presentation - longevity risk & capital markets solutions conference

Post on 11-Feb-2022

2 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Real World Pricing of Long Term Contracts

Eckhard PlatenSchool of Finance and Economics and Department of Mathematical Sciences

University of Technology, Sydney

Pl. & Heath (2006).A Benchmark Approach to Quantitative FinanceSpringer Finance, 700 pp., 199 illus., Hardcover, ISBN-10 3-540-26212-1.

Marquardt, Jaschke & Pl. (2008). Valuing Guaranteed Minimum Death Benefit Optionsin Variable Annuities under a Benchmark Approach. QFRC Report 221, University of Technology, Sydney

Pl. (2009). Real World Pricing of Long Term Contracts. QFRC Report 262,University of Technology, Sydney

Introduction

• variable annuitiesfund-linked

tax-deferred

guarantees

• guaranteed minimum death benefits(GMDBs)

roll-ups:

original investment accrued at a pre-defined interest rate

c© Copyright E. Platen 10 Long Term Contracts 1

• GMDB put, floating put and/or look-back put option

long maturities of contracts

standard option pricing theory ?

no obvious best choice for price:

IFRS Phase II

CFO-Forum (2008)

CRO-Forum (2008)

Solvency II

c© Copyright E. Platen 10 Long Term Contracts 2

• pricing and hedging of GMDBs

benchmark approachin

Pl. (2002, 2004), Pl.& Heath (2006)

Buhlmann& Pl. (2003)

best performing portfolio asbenchmark

doesnot require

existence of an equivalent risk neutral probability measure

exploits real trends

may provide significantly lower prices

c© Copyright E. Platen 10 Long Term Contracts 3

Financial Model

• underlying risky security (unit)

dSt = (µt − γ)Stdt + σtSt dWt

γ ≥ 0 management fee rates

Wt - Brownian motion

• savings account

dBt = rtBt dt

c© Copyright E. Platen 10 Long Term Contracts 4

• market price of risk

θt =µt − γ − rt

σt

• risky asset

dSt

St

= rt dt + σtθt dt + σt dWt

c© Copyright E. Platen 10 Long Term Contracts 5

• instantaneous portfolio return

dVt

Vt

= π0t

dBt

Bt

+ π1t

dSt

St

= rt dt + π1t σt(θt dt + dWt)

• fractions

π0t = δ0

t

Bt

Vt

, π1t = δ1

t

St

Vt

π0t + π1

t = 1

c© Copyright E. Platen 10 Long Term Contracts 6

• numeraire portfolio (NP) as benchmark

Long (1990)

V ∗ is best performing in several ways

• is growth optimal portfolio

Kelly (1956)

V ∗ = max E(log VT )

π1∗

t =µt − γ − rt

σ2t

=θt

σt

dV ∗t

V ∗t

= rt dt + θt(θt dt + dWt)

Merton (1992)

c© Copyright E. Platen 10 Long Term Contracts 7

• NP best performing portfolio

lim supT →∞

1

Tlog

(

V ∗T

V ∗0

)

≥ lim supT →∞

1

Tlog

(

VT

V0

)

global well diversified index≈ NP

Pl. (2005)

c© Copyright E. Platen 10 Long Term Contracts 8

0

10

20

30

40

50

60

70

80

90

100

1930 1940 1950 1960 1970 1980 1990 2000

time

Figure 1: Discounted S&P500 total return index.

c© Copyright E. Platen 10 Long Term Contracts 9

-2

-1

0

1

2

3

4

5

1930 1940 1950 1960 1970 1980 1990 2000

time

Figure 2: Logarithm of discounted S&P500.

c© Copyright E. Platen 10 Long Term Contracts 10

• benchmarked price

Ut = Ut

V ∗

t

U nonnegative =⇒

Ut ≥ Et

(

Us

)

t ≤ s

supermartingales (no upward trend)

Pl. (2002)

no strong arbitrage

c© Copyright E. Platen 10 Long Term Contracts 11

• benchmarked securities that form martingales are calledfair.

