

The amount of heat absorbed (or released) during a phase change is

lmdQ

m

dQl

Prof. Fred RemerUniversity of North Dakota

Latent HeatLatent Heat

Representative Values at 0oC

– Latent Heat of Fusion (lf) 3.34x105 J kg-1

– Latent Heat of Vaporization (lv)

2.500x106 J kg-1

Prof. Fred RemerUniversity of North Dakota

Latent HeatLatent Heat

Latent Heat of Sublimation (ls) at 0oC

ls = lf + lv

ls = 2.834x106 J kg-1

TemperatureTemperature

Pre

ssu

reP

ress

ure LiquidLiquid eessww

GasGas

0.010.01ooCC

eessii

SolidSolid

6.11 mb6.11 mb Triple Triple PointPoint

Prof. Fred RemerUniversity of North Dakota

Latent HeatLatent Heat

Varies with temperature

VaporVapor

WaterWater

Volume (V)Volume (V)

Pre

ssu

re (

e)P

ress

ure

(e)

00ooCCTT

IceIce

dQdQ

dQdQ

dQdQ

dQdQ

Prof. Fred RemerUniversity of North Dakota

Variation of Latent HeatVariation of Latent Heat

Let’s examine the latent heat of vaporization

dqm

dQlv

It’s easier to show the variation using entropy, but we’ll follow Hess

Prof. Fred RemerUniversity of North Dakota

Variation of Latent HeatVariation of Latent Heat

First Law of Thermodynamics

pddudq

dqm

dQlv

Substitute

pddulv

Prof. Fred RemerUniversity of North Dakota

Variation of Latent HeatVariation of Latent Heat

Expand

And since w << v

pddulv

)(e)uu(l wvswvv

vswvv e)uu(l

Prof. Fred RemerUniversity of North Dakota

Variation of Latent HeatVariation of Latent Heat

The Ideal Gas Law (or Equation of State)

Substitute

vswvv e)uu(l

vvs TRe

vwvv TR)uu(l

Prof. Fred RemerUniversity of North Dakota

Variation of Latent HeatVariation of Latent Heat

Differentiate with respect to temperature

vwvv TR)uu(l

vwvv R

dT

du

dT

du

dT

dl

Prof. Fred RemerUniversity of North Dakota

Variation of Latent HeatVariation of Latent Heat

Remember from your early childhood

vwvv R

dT

du

dT

du

dT

dl

v

vv dT

duc

v

ccvvvv = specific heat of vapor at a constant volume = specific heat of vapor at a constant volume

Prof. Fred RemerUniversity of North Dakota

Variation of Latent HeatVariation of Latent Heat

The internal energy of water is a little more tricky!

vw

vvv R

dT

duc

dT

dl

?dT

duW

Prof. Fred RemerUniversity of North Dakota

Variation of Latent HeatVariation of Latent Heat

Back to the First Law

pddudq

Differentiate with respect to temperature for water (remembering es is constant)

dT

de

dT

du

dT

dq ws

w

Prof. Fred RemerUniversity of North Dakota

Variation of Latent HeatVariation of Latent Heat

But the change in specific volume of water with temperature is very small

dT

de

dT

du

dT

dq ws

w

dT

du

dT

dqc ww

dT

de

dT

du

dT

dq ws

w

ccww = specific heat of liquid water = specific heat of liquid water

Prof. Fred RemerUniversity of North Dakota

vw

vv R

dT

duc

dT

dlv

dT

duc ww

Variation of Latent HeatVariation of Latent Heat

Substitute into

vwvv Rcc

dT

dlv

Prof. Fred RemerUniversity of North Dakota

Variation of Latent HeatVariation of Latent Heat

Another repressed memory ...

vwvv Rcc

dT

dlv

vvp Rccvv

wpv cc

dT

dlv

Prof. Fred RemerUniversity of North Dakota

wpv cc

dT

dlv

Variation of Latent HeatVariation of Latent Heat

Change in the Latent Heat of Vaporization with Temperature – Difference between

Specific Heat of Vapor (at constant pressure) Specific Heat of Liquid Water

Prof. Fred RemerUniversity of North Dakota

Latent HeatLatent Heat

Evaluate wpv cc

dT

dlv

ccpvpv = specific heat of vapor = 1952 J K = specific heat of vapor = 1952 J K-1-1 kg kg-1-1

ccww = specific heat of liquid water = 4218 J K = specific heat of liquid water = 4218 J K-1-1 kg kg-1-1

1111v kgJK4218kgJK1870dT

dl

11v kgJK2348dT

dl

Prof. Fred RemerUniversity of North Dakota

Latent HeatLatent Heat

Is this a factor to be considered?

llvv = latent heat of vaporization @ 273.16K = 2.5 x 10 = latent heat of vaporization @ 273.16K = 2.5 x 1066 J kg J kg-1-1

