probabilistic geoacoustic inversion...probabilistic geoacoustic inversion saclant undersea research...

Post on 03-Sep-2020

1 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

ProbabilisticProbabilistic Geoacoustic Geoacoustic InversionInversion

SACLANT Undersea Research Centre, La Spezia, Italy&

University of Victoria, Victoria B.C. Canada

145th ASA, Nashville TN, April 28 – May 2 2003

Stan DossoStan Dosso

Introduction

l Determining geoacoustic model parameters (wave speeds, attenuations, density, porosity etc) from acoustic data (full-field, reflectivity, ambient noise etc)is a nonlinear inverse problem ? non-unique

l Complete solution:Ø Treat data according to their uncertaintiesØ Include existing (prior) knowledgeØ Provide parameter estimates, uncertainties,

inter-relationships

l Probabilistic Inversion (Tarantola et al ) provides rigorous & general approach

Outline

l Probabilistic Inversion:Ø Define Likelihood, Prior, Posterior Probability Density (PPD)Ø Parameter estimates: optimizing PPDØ Parameter uncertainties / relations: integrating PPD

? Importance Sampling? Markov Chain Monte Carlo (Gibbs Sampler)

l Examples:Ø IT2001 Benchmark geoacoustic inversionØ Matched-field inversion Ø Reflectivity inversion Ø Source localization with environmental uncertainty

Probabilistic Inversion

l Combine data & priorinformation to definePosterior Probability Density (PPD)

l PPD quantifies modelprobability over M-Dparameter space

Data

Prior

PPD

PPD

l PPD quantifies knowledge of model parameters due to resolving power of data and prior information ? not a function of the inversion algorithm

l Global minimum-misfit model is a property of PPD but global min does not generally correspond to “true” model and is not the primary goal

truetrue

Example: Local/Global Optima

l 2-D marginal probability distributions for inversion of noisy synthetic reflectivity data

l True solution (cross) not in global optimum, not at local optimum

l Note strong inter-parameter correlations

PPD: Bayes Theorem

l Bayes Theorem:

l Likelihood: data uncertainty distribution, interpreted as function of m (for measured d). Typically

l Prior: existing knowledge of m

)]d,m(exp[)m|d( EP −∝

)m()m|d()d()d|m( PPPP =

PPD PriorLikelihood

Data misfit

PPD Definition

l Bayes Theorem:

l PPD:

)m()]d,m(exp[)d|m( PEP −∝

'm)]d,'m([exp

)]d,m(exp[)d|m(d

φ

−=

∫M

)m(log)d,m()d,m( e PE −=φgeneralized misfit

? Interpret M-dimensional distribution?

Parameter Estimates

l M-D PPD interpreted in terms of properties defining parameter estimates & uncertainties

l Parameter estimates:Ø Maximum A Posteriori (MAP) model

Ø Posterior mean model

}{ )d|m(m PmaxMAP Arg=

'm)d|'m('mm dP∫=><

MAP and Mean

l For uni-modal, symmetric distributions MAP & Mean coincide

l Choice problem-dependent:Ø MAP is most probableØ Mean has smallest variance

l Understanding uncertainty distribution preferable to simply estimating parameters

MAPMean

MeanMAP

Mean

MAP

PPD Optimization

l MAP estimate requires maximizing PPD (minimizing misfit )

l Nonlinear problems can have many local minima and preclude gradient-based minimization

l Global Search methods:Ø Genetic Algorithms (Gerstoft)

Ø Simulated Annealing (Collins; Dosso & Chapman; Knobles)

Ø Hybrid Inversion (Gerstoft; Fallat & Dosso; Musil & Chapman )

Etc…

)m(φ

Parameter Uncertainties

l Marginal Probability Distribution:

Ø Reduces the M-D PPD to M 1-D parameter probability distributions by integrating out M –1 parameters

Ø Joint (2-D) marginals defined similarly

m')d|m'()'()d|( dPmmmP iii −= ∫ δ

Marginal Distributions

l Marginal DistributionsIntegrates M–1 parameters ? rigorous, quantitative

uncertainty distribution

l Misfit “Slice” (sensitivity)Holds M–1 parameters fixed ? approx qualitative uncertainty

potentially misleading

1-D Marginals 1-D Slices)( 1mφ

F(m

2 )

Credibility Intervals

l ß % Credibility Interval: interval containing ß % of the area of the marginal distribution

l Highest Probability Density (HPD) credibility interval:interval of minimum width containing ß % of area

ß %

Covariance / Correlation

l Covariance Matrix:

Ø Diagonal terms ? Parameter Variances (stnd dev)2

Ø Off-diag terms ? Inter-parameter Covariances

l Correlation Matrix: Normalize to quantify parameter inter-relationships

m')d|m'()ˆ'()ˆ'( dPmmmm jjiiij −−= ∫C

–1 < Rij< +1 correlationbetween mi & mj

jjiiijij CCCR /=

PPD Integration

l Marginals, covariance, etc require integrating PPD

l For nonlinear problems, numerical integration isrequired using Importance Sampling and Markov Chain Monte Carlo methods

'm)d|'m()'m( dPfI ∫=

Importance Sampling

l Monte Carlo method based on preferentially sampling regions of parameter space where integrand is large

Consider drawing Q models mi from g(m)

)m()d|m()m(1

'm)'m()'m(

)d|'m()'m(

1 i

ii

gPf

Q

dgg

PfI

Q

i∑

=≈

= ∫

? How to choose g(m)?