Ut = Et

(

Us

)

t ≤ s

c© Copyright E. Platen 10 Long Term Contracts 12

• Law of the Minimal Price

Pl. (2008)

Fair prices are minimal prices

V nonnegative fair portfolio

V ′ nonnegative portfolio

VT = V ′

T

supermartingale property

=⇒Vt ≤ V ′

t

t ∈ [0, T ],

c© Copyright E. Platen 10 Long Term Contracts 13

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

1930 1940 1950 1960 1970 1980 1990 2000

time

benchmarked savings bondbenchmarked fair zero coupon bond

Figure 3: Benchmarked savings bond and benchmarked fair zero coupon bond.

c© Copyright E. Platen 10 Long Term Contracts 14

• real world pricing formulafor

Et

(

HT

V ∗T

)

< ∞

UH(t) = V ∗

t Et

(

HT

V ∗T

)

t ∈ [0, T ]

no risk neutral probability needs to exist

c© Copyright E. Platen 10 Long Term Contracts 15

• actuarial pricing formula

whenHT is independent ofV ∗T

=⇒UH(t) = P (t, T ) Et(HT )

zero coupon bond

P (t, T ) = V ∗

t Et

(

1

V ∗T

)

c© Copyright E. Platen 10 Long Term Contracts 16

• standard risk neutral pricing

Ross (1976), Harrison & Pliska (1983)

complete market

candidate Radon-Nikodym derivative

Λt =dQ

dP

At

=BtV

∗0

B0V ∗t

supermartingale =⇒

1 = Λ0 ≥ E0 (ΛT )

c© Copyright E. Platen 10 Long Term Contracts 17

=⇒

UH(0) = E

(

V ∗0

V ∗T

HT

)

= E

(

ΛT

B0

BT

HT

)

≤E(

ΛTB0

BT

HT

)

E(ΛT )

c© Copyright E. Platen 10 Long Term Contracts 18

Only in the special case whenΛT martingale

=⇒ risk neutral pricing formula:

UH(0) = EQ

(

B0

BT

HT

)

Ignores any real trend !

c© Copyright E. Platen 10 Long Term Contracts 19

• Trends ignored also when using:

stochastic discount factor, Cochrane (2001);

deflator, Duffie (2001);

pricing kernel , Constantinides (1992);

state price density, Ingersoll (1987);

NP as Long (1990)

c© Copyright E. Platen 10 Long Term Contracts 20

• Example zero coupon bond

benchmarked fair zero coupon

P (t, T ) =P (t, T )

V ∗t

= Et

(

1

V ∗T

)

martingale (no trend)

for rt - deterministic

P (t, T ) = V ∗

t Et

(

1

V ∗T

)

= exp

−T∫

t

rs ds

Et

(

V ∗t

V ∗T

)

,

V ∗t =

V ∗

t

Bt

- discounted NP

c© Copyright E. Platen 10 Long Term Contracts 21

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

1930 1940 1950 1960 1970 1980 1990 2000

time

benchmarked savings bondbenchmarked fair zero coupon bond

Figure 4: Benchmarked savings bond and benchmarked fair zero coupon bond.

c© Copyright E. Platen 10 Long Term Contracts 22

=⇒ downward trend reflects equity premium

=⇒ Λ strict supermartingale (downward trend), then

P (t, T ) < exp

−T∫

t

rs ds

=Bt

BT

c© Copyright E. Platen 10 Long Term Contracts 23

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1930 1940 1950 1960 1970 1980 1990 2000

time

Radon-Nikodym derivativeTotal RN-Mass

Figure 5: Radon-Nikodym derivative and total mass of putative risk neutral measure.

c© Copyright E. Platen 10 Long Term Contracts 24

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1930 1940 1950 1960 1970 1980 1990 2000

time

savings bondfair zero coupon bond

savings account

Figure 6: Savings bond, fair zero coupon bond and savings account.

c© Copyright E. Platen 10 Long Term Contracts 25

-8

-7

-6

-5

-4

-3

-2

-1

0

1

1930 1940 1950 1960 1970 1980 1990 2000

time

ln(savings bond)ln(fair zero coupon bond)

Figure 7: Logarithms of savings bond and fair zero coupon bond.

c© Copyright E. Platen 10 Long Term Contracts 26

• discounted NP

V ∗

t =V ∗

t

Bt

dV ∗

t = V ∗

t θt (θt dt + dWt)

= αt dt +

αt V ∗t dWt

c© Copyright E. Platen 10 Long Term Contracts 27

• discounted NP drift

αt := V ∗

t θ2t

=⇒ volatility

θt =

αt

V ∗t

reflects leverage effect

c© Copyright E. Platen 10 Long Term Contracts 28

• minimal market model

Pl. (2001, 2002)

MMM

discounted NP drift

assume

αt = α0 exp{ηt}

α0 > 0

net growth rateη > 0

=⇒ MMM

c© Copyright E. Platen 10 Long Term Contracts 29

• normalized NP

Yt =V ∗

t

αt

dYt = (1 − ηYt) dt +√

Yt dWt

square root process of dimension four

Only one parameter !

c© Copyright E. Platen 10 Long Term Contracts 30

• volatility of NP

θt =1

√Yt

=

αt

V ∗t

leverage effect

c© Copyright E. Platen 10 Long Term Contracts 31

• Zero coupon bond under the MMM

rt - deterministic

P (t, T ) = exp

−T∫

t

rs ds

(

1 − exp

{

− V ∗t

2(ϕ(T ) − ϕ(t))

