presentation on field testing of thin layer capping … · field testing of thin layerfield testing...

Post on 06-Oct-2020

1 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Field testing of thin layerField testing of thin layer capping with AC and passive materials in NorwayNorwayEspen Eek1 Amy Oen1 Gijs Breedveld1Espen Eek , Amy Oen , Gijs Breedveld , Morten Schaanning2 Bjørnar A. Beylich2, Kristoffer Næs2 and Gerard Cornelissen1Kristoffer Næs and Gerard Cornelissen1Norwegian Geotechnical Institute2Norwegian Institute for Water Research2Norwegian Institute for Water Research

Google Earth

Content

• Field site• Dioxin contaminated fjord

• Capping applicationpp g pp

• Monitoring

Google Earth

Test plots I

Ormefjord30 m depth, 100 m x 100 m

3 fields3 fieldsClayClay + 2 kg/m2 AC 1-limestoneClay + 2 kg/m2 ACCrushed limestone

1 limestone

2 l3-clay+AC

+ control field 2-clay

4-reference

Test plots II

Eidangerfjord100 m depth, 200 m x 200 m

1 field1 fieldClay + 2 kg/m2 AC 6-reference

+ control field

5 cla +AC

Total capped area: 70 000 m25-clay+AC

= 750 000 ft2

Material applicationDredging and mixing materials in a hopper dredger

Application at 100m depth using a separate pump on transport platform

Material applicationpp g

Application at 30m depthby hopper dredger

transport platform

M t i l i i i h d dMaterial mixing in hopper dredger

M t i l i i i h d dMaterial mixing in hopper dredger

Material mixing in hopper dredgerMaterial mixing in hopper dredger

Monitoring

• Physical monitoring (Does it spread out and does it ?)end up on the seabed?)

• Sediment profile imaging (SPI)

• Chemical monitoring (Does the amendment reduce the bioavailability?)y )• Flux chambers • Freely dissolved in water phase 10 cm above sed water

interface• Freely dissolved in pore water

Turbidity during placement

0 0

Grenlandfjord (30 m depth)Foto: Beylich, NIVA Foto: Beylich, NIVA Foto: Beylich, NIVA

Clay Reference Clay+AC

www.opticap.no

Grenlandfjord (100 m depth)

F t B li h NIVA

Grenlandfjord (100 m depth)

Foto: Beylich, NIVAFoto: Beylich, NIVA Foto: Beylich, NIVA

Clay+AC, Oct 2009Reference Clay+AC, May 2010

www.opticap.no

Monitoring of effectiveness of the thinMonitoring of effectiveness of the thin layer capping in the field

Flux chambers with

infinite sink passive samplers

Exposed in 2 – 24 weeksp

Flux of TBT, PAHs, PCBs and dioxins from the seabed

Eek et al., Environmental Science & Technology 2010

R l f di i /f i fl h b fRelease of dioxins/furanes in flux chambers from Grenlandfjord test plots

30

35

25

30

‐2 d‐1)

15

20

D/F (p

g TEQ m

10Flux

 PCD

D

0

5

Month Month Month Month Month Month Month Month Month Month Month Month Month Month Month Month Month Month Month Month MonthMonth 1‐7

Month 9‐14

Month 14‐20

Month 20‐23

Month 1‐7

Month 9‐14

Month 14‐20

Month 20‐23

Month 1‐7

Month 9‐14

Month 14‐20

Month 20‐23

Month 1‐7

Month 9‐14

Month 14‐20

Month 20‐23

Month 1‐7

Month 9‐14

Month 14‐20

Month 9‐14

Month 14‐20

Ormer‐Ref Ormer‐limestone Ormer‐clay Ormer‐AC Eidanger‐Ref Eidanger‐AC

Freely dissolved organic contaminants inFreely dissolved organic contaminants in overlying water