Gibbs Sampler (GS)

l Metropolis GS samples from Gibbs distribution

by accepting perturbations to m if uniform r.v. ? on [0,1]

m']/)m'([exp]/)m(exp[

)m(dT

TPG

φφ

−−

=∫

]/exp[ Tφξ ∆−<

? Simulated Annealing applies GS as T? 0 to min

? PPD P(m|d) is a Gibbs distribution sampled at T=1

φ

GS in Importance Sampling

l GS at T =1 in Importance Sampling: g(m) = P(m|d)

l Speed-up: adaptive perturbations, re-parameterization

l Convergence: monitor several independent samples

(Integration ~ 5–10 X slower than fast optimization)

)m(1

)m(

)d|m()m(111

ifQg

Pf

QI

Q

ii

iiQ

i∑=

=≈ ∑=

? efficient, unbiased PPD integration

Parameter Rotation

l Searching along parameter axes inefficient for correlated parameters ? rotate to principle axes parameter space by diagonalizing covariance (Collins & Fishman; Perkins; Neilsen & Knobles etc)

m2

m1

m2 m1

‘‘

Likelihood Function

l Likelihood function P(d|m) expresses data uncertainty (error, noise) distribution

l Uncertainties include measurement & theory errors ? often not well known

l Proceed with reasonable assumptions, e.g. Gaussian distribution with unknown stnd dev sØ ML estimate for s (Gerstoft & Mecklenbräuker)Ø Include s as unknown in inversion (Michalopoulou)

? Check assumptions after inversion!

Matched-Field Inversion

l Matched-field methods typically match spatial acoustic fields using incomplete source spectral information

l Consider acoustic field data on N-sensor array at F freqsFor uncorrelated complex Gaussian errors:

? Can’t compute df (m) – df for unknown spectrum

][ 222

1

/|d)m(d|exp)m|d( ffff

F

f

NP σσπ −−= −

=

− ∏

Incoherent Processing

l For unknown source spectrum

l Maximizing P(d|m) over Af & ?f

FfA f

i

fff ,...,1)m(de)m(d =→

θ

2

2|d|)d,m(1)m( ][

1 f

ffBE

F

f σ−∑

== Bf = normalized

Bartlett match

? Incoherent sum of Bartlett mismatch weighted by SNR? Coherent likelihood processors etc obtained similarly

Prior Distribution

l Expresses existing knowledge of m (subjective)

Ø Lower / upper bounds:

Ø M-dimensional Gaussian:

∞−

≤≤=

+−

otherwise

if0)m(P loge

iii mmm

2/]m̂m[]m̂m[)m(P log 1e −−∝ −

MT C

Etc…

Linearized Inversion

l Analytic results for Linear/Gaussian case? Linearization?

l Linearized inversion based on local functional derivativesCan fail:Ø Parameter estimates may converge to local minimumØ Uncertainties characterize single minimumØ Derivatives may not characterize nonlinear uncertainty

l Matched-field inversion is strongly nonlinear due tomodal interference ? consider:Ø Invert modal wave-numbers (Frisk & Becker; Rajan)

Ø Invert modal dispersion curves (Potty & Miller)

Ø Inversion via modal decomposition (Neilsen & Westwood)

Etc…

Benchmark Testcase

l Matched-field inversion for IT2001 Workshopbenchmark test case

l Blind Test: Inversioncarried out with no knowledge of solution

l Parameterization:seabed represented as L layers

Model Parameterization? What is L?

water

Number of Layers

l Seek the minimum number of layers consistent with the resolving power of data

l Examine misfit of optimal model vsnumber of layers(PE prop model)

? L = 3 layers resolved Layers

Mis

fit

Marginal Distributions

l MAP estimate with one standard deviation uncertainties compared to true solution ? note error in prior bounds for a

Sediment Profile

MAPTrue

Error in prior

Matched-field Inversion

l PROSIM ’97 experiment (Nielsen et al, SACLANTCEN)

l Acoustic data on verticalline array (VLA) due to towed source

VLA

Acoustic Data

l 300–800 Hz LFM “chirp” signal on 64-element VLA

l Effective SNR of5–10 dB (includes theory error)

Parameterization

l Model parameterized as 3 geoacoustic, 5 geometric unknowns

l Adiabatic normal modeprop model (300, 400,500, 600 Hz)

l Data errors assumedcorrelated over scale of significant modes

Marginal PPDs

l Marginals for 4 km range compared to results of 16 inversions of independent data at 2–6 km

Synthetic Marginals

l Compare to marginalsfor synthetic data with noise of assumed statistics

Correlation Matrix

l Water-depth / layer thickness negatively correlated (– 0.9)

l Layer thickness / layer speed positively correlated (+0.7)

Rows of Correlation Matrix

Joint Marginals

l 2-D uncertainties illustrate parameter correlations

Reflection Inversion

l Inversion of towed-array Reflection-coefficient data

l Two sites along seismicline in Baltic (hard till and soft mud inclusion)

Ref

lect

ion

Coe

ffGrazing Angle (o)

Can different geoacousticproperties be resolved?