})

Explicit formula !

c© Copyright E. Platen 10 Long Term Contracts 32

0

0.2

0.4

0.6

0.8

1

1930 1940 1950 1960 1970 1980 1990 2000

time

Figure 8: Fraction invested in the savings account.

c© Copyright E. Platen 10 Long Term Contracts 33

-2e-005

-1e-005

0

1e-005

2e-005

3e-005

4e-005

5e-005

6e-005

7e-005

1930 1940 1950 1960 1970 1980 1990 2000

time

Figure 9: Benchmarked profit and loss.

c© Copyright E. Platen 10 Long Term Contracts 34

• European put option under the MMM

Hulley, Miller & Pl. (2005)

p(t, V ∗

t , T, K, r) = V ∗

t Et

(

(K − V ∗τ )+

V ∗τ

)

p(t, V ∗

t , T, K, r) = −V ∗

t χ2(d1; 4, l2)

+ Ke−r(T −t)(

χ2(d1; 0, l2) − exp {−l2/2})

c© Copyright E. Platen 10 Long Term Contracts 35

with

d1 =4ηK exp{−r(T − t)}

Btαt(exp{η(T − t)} − 1)

and

l2 =4ηV ∗

t

Btαt(exp{η(T − t)} − 1)

c© Copyright E. Platen 10 Long Term Contracts 36

χ2(x; n, l) non-central chi-square distribution function

n ≥ 0 degrees of freedom

non-centrality parameterl > 0

χ2(x; n, l) =

∞∑

k=0

exp{

− l2

} (

l2

)k

k!

1 −Γ(

x2; n+2k

2

)

Γ(

n+2k

2

)

c© Copyright E. Platen 10 Long Term Contracts 37

• putative risk neutral price

p(t, V ∗

t , T, K, r) = p(t, V ∗

t , T, K, r)+Ke−r(T −t) exp

{

− V ∗t

2(ϕ(T ) − ϕ(t))

}

risk neutral is overpricing

for V ∗t → 0 =⇒ p(t, V ∗

t , T, K, r) → 0

and

p(t, V ∗

t , T, K, r) → K e−r(T −t) > 0

risk neutral ignores trends

c© Copyright E. Platen 10 Long Term Contracts 38

0

2

4

6

8

1930 1940 1950 1960 1970 1980 1990 2000

time

ln(K*savings bond)ln(risk neutral put)

ln(put)

Figure 10: Logarithms of savings bond timesK, risk neutral put and fair put.

c© Copyright E. Platen 10 Long Term Contracts 39

Guaranteed Minimum Death Benefit (GMDB)

• payout to the policyholder

max(egτ V0, Vτ )

time of deathτ

g ≥ 0 is the guaranteed instantaneous growth rate

V0 is the initial account value

Vτ is the unit value of the policyholder’s account at time of death τ

c© Copyright E. Platen 10 Long Term Contracts 40

• insurance chargesξ ≥ 0

=⇒ policyholder’s unit value

Vt = e−ξtV ∗

t

=⇒

max(egτ V0, Vτ ) = max(egτ V0, e−ξτ V ∗

τ )

= e−ξτ max(e(g+ξ)τ V0, V ∗

τ )

c© Copyright E. Platen 10 Long Term Contracts 41

insurance company invests the entire fund valueV in the NP V ∗

=⇒ payoff

HT = GMDBT = e−ξT[

(e(g+ξ)T V ∗

0 − V ∗

T )+ + V ∗

T

]

c© Copyright E. Platen 10 Long Term Contracts 42

fair valueGMDB0 of the total claim

real world pricing formula

GMDB0 = V ∗

0 E

(

GMDBT

V ∗T

)

= e−ξT(

p(0, V ∗

0 , T, e(g+ξ)T V ∗

0 , r) + V ∗

0

)

c© Copyright E. Platen 10 Long Term Contracts 43

0 5 10 15 20 25 300.8

0.85

0.9

0.95

1

1.05

1.1

MMM

T

GM

DB

0

0 5 10 15 20 25 300.8

0.85

0.9

0.95

1

1.05

1.1

risk neutral

T

GM

DB

0

0 5 10 15 20 25 300.8

0.85

0.9

0.95

1

1.05

1.1

1.15Black Scholes

T

GM

DB

0

0 5 10 15 20 25 300.9

0.95

1

1.05

1.1

1.15MMM

T

GM

DB

0

0 5 10 15 20 25 300.9

0.95

1

1.05

1.1

1.15risk neutral

T

GM

DB

0

0 5 10 15 20 25 300.9

0.95

1

1.05

1.1

1.15Black Scholes

T

GM

DB

0g=0.025

g=0

g=0.025g=0.025

g=0g=0

Figure 11: Present value of the GMDB under the real world pricing formula (left), the risk

neutral pricing formula (middle) and the Black Scholes formula (right) forη = 0.05, α0 =