Calculation of

Chemical analysis

ExtractionCalculation of

freely dissolved

concentrations

Passive samplers made from

Organic contaminants

Dioxines dissolved

Plastic material (POM)

contaminants bound in the POM

dissolved in water

Freely dissolved Dioxins in overlyingFreely dissolved Dioxins in overlying water at Grenlandfjord test plots

160

180

120

140

160

m-3

)

80

100

120

DD

/F (p

g m

40

60

80

CW

PCD

0

20

Mnd 1- Mnd 9- Mnd Mnd 1- Mnd 9- Mnd Mnd 9- Mnd Mnd 9- Mnd Mnd 9- Mnd Mnd 9- MndMnd 1-7

Mnd 9-14

Mnd 14-20

Mnd 1-7

Mnd 9-14

Mnd 14-20

Mnd 9-14

Mnd 14-20

Mnd 9-14

Mnd 14-20

Mnd 9-14

Mnd 14-20

Mnd 9-14

Mnd 14-20

Ormer-Ref Ormer-limestone Ormer-clay Ormer-AC Eidanger-Ref Eidanger-AC

Pore water concentrations of organic t i t d i itcontaminants measured in situ

• pictures

• 5 rods POM• 2 rods PE

Vertical pore water distributions, Hunters Point 2008

POM - equilibrium PE – PRC depletion POM – PRC depletion

0

0 4 8 12

Cpw (ng/l)

0

0 4 8 12

Cpw (ng/l)

0

0 4 8 12

Cpw (ng/l)(a) (b) (c)

5

10m su

rface)

5

10

5

10

15

20er (c

m from

15

20

15

20

2-4 % AC

20

25

sive sample 20

25

20

25

30

35

tion of pass

30

35

30

35 1 % AC

40

45

Loca 40

45

40

45Oen et al. Environ. Sci. Technol. 2011, 45, 4053–4059

Deeper layers have tracesof AC amendment

Conclusions

Placement of AC-mixed with clay resulted in well defined AC-layers

Trade-off between some distribution of AC-material to get homogenous layers and too much distribution and loss of material is important to consider for local conditionsmaterial is important to consider for local conditions

Important parameters like pore water concentrations sediment to water release and overlying water concentrations can bewater release and overlying water concentrations can be monitored in situ

Thin layer capping with or without AC can reduce the availabilityThin layer capping with or without AC can reduce the availability with 50 – 95 %

Both cap thickness and active material content are importantBoth cap thickness and active material content are important

PartnersPartnersTechnical:Scientific:

Financial:Materials:

Extra material

AC amendment performance -t d t d lmeasurements compared to model

Minimallymixed

Wellmixedmixed

In this study, measurements in top 15 cm (PE) showed 80% reduction in PCBs 30 months post AC-amendment

Testing thin layer cappingin the labin the lab

Using infinite sink passive samplers to measure flux of organic contaminants

(PAHs, PCBs, TBT)(PAHs, PCBs, TBT)

Method described in Eek et al 2008 Chemosphere

What effectiveness can be expected fromWhat effectiveness can be expected from thin layer capping?

Lab tests With 1 cm cap:

PCB28 PCBS2

0 .0035 0 00)

I ~

0 003 ; 0 006

I "' 0 0025 "'

0 oos e 0.002 e 0 004 .. 0 0015

.. 0 003 .a. .2-

.lil 0 001 ;Q 0 002

f 0 0005 ~ 0 00. I 0 0

T

No <liP llmuton o cop Gn<osscop tlo cop l im!sbne cap Gn<issc• p

PCB 28 PCB S2

0 0030 0 0035

:; 0 .0025 ; 0 0030 -o 0 0025 "' 0 0020 "' I; 1: 0 0020 .. 0 00! 5 .. 0 0015 .a. .a. .: 0 0010 .R 0 0010

<0,0002 <O,OOC2 ;: 0 000~ f 0 0005

00000 0 0000

no<ap susp kalkcop ACCop no cap Susp t alk cop ACcap

TBT DOT

300 35

; 150 ... 30 ... 25

~ 200 "' 150 1: 20 .. ... .. 15 100 .a.