Marginal PPDs

l Marginal distributions quantify geoacoustic differences resolved by data

Mud Till

High-Resolution Reflectivity

l High-resolution bottom loss in Straits of Sicily using towed source & fixed receiver (Holland, SACLANTCEN)

l Low-velocity silty-clay produces Angle of Intromission

BL Inversion

l Inversion carried out with ML estimate for data stnd dev s , and by including s in inversion

l High-resolution data define VP , ?, aP , VS(not aS )

ML

Inv

Check: Data Statistics

l Assumed Gaussian errors ? data residuals[d–d(m)]/s should be Gaussian(0,1) and uncorrelated

Residuals Auto-correlation

l

Localization withEnvironmental Uncertainty

l Probabilistic inversion can incorporate environmental uncertainty in source localization

l Example: Consider benefit of geoacoustic inversionto localization

V1

V2

V3

VS

Vb

Geoacoustic Inversion

l Geoacoustic inversion (50, 100, 200 Hz SNR=10 dB) ? Use PPD as prior for source localization

(95% HPD intervals & M-D Gaussian)

Joint Marginals

l Joint marginalsshow correlated parameters V2 V3

V3

VS

VS

rh VS

Probabilistic Localization

l Joint marginals in (r, z) by integrating unknown environmental parameters (100 Hz, SNR=5 dB)

l PA = probability within ± (200, 5) m in (r, z)

Geoacoustic Inv PPD as Prior

Known /UnknownEnvironment

Summary

l Probabilistic inversion provides general approach:Ø Parameter estimates (MAP & mean)Ø Parameter uncertainties (marginal probability, variances,

credibility intervals)Ø Parameter inter-relationships (correlations, joint marginals)

l Explicitly treats data uncertainties & prior info

l Natural framework for transferring uncertainties in inversion

References

Contributions by the author to this field include:

S.E. Dosso et al., Estimation of ocean-bottom properties by matched-field inversion of acoustic field data, IEEE J. Oceanic Eng. 18, 232–239 (1993).

M.R. Fallat & S.E. Dosso, Geoacoustic inversion for the Workshop 97 testcases using simulated annealing, J. Comp. Acoust. 6, 29–44 (1998).

M.R. Fallat & S.E. Dosso, Geoacoustic inversion via local, global, and hybrid algorithgms, J. Acoust. Soc. Am. 105, 3219–3230 (1999).

M.R. Fallat, P.L. Nielsen & S.E. Dosso, Hybrid inversion of broadband Mediterranean Sea data, J. Acoust. Soc. Am. 107, 1967–1977 (2000).

S.E. Dosso, M.J. Wilmut & A.S. Lapinski, An adaptive hybrid algorithm for geoacoustic inversion, IEEE J. Oceanic Eng. 26, 324–336 (2001).

S.E. Dosso, Quantifying uncertainty in geoacoustic inversion I: A fast Gibbs sampler approach, J. Acoust. Soc. Am. 111, 129–142 (2002).

S.E. Dosso & P.L. Nielsen, Quantifying uncertainty in geoacoustic inversion II: Application to a broadband shallow-water experiment, J. Acoust. Soc. Am. 111, 143–159 (2002).

S.E. Dosso & M.J. Wilmut, Quantifying data information content in geoacoustic inversion, IEEE J. Oceanic Eng. 27, 296–304 (2002).

S.E. Dosso & M.J. Wilmut, Effects of incoherent and coherent source spectral information in geoacoustic inversion, J. Acoust. Soc. Am. 112, 1390–1400 (2002).

S.E. Dosso, Benchmarking range-dependent propagation modeling in matched-field inversion,J. Comp. Acoust. 10, 231–242 (2002).

S.E. Dosso, Environmental uncertainty in ocean acoustic source localization, Inverse Problems 19, 419–431 (2003).

M. Riedel & S.E. Dosso, Uncertainty estimation for AVO inversion, At press: Geophysics (2003).A.S. Lapinski & S.E. Dosso, Bayesian inversion for the Inversion Techniques 2001 Workshop, At press: IEEE J.

Oceanic Eng. (2003).S.E. Dosso & C.W. Holland, Geoacoustic uncertainties from seabed reflection data, Submitted to: J. Acoust. Soc.

Am. (2003).

top related