11v kgJK2348dT

dl

116

11

v

v

K%09.Jkg1050.2

kgJK2348

ldTdl

Prof. Fred RemerUniversity of North Dakota

Latent HeatLatent Heat

A small factor

1v K%09.dT

dl

Prof. Fred RemerUniversity of North Dakota

SummarySummary

Specific Heat – The amount of heat required to raise the

temperature of a unit mass of a substance by one degree

dT

dqc

Prof. Fred RemerUniversity of North Dakota

SummarySummary

Specific Heat– Dry Air

Constant Volumecv = 717 J K-1 kg-1

Constant Pressurecp = 1004 J K-1 kg-1

Prof. Fred RemerUniversity of North Dakota

SummarySummary

Specific Heat– Water Vapor

Constant Volume– cvv

= 1463 J K-1 kg-1

Constant Pressure– cpv

= 1870 J K-1 kg-1

Prof. Fred RemerUniversity of North Dakota

SummarySummary

Specific Heat– Liquid Water (0oC)

cw = 4218 J K-1 kg-1

cw = 1 cal g-1 K-1

– Ice (0oC) ci = 2106 J K-1 kg-1

Prof. Fred RemerUniversity of North Dakota

SummarySummary

Latent Heat– The heat required to change the

molecular configuration of a substance

SolidSolidLiquidLiquidGasGas

Prof. Fred RemerUniversity of North Dakota

SummarySummary

Latent Heat– The change in enthalpy between states

dhl

Prof. Fred RemerUniversity of North Dakota

SummarySummary

Latent Heat– The amount of heat absorbed (or

released) during a phase change

SolidSolidLiquidLiquid

GasGas

FusionFusion(l(lff))

SublimationSublimation(l(lss))

Vaporization Vaporization (l(lvv))

Prof. Fred RemerUniversity of North Dakota

SummarySummary

Latent Heat– The ratio of the heat absorbed (Q) to the

mass undergoing a phase change

dqm

dQl

dqm

dQl

Prof. Fred RemerUniversity of North Dakota

SummarySummary

Latent Heat– Vaporization

lv = 2.50 x 106 J kg-1

– Fusion lf = 3.34 x 105 J kg-1

– Sublimation ls = 2.834 x 106 J kg-1

Prof. Fred RemerUniversity of North Dakota

Moisture VariablesMoisture Variables

Wet-Bulb Temperature (Tw)

– The temperature to which air is cooled by evaporating water into it at constant pressure until the air is saturated

TTww

Prof. Fred RemerUniversity of North Dakota

Moisture VariablesMoisture Variables

Wet Bulb Temperature (Tw)

– Two methods to compute Thermodynamic (or Isobaric) Method Adiabatic Method

vp mldTc

Prof. Fred RemerUniversity of North Dakota

Themodynamic Wet Bulb Themodynamic Wet Bulb TemperatureTemperature

Different than Dew Point Temperature

TTww

TTdd

Prof. Fred RemerUniversity of North Dakota

Moisture VariablesMoisture Variables

Dew Point (Td)

– Temperature to which air must be cooled at constant pressure in order for it to become saturated with respect to liquid water

TTdd

Prof. Fred RemerUniversity of North Dakota

Dew Point TemperatureDew Point Temperature

TemperatureTemperature

Pre

ssu

reP

ress

ure

eess

TTatmosphereatmosphere

eesaturationsaturation

RH = 100%RH = 100%

TTdd

IsobaricIsobaricCoolingCooling

Prof. Fred RemerUniversity of North Dakota

Thermodynamic Wet Bulb Thermodynamic Wet Bulb TemperatureTemperature

TemperatureTemperature

Pre

ssu

reP

ress

ure

eess

TTatmosphereatmosphere

ee

RH = 100%RH = 100%

TTdd

EvaporationEvaporation

TTww

Prof. Fred RemerUniversity of North Dakota

Thermodynamic Wet Bulb Thermodynamic Wet Bulb TemperatureTemperature

Moisture is added to the atmosphere by evaporation

Heat for evaporation comes from air and water

TTww

Prof. Fred RemerUniversity of North Dakota

Thermodynamic Wet Bulb Thermodynamic Wet Bulb TemperatureTemperature

Heat Balance

VaporizeWaterAir dQdQ

Heat lost by Heat lost by airair

Heat required to Heat required to vaporize watervaporize water==

TTww

dQdQ

dQdQccp p = specific heat of air = specific heat of air

ccw w = specific heat of water = specific heat of water

mmvv = mass of water that evaporates = mass of water that evaporates

llv v = latent heat of vaporization = latent heat of vaporization

vvwp dmldT)cc(

Prof. Fred RemerUniversity of North Dakota

Thermodynamic Wet Bulb Thermodynamic Wet Bulb TemperatureTemperature

TTww

ccppdd = specific heat of dry air= specific heat of dry air

ccppvv = specific heat of water vapor= specific heat of water vapor

ccw w = specific heat of liquid water = specific heat of liquid water

mmdd = mass of dry air = mass of dry air

mmv v = mass of water vapor = mass of water vapor

vvwwvpvdpd dmldT)cmcmcm(

vvwp dmldT)cc(

Prof. Fred RemerUniversity of North Dakota

Thermodynamic Wet Bulb Thermodynamic Wet Bulb TemperatureTemperature

TTww

TT

TTww

wwTTw w = wet bulb temperature= wet bulb temperature

TTaa = temperature of the air = temperature of the air

)TT)(cmcmcm( wairwwvpvdpd

)mm(l unsatvsatvv

vvwwvpvdpd dmldT)cmcmcm(

Prof. Fred RemerUniversity of North Dakota

Thermodynamic Wet Bulb Thermodynamic Wet Bulb TemperatureTemperature

TTww

TT

TTww

wwmmvvsatsat

= mass of water vapor of saturated air = mass of water vapor of saturated air

mmvunvunsatsat = mass of water vapor of unsaturated air = mass of water vapor of unsaturated air