.: ~

10 .2 50 ... 5

0 0

No cap ACcap Bi)kaikcap Nc CliP ACcop Biokalkcap

Boxcosm tests, NIVAs research station Solbergstrandstation, Solbergstrand

Water flow

SPMD

Cap

Sediment

Effectiveness of thin layer cappingEffectiveness of thin layer capping Flux in boxcosm

OCS (667 pg)

0,8

1,0 OCS (667 pg)HCB (10 121 pg)PCDD/F (91 pg)WHO-TEQ (7 pg)

Flux from reference boxes

0,6

0,2

0,4

0,00,5 cm passive

0,5cm passive/AC

3 cm passive

3 cm clay/AC

3 cm Hustad/AC

3 cm NOAH/AC 5 cm clay

OCS (667 pg) 70 % 47 % 41 % 18 % 8 % 3 % 30 %HCB (10 121 pg) 75 % 22 % 47 % 8 % 6 % 3 % 40 %PCDD/F (91 pg) 48 % 91 % 61 % 39 % 14 % 10 % 35 %

passive passive/AC passive clay/AC Hustad/AC NOAH/AC

PCDD/F (91 pg)WHO-TEQ (7 pg) 53 % 79 % 60 % 40 % 16 % 8 % 30 %

TBT-flux from ship yard sedimentTBT flux from ship yard sediment with and without capping

10000

1000

100

s (ug m‐2 d‐1)

10

TBT‐flu

ks

11Beregnet  fra Cpw, sediment fra 0 ‐ 15 cm

Beregnet  fra  Cpw, sediment fra 0 ‐ 5 cm

Målt i lab, sediment fra 0 

‐ 15 cm

Målt i felt Kalk‐feltet 

Målt i felt AC‐feltet 

Målt i lab Kalk‐felt

Målt i lab  AC‐felt

Gjennomsnitt målt i felt Kalk‐

feltet 

Gjennomsnitt målt i felt AC‐

feltet 

Uten tildekking Med tildekking

Freely dissolved TBT in overlying water

14 016,0

L-

10,012,014,0

ater

(ng

4 06,08,0

on in

wa

1)

0,02,04,0

Before capping 1 mnth after 8 mnth after 12 mnth aftercent

ratio 1

Before capping 1 mnth after capping

8 mnth after capping

12 mnth after capping

TBT-

conc

fT Test field capped with 5 cm limestone slurryTest field capped with 5 cm AC-limestone slurry

• Hinia 2009 • Hinia 2010

7

6

1

0

F01 F02 F03 F04 FES FE6 Blanc

Figurt' 11. Dioxins (Slun PCDD/F-TEQ) in laboratmy blanc and in Hinia reticulata (snails) exposed in box -core satnples tl'mn experitnental fields capped with 1-4 ern thick layers of litnestone gravel (FOl), dredged clay (F02), dredged clay/AC (F03) and reference field (F04) in Onnefjorden and dredged clay/AC (FE5) and reference field (FE6) in Eidangerfjorden.

Sediment dveling organisms on the testSediment dveling organisms on the test plots

Capping with clay in Oslo Harbour

PAH 16 flux

2 500

PAH 16 flux

12 000

1 500

2 000

d-1 8 000

1

Sørenga

1 000ng m

-2 d

4 000

ng m

-2 d

-1

Grønlia 2

Grønlia 1

-

500

0Grønnlia 1 Silicone no cap Grønnlia 1 SPMD no cap-

Foto: Viktor Jæger, stopp-giftdumpingen.o

Grønnlia 1 Silicone, no cap Grønnlia 1 SPMD, no cap

Grønlia 2 SPMD, with cap 1

Grønlia 2 SPMD, no cap Grønnlia 1 Silicone, no capGrønnlia 1 SPMD, no cap Grønlia 2 SPMD, with cap

Field test in Trondheim harbour

top related