0.05, r = 0.05, ξ = 0.01 andY0 = 20.

c© Copyright E. Platen 10 Long Term Contracts 44

• lifetime τ is stochastic

GMDB0 = V ∗

0 E

(

E

(

GMDBτ

V ∗τ

))

GMDB0 =

∫ T

0

(

p(0, V ∗

0 , t, e(g+ξ)tV ∗

0 , r) + V ∗

0

)

e−ξtfτ (t) dt

fτ (·) - mortality density

c© Copyright E. Platen 10 Long Term Contracts 45

0 20 40 60 80 100 12010

−5

10−4

10−3

10−2

10−1

100

Age x

log(

q x)

malefemale

Figure 12: German mortality data

c© Copyright E. Platen 10 Long Term Contracts 46

rational investors will lapse when embedded put-option outof the moneyGMDBs have stochastic maturityTitanic options, Milevsky & Posner (2001)

• roll-up GMDB payoff

Ht =

(1 − βt)V∗

t , if lapsed at timet,

max(egτ V0, V ∗τ ), if death occurs at timet = τ

surrender chargeβt

βt =

(8 − ⌈t⌉)%, t ≤ 7,

0, t > 7

no credit riskno accumulation phase

c© Copyright E. Platen 10 Long Term Contracts 47

20 30 40 50 60 70 801

1.05

1.1

1.15

Age x

GM

DB

0

malefemale

Figure 13: Value of the GMDB under the MMM for male and female policyholders agedx,

assuming an irrational lapsation ofl = 1%.

c© Copyright E. Platen 10 Long Term Contracts 48

ReferencesBuhlmann, H. & E. Platen (2003). A discrete time benchmark approach for insurance and finance.ASTIN

Bulletin33(2), 153–172.

CFO-Forum (2008, June). MCEV principles. http://www.cfoforum.nl/pdf/mcev−

principles−

and−

guidance.pdf.

Cochrane, J. H. (2001).Asset Pricing. Princeton University Press.

Constantinides, G. M. (1992). A theory of the nominal structure of interest rates.Rev. Financial Studies5,531–552.

CRO-Forum (2008, July). Market value of liabilities for insurance firms: Implementing elements for sol-vency II. http://www.croforum.org/publications/20082807

−resource/File.ecr?

Duffie, D. (2001).Dynamic Asset Pricing Theory(3rd ed.). Princeton, University Press.

Harrison, J. M. & S. R. Pliska (1983). A stochastic calculus model of continuous trading: Completemarkets.Stochastic Process. Appl.15(3), 313–316.

Hulley, H., S. Miller, & E. Platen (2005). Benchmarking and fair pricing applied to two market models.Kyoto Economic Review74(1), 85–118.

Ingersoll, J. E. (1987).Theory of Financial Decision Making. Studies in Financial Economics. Rowmanand Littlefield.

Kelly, J. R. (1956). A new interpretation of information rate.Bell Syst. Techn. J.35, 917–926.

Long, J. B. (1990). The numeraire portfolio.J. Financial Economics26, 29–69.

Merton, R. C. (1992).Continuous-Time Finance. Blackwell, Oxford.

c© Copyright E. Platen 10 Long Term Contracts 49

Milevsky, M. A. & S. E. Posner (2001). The Titanic option: Valuation of the guaranteed minimum deathbenefit in variable annuities and mutual funds.J. of Risk and Insurance68(1), 93–128.

Platen, E. (2001). A minimal financial market model. InTrends in Mathematics, pp. 293–301. Birkhauser.

Platen, E. (2002). Arbitrage in continuous complete markets.Adv. in Appl. Probab.34(3), 540–558.

Platen, E. (2004). Pricing and hedging for incomplete jump diffusion benchmark models. InMathemat-ics of Finance, Volume 351 ofContemporary Mathematics, pp. 287–301. American MathematicalSociety.

Platen, E. (2005). Diversified portfolios with jumps in a benchmark framework.Asia-Pacific FinancialMarkets11(1), 1–22.

Platen, E. (2008). Law of the minimal price. Technical report, University of Technology, Sydney. QFRCResearch Paper 215.

Platen, E. & D. Heath (2006).A Benchmark Approach to Quantitative Finance. Springer Finance.Springer.

Ross, S. A. (1976). The arbitrage theory of capital asset pricing.J. Economic Theory13, 341–360.

c© Copyright E. Platen 10 Long Term Contracts 50

top related