mmvunvunsatsat-- mmvunvunsat sat

= amount of water vapor = amount of water vapor

evaporated into airevaporated into air

)TT)(cmcmcm( wairwwvpvdpd

)mm(l unsatvsatvv

vvwwvpvdpd dmldT)cmcmcm(

Prof. Fred RemerUniversity of North Dakota

Thermodynamic Wet Bulb Thermodynamic Wet Bulb TemperatureTemperature

Divide both sides by md

TTww

TT

TTww

ww

wwsatsat

= mixing ratio of saturated air = mixing ratio of saturated air

wwunsatunsat

= mixing ratio of unsaturated air = mixing ratio of unsaturated air

)TT)(cmmwcc( wairwdwvpdp

)ww(l unsatsatv

)TT)(cmcmcm( wairwwvpvdpd

)mm(l unsatvsatvv

Prof. Fred RemerUniversity of North Dakota

Thermodynamic Wet Bulb Thermodynamic Wet Bulb TemperatureTemperature

As md increases, wcpv

and mw/md decreases

– Can be neglected

TTww

TT

TTww

ww

)ww(l)TT(c unsatsatvwairdp

)TT)(cmmwcc( wairwdwvpdp

)ww(l unsatsatv

Prof. Fred RemerUniversity of North Dakota

Thermodynamic Wet Bulb Thermodynamic Wet Bulb TemperatureTemperature

Substitute for mixing ratioTTww

TT

TTww

ww

)ww(l)TT(c unsatsatvwairdp

p

e

ep

ew

)ee(p

l)TT(c sat

vwairdp

Prof. Fred RemerUniversity of North Dakota

Thermodynamic Wet Bulb Thermodynamic Wet Bulb TemperatureTemperature

Solve for e

TTww

TT

TTww

ww

)ee(p

l)TT(c sat

vwairdp

)TT(l

pcee wair

v

dpsat

Prof. Fred RemerUniversity of North Dakota

Thermodynamic Wet Bulb Thermodynamic Wet Bulb TemperatureTemperature

Psychrometric Equation

TTww

TT

TTww

ww

)TT(l

pcee wair

v

dpsat

vdp

l

pc Psychrometric Constant

Prof. Fred RemerUniversity of North Dakota

TTww

TT

TTww

ww

w’w’

Thermodynamic Wet Bulb Thermodynamic Wet Bulb TemperatureTemperature

Other Factors– Ventilation– Radiation– Instrumentation

Prof. Fred RemerUniversity of North Dakota

TTww

T,wT,wss

TTww

ww

w’w’

Thermodynamic Wet Bulb Thermodynamic Wet Bulb TemperatureTemperature

Measure T & Tw

esat is a Function of Tw via Claussius-Clapeyron

e is a Function of T via Claussius-Clapeyron

)TT(l

pcee wair

v

dpsat

Prof. Fred RemerUniversity of North Dakota

Thermodynamic Wet Bulb Thermodynamic Wet Bulb TemperatureTemperature

Must Be Solved Iteratively or…..

)TT(l

pcee wair

v

dpsat

Prof. Fred RemerUniversity of North Dakota

Thermodynamic Wet Bulb Thermodynamic Wet Bulb TemperatureTemperature

Psychrometric Charts– Equation Solved for Various Temperatures

Relative Humidity %

Dry Bulb oF

Prof. Fred RemerUniversity of North Dakota

Thermodynamic Wet Bulb Thermodynamic Wet Bulb TemperatureTemperature

Psychrometric Tables

Prof. Fred RemerUniversity of North Dakota

Adiabatic Wet Bulb Adiabatic Wet Bulb TemperatureTemperature

The temperature an air parcel would have if cooled to saturation and then compressed adiabatically to the original pressure in a moist adiabatic process

Prof. Fred RemerUniversity of North Dakota

Adiabatic Wet Bulb Adiabatic Wet Bulb TemperatureTemperature

TTTTdd TTww

Prof. Fred RemerUniversity of North Dakota

Wet Bulb Potential Wet Bulb Potential Temperature (Temperature (w w ))

The wet bulb temperature the air would have if it were expanded or compressed adiabatically from its existing pressure and wet bulb temperature to a standard pressure of 1000 mb.

286.

ww P

1000T

Prof. Fred RemerUniversity of North Dakota